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Abstract

environmental strains.

Background: Discrimination between clinical and environmental strains within many bacterial species is currently
underexplored. Genomic analyses have clearly shown the enormous variability in genome composition between
different strains of a bacterial species. In this study we have used Legionella pneumophila, the causative agent of
Legionnaire's disease, to search for genomic markers related to pathogenicity. During a large surveillance study in The
Netherlands well-characterized patient-derived strains and environmental strains were collected. We have used a
mixed-genome microarray to perform comparative-genome analysis of 257 strains from this collection.

Results: Microarray analysis indicated that 480 DNA markers (out of in total 3360 markers) showed clear variation in
presence between individual strains and these were therefore selected for further analysis. Unsupervised statistical
analysis of these markers showed the enormous genomic variation within the species but did not show any correlation
with a pathogenic phenotype. We therefore used supervised statistical analysis to identify discriminating markers.
Genetic programming was used both to identify predictive markers and to define their interrelationships. A model
consisting of five markers was developed that together correctly predicted 100% of the clinical strains and 69% of the

Conclusions: A novel approach for identifying predictive markers enabling discrimination between clinical and
environmental isolates of L. pneumophila is presented. Out of over 3000 possible markers, five were selected that
together enabled correct prediction of all the clinical strains included in this study. This novel approach for identifying
predictive markers can be applied to all bacterial species, allowing for better discrimination between strains well
equipped to cause human disease and relatively harmless strains.

Background

Identifying the genetic factors that influence the patho-
genic potential of microorganisms is of the greatest
importance in trying to gain better control of infectious
diseases. Legionella pneumophila, the causative micro-
organism of Legionnaires' disease (LD), is an aquatic bac-
terium that can be found in numerous water sources.
Several aerosol-producing systems have become associ-
ated with LD outbreaks (including cooling towers, sau-
nas, and whirlpool spas). The financial, economic and
social impacts of these outbreaks can be enormous and
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many countries have implemented governmental laws or
guidelines to prevent the growth of Legionella bacteria in
potential sources. In most regulations, disinfection strat-
egies are used independent of the isolated Legionella
strains, as there is no reliable method for differentiating
between clinical and environmental strains. In The Neth-
erlands, this has led to a confounding situation in which,
despite an estimated expenditure of several billion euros
since 1999 (when 32 people died in a single outbreak of
LD; [1]) the incidence of LD has steadily increased [2].
One explanation for this might be the lack of focus in
combating Legionella risks: all Legionella species are con-
sidered equally dangerous, with no attention being given
to clinical data on LD, even though over 95% of LD cases
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are caused by L. pneumophila. Furthermore, within the
species L. pneumophila, serogroup 1 is involved in over
80% of cases [3]. As has already been demonstrated with
guinea pig models in the 1980s, some serogroup 1 sub-
types are more virulent than others [4]. This difference in
virulence across serogroups and subtypes appears to be
due mainly to the better-developed replicating and apop-
tosis skills of L. pneumophila strains, especially in sero-
group 1 [5]. Epidemiological studies have also provided
some clues on virulence. A particular lipopolysaccharide
epitope, recognized as MAb 2 by typing with a panel of
monoclonal antibodies obtained from a range of geo-
graphical locations, is more frequently expressed on
patient derived isolates than on environmental isolates of
serogroup 1 strains. Furthermore, fingerprinting of L.
pneumophila strains has shown that the genotypes of iso-
lates from patients and from the environment differ
markedly [6] indicating that a genetic base for differences
in virulence does exist. However, the nature of this
genetic base has been fully unclear until now. Also
genomic analysis of 217 L. pneumophila strains collected
world-wide could not identify specific hybridization pro-
files differentiating clinical and environmental strains [7].
To identify molecular markers related to virulent behav-
ior, we have combined two different worlds. We used
comparative genome hybridization (CGH) based on a
mixed-strain microarray containing genetic information
from both clinical and environmental isolates. This
molecular analysis was performed with a large collection
of well-described bacterial isolates derived from a large
surveillance study in The Netherlands in which both
patient-derived strains and environmental strains were
collected. We investigated whether the application of
such a molecular analysis on a well-defined strain collec-
tion was capable of identifying DNA markers that would
allow for discrimination between clinical and environ-
mental isolates. In this way we have identified five mark-
ers that together constitute a model highly predictive for
clinical strains.

Results

Strain collection

The basis of this study is formed by the strain collection
from the Dutch Legionella surveillance program. This
collection encompasses all patient-derived strains from
notified cases in The Netherlands in the period from
2002-2006 and all environmental strains that were col-
lected in an attempt to identify the source of infection for
those patients. The L. pneumophila isolates from the
patients' environments were genotypically compared
with the patient strain. Non-matching isolates from the
environment were defined as environmental. Patient
strains and matching isolates from the environment were
defined as clinical. The collection of environmental
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strains was completed with isolates from sources located
in surroundings geographically free of LD patients
according to the registration history of notified cases. All
L. pneumophila strains were serotyped, and the sero-
group 1 isolates were analyzed by Amplified Fragment
Length Polymorphism (AFLP) analysis according to the
European Working Group on Legionella Infections
(EWGLI) format [8]. In total, 257 strains from this collec-
tion of clinical and environmental L. pneumophila iso-
lates were selected for further analysis in this study (see
additional file 1). A representative part of this selection
(102 isolates) was analyzed by AFLP (Figure 1). A broad
variety of patterns is present, indicating the genomic
diversity within this species and the random selection of
the isolates from the natural genomic diversity of L. pneu-
mophila strains.

Microarray construction and unsupervised analysis

Comparative genome hybridization experiments were
performed with a mixed-genome L. pneumophila
microarray. For the construction of this microarray, eight
L. pneumophila strains were selected based on their
diversity (both patient-derived and environmental strains
were used; for details see additional file 1). This microar-
ray consisting of 3360 genomic fragments was used to
analyze the genome composition of the collection of 257
unique L. pneumophila strains by comparing labeled
DNA from each strain with a reference containing labeled
DNA from the mixture of strains used for array construc-
tion. In total, 346 datasets were generated each represent-
ing a fingerprint encompassing over 3000 different
markers. The data for all spots on all microarrays were
calculated as ratios between the tester strain and the ref-
erence with normalization for experimental differences
(for details see methods section). These data were used
for unsupervised statistical analysis of the relationships
between all strains with respect to genomic composition.
Principal component analysis of all 346 CGH-data sets
resulted in a good overview and allowed us to draw a
number of conclusions important for follow-up work.
First, results from repeat experiments (89 in total, repre-
senting both technical and biological replicates) showed
the high reproducibility of this approach (data not
shown). Next, this analysis also showed that the overall
genomic patterns (consisting of over 3000 markers per
strain) of the environmental L. pneumophila isolates were
found throughout the distribution of the patterns
obtained from the patient-derived strains (Figure 2), indi-
cating that no genome wide differences between the two
groups exist. Furthermore, no small outlier populations
or single outlier strains were observed with the exception
of a small number of datasets obtained from Legionella
species other than L. pneumophila. These strains were
not present in the 257 strain dataset and were excluded
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Figure 1 AFLP analysis of L. pneumophila serogroup 1 isolates.
AFLP analysis shows genomic diversity between a representative sub-
set of 102 L. pneumophila strains used for further analysis in this study.
For each strain serogroup type (5g.) and assigned EWGLI-type are
shown. The variety of patterns and presence of several different EWGLI-
types indicates the random selection of strains representing the natu-
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Figure 2 Genomic diversity based on Principal Component Anal-
ysis (PCA). All 346 microarray data sets (linearly distributed values
used, based on the selection of 480 markers) were subjected to Princi-
pal Component Analysis to determine whether this would lead to sub-
grouping of patient-derived or environmental strains of L.
pneumophila. Each data set is represented as a single dot in an n-di-
mensional space of which the three main components (covering most
of the overall variation covered within these data) are shown. It is clear
from this analysis that no clear differences between environmental
and patient-derived strains are detected based on overall genome
composition.

from all further analyses. This result indicated to us that
the genomic diversity of the species was well covered by
the 257 selected strains and that there was no need for
analyzing additional strains.

Marker reduction and binarization

Unsupervised statistical analysis of the data obtained for
the 257 strains did not allow for discrimination between
clinical and environmental strains. Since these analyses
are based on overall trends in data this inability to dis-
criminate is not surprising. It is much more likely that a
small part of the genome is involved in a specific genetic
trait such as pathogenic potential. Therefore, supervised
multivariate statistical analysis of the complete data set
was also used in order to find support for the hypothesis
that discrimination between clinical and environmental
strains is feasible. Although this analysis indicated that
discrimination was possible the method used for this
analysis (partial least square discriminant analysis) was
not optimally suited for reliable statistical significance
analysis, nor for selecting a minimal set of predictive
markers. Therefore, a different data analysis approach
was taken. First, the number of markers was reduced
based on the observation that approximately 80% of the
3,000 markers were present in all strains and therefore
encompassed the L. pneumophila core genome. The
remaining 20% of the markers showed clear variation in
presence between individual strains and encompassed
the variable part of the genome. Further reduction of the
number of markers was achieved by taking only a few
representatives in those cases where multiple markers
showed nearly identical patterns over the complete data
set (strongly suggesting partial overlap or close linkage in
the genome). In total, 480 markers were selected in this
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way and this selection was used for all further analyses
(additional files 2 and 3).

Next to reducing the number of markers another pre-
processing step was included. Closer examination of the
selected markers in most cases suggested a binary distri-
bution of values, most likely representing either the
apparent presence or absence (or presence but with a low
sequence homology preventing hybridization) of specific
genetic elements. Since this binary distribution probably
represents the real-world situation among strains and
also favors the practical applicability of analyzing selected
markers, we decided to continue our analyses by convert-
ing our linearly distributed data into binary values repre-
senting the presence or absence of each marker. A
number of methods have been described in recent years
to perform binarization of markers, but none of these
performed sufficiently well. Some of these methods are
rather simple, being based on a preset cut-off (e.g. 0.5) or
a standard deviation-based classification. We tried the
more advanced GACK approach [9] based on the shape
of signal ratio distributions; although this method worked
reasonably well in general, we were not satisfied by its
overall performance. One possible explanation for this is
the fact that this method was developed for single strain
(genome) microarrays whereas the microarray used in
this study is based on multiple genomes. Another expla-
nation is the fact that the generalization of cut-off selec-
tion, which is also part of this method, leads to
unsatisfactory results for part of the data. We therefore
had a closer look at our data and found an alternative
solution which is based on the distribution of all ratios for
each individual marker to determine an individual
marker-dependent cut-off value. In cases where no clear
cut-off could be determined all data points were classified
as being present. In cases where multiple cut-offs were
possible we decided to apply multiple cut-offs by splitting
up these markers and using these multiple variants of the
same marker for further data analysis. Other available
binarization methods tend to ignore this last category in
particular. Some examples of this binarization approach
are shown in additional file 4. Binarized data are given in
additional files 5 and 6. Hierarchical clustering of the
binarized data shows the enormous amount of variation
still present in this data set (Figure 3). A number of con-
clusions can be drawn from this analysis. First, although
some clustering can be observed for the strains for which
AFLP data were generated this clustering does not indi-
cate segregation into specific groups (Figure 3). Next, the
absence of clear discrimination between environmental
strains and patient-derived strains is visualized (Figure 3).
Finally, the distribution of strains used as training and
test set (described in more detail in the next section)
shows a fair amount of random variation (Figure 3). No
single markers were detected which enabled clear dis-
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crimination between patient-derived and environmental
strains based on the overall datasets. Since no clear dis-
crimination between environmental and patient-derived
strains was obtained with these unsupervised analyses
attention was shifted towards the application of super-
vised analyses. The binary data were used as input data
for these analyses.

Selection of discriminating markers
Many supervised statistical analysis methods have been
described for analyzing microarray data [10]. A limitation
of many of these methods is the fact that they use a data
reduction approach which makes it difficult to select a
minimal set of markers. We have chosen as a method for
selecting a minimal set of predictive markers a machine
learning technique called Genetic Programming [11-13].
Genetic Programming (GP) is a machine learning
approach that provides a collection of solutions to biodi-
agnostic problems by creating classifier programs using a
subset of the available input. A "genetic pool" of candidate
classification programs was created by randomly choos-
ing inputs and arithmetic and Boolean operators that
work with the inputs selected, and evolving successive
generations of programs were through selection and
recombination. The accuracy of a program in correctly
classifying the samples according to pre-specified classes
is used to calculate a fitness measure for each program.
Fitness was determined by calculating the area under the
curve (AUC) for the receiver operating characteristic
(ROC) of a program generated by the GP system [14].
Evolution was driven by improving the AUC (fitness
score) so as to yield rules with high sensitivity and speci-
ficity. The complexity of the rules generated was also
restricted to prevent overfitting of the training data. The
programs were evolved over many generations resulting
in progressively better and more accurate programs. The
stopping criterion was either a perfect classifier within
the limits of program size and complexity, or the genera-
tion limit was reached. Table 1 shows a list of the inputs,
operators, and GP parameters such as fitness function,
population size, crossover and mutation frequencies, etc.

The genetic programming system used is a patented
system [15] and adapted for use in bio-classifier problems
such as that described here. The source code for this
implementation has not been published, but other than
the representation of programs, it is a fairly standard
implementation of steady-state genetic programming
using both crossover and mutational operators on tree-
like structures. This system was adapted to evolve classi-
fier programs by creating mathematical models and
assigning a slice point based on maximizing the AUC for
the model [16].

Reducing the dimensionality of the data is of foremost
importance in most analysis programs. Here we have
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Figure 3 Genomic diversity based on hierarchical clustering analysis. Hierarchical clustering analysis was performed on all 346 genomic datasets
generated in this study. Data were clustered both in columns (representing datasets) and rows (representing 480 spots on the array) with Pearson
correlation distances and average linkage. Binarized data were used for this analysis. Yellow represents absence of signal, black represents presence
of signal. The color-coded bars on the bottom show the distribution of the strains used for AFLP analysis as shown in Figure 1 (red) and the additional
strains (yellow-green), the distribution of patient (orange) and environmental (blue) strains and the distribution of training (purple) and test (green)
set strains. In all cases the random distribution of the groups is clearly visible.

used gene frequency (i.e. the count of 'gene occurrences'
in the best performing rules), to identify the markers that
provide the most value for developing an accurate classi-
fier, an approach that borrows from the "symbolic dis-
criminant analysis" method [17]. Cross-validation-based
resampling [18] was used to estimate the ability of the
classifier to generalize to unseen samples, giving an
approximation of its robustness. Classifier sets (ensem-
bles) are composed from the best rules from each fold.
The ensemble is then "polled” with each rule in the
ensemble voting on whether a sample belongs to a target
class. If the majority of the rules (in this case four or
more) agree that the sample belongs to the target class (in
this case, clinical), the ensemble predicts the sample
belongs to the target class. Aggregate performance of
these ensembles on the test folds was taken as the predic-

tor of the classification error, and the selected ensemble
was the one with the smallest test error.

The approach used for the Legionella strain data was as
follows:

First, the data set was split in two: a learning set of 133
samples was used for creating a predictive model and a
reserved validation set consisting of 213 samples was kept
apart for testing of the model. Using the 133 samples
(representing 109 unique strains) from the learning set,
which was classified as approximately 50% clinical and
50% environmental, a predictive rule was developed that
identified clinical strains. The goal was to identify 100%
of the clinical strains correctly while keeping the number
of misclassified environmental strains as low as possible
(i.e., maximizing sensitivity while minimizing the loss of
specificity). To do this, the control parameters of the
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Table 1: GP control parameters

Elitism True

Inputs LePn.011A2-b,LePn.019H4, LePn.010B12,
LePn.008D6, LePn.024B1

Operators =,>,<,>=,<=and, not, or, 7, nand, xor,

nor

Fitness Function AUC
Population Size 10000
Cross Over Rate 0.7
Mutation Rate 0.3
Generation Limit 100

genetic programming system were modified to give a
larger bias towards achieving higher sensitivity compared
to the specificity. A sevenfold cross-validation-based
resampling of the 133 samples was used, as this provided
a large enough training set while leaving a reasonable test
set in each fold [14,18]. From the results of the first set of
analytical runs, the 5 most frequently used markers were
selected based on the frequency of the genes appearing in
the best rules of 265 runs using the average length of the
rules created in each run. The genetic programming sys-
tem was then run again with only these 5 markers to
develop an ensemble of classifiers that show good perfor-
mance [17]. This analysis resulted in the selection of an
optimal model out of the various solutions on offer; this
model consisted of 5 markers and resulted in a sensitivity
of 100% and a specificity of 62% (Table S6). The 5 marker
model consists of 7 rules containing all relevant interrela-
tionships between the 5 selected markers. The majority
vote of these 7 rules determines the final prediction
(Table 2).

Validation of the model

Since the model obtained was based on a learning set of
133 data sets (representing 109 unique strains) we were
able to use an additional 213 data sets (representing 148
unique strains) not employed for building the model as a
reserved validation set. Application of the model to these
additional data sets confirmed the results from the learn-
ing set: a sensitivity of 100% and a specificity of 69% were
obtained with this validation set (Table 3, additional file
7). Although this is not an external validation in a formal
sense (the samples were partly taken from the same
Dutch population, the raw data were generated by the
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Table 2: The 7 rules of the predictive model describing all
relevant relationships between the 5 selected markers

Rule No. Rule

1 If (LePn.011A2-b < LePn.019H4) then [not(LePn.011A2-b
=LePn.010B12)] else [(LePn.011A2-b = LePn.024B1) and
(LePn.008D6 = LePn.010B12)]

2 If (LePn.011A2-b < LePn.010B12) then [not(LePn.019H4 <
LePn.024B1)] else [(LePn.008D6 > LePn.011A2-b) nor
(LePn.008D6 < LePn.024B1)]

3 If (LePn.011A2-b < LePn.010B12) then [not(LePn.024B1 >
LePn.019H4)] else [(LePn.010B12 < LePn.008D6) nor
(LePn.024B1 > LePn.008D6)]

4 If (LePn.019H4 = LePn.008D6) then [(LePn.024B1 < =
LePn.019H4)] else [(LePn.019H4 < LePn.024B1) nor
(LePn.010B12 = LePn.011A2-b)]

5 If (LePn.019H4 = LePn.008D6) then [(LePn.008D6 > =
LePn.024B1)] else [(LePn.010B12 < = LePn.011A2-b) nor
(not (LePn.024B1 < = LePn.019H4))]

6 If (LePn.019H4 = LePn.008D6) then [not(LePn.024B1 >
LePn.019H4)] else [(LePn.024B1 > LePn.019H4) nor
(LePn.011A2-b > = LePn.010B12

7 If (LePn.019H4 = LePn.008D6) then [not(LePn.019H4 <
LePn.024B1)] else [(LePn.010B12 = LePn.011A2-b) nor
(LePn.019H4 < LePn.024B1)]

The 7 rules of the predictive model describing all relevant
relationships between the 5 selected markers. Each rule "votes" for a
sample as being a clinical sample if the result of the rule evaluates to
True' when the Boolean value for each probe is entered. If 4 or more
rulesin the table agree that a given sample is clinical, then the "meta-
rule" of these 7 rules predicts that the sample is clinical.

same laboratory, and the same people processed the raw
data to binary values and analyzed all data) these results
clearly support the validity of the predictive model.

Identity of selected markers

Sequence analysis of the 5 selected markers enabled com-
parison with known Legionella sequences. Three out of
the 5 markers showed variable presence in the 4 com-
pletely sequenced clinical isolates of L. pneumophila
(Table 4) whereas two other markers were present in all 4
sequenced genomes. Since these markers showed differ-
ential presence in the strain population we have analyzed,
this indicated that the sequenced genomes do not com-
pletely cover genomic variation in L. pneumophila. One
marker (11A2) represents part of L. pneumophila plasmid
pLPP; it cannot be concluded based on the current data
whether the plasmid is freely present in the bacterial cell
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Table 3: Prediction results when testing the data obtained on a set of 148 unique L. pneumophila strains with the

statistical five marker model built with 109 unique strains

Patient derived Environmental Total
Positive Test result 34 35 69
Negative Test result 0 79 79
Total 34 114 148
sensitivity 100%
specificity 69%

or whether (part of) the plasmid DNA is inserted in the
genome. The other 4 markers represent chromosomally
derived fragments probably related to cell wall synthesis
(19H4 lipopolysaccharide synthesis, 10B12 CMP-N-
acetylneuraminic acid synthetase), conjugative coupling
factor (24B1) and hypothetical (8D6). Details on these
markers will be presented elsewhere.

Discussion

To study the genomic diversity within L. pneumophila in
more detail a mixed-genome microarray was developed
for this species. This approach has shown to be very use-
ful for studying genome diversity in other bacterial spe-

Table 4: Sequence homologies of the 5 predictive markers
when compared to available sequences for L. pneumophila
strains Paris (Ipp), Philadelphia (Ipg), Lens (Ipl), Corby (LPC)
and L. pneumophila str. Paris plasmid (plpp)

Marker name Homologues in available genome

sequences
11A2 plpp0001
19H4 lpp0831; 1lpg0766; 1pl0807;
LPC_2526
10B12 1lpp0816/0817; 1lpg0750/0751;
1pl0787/10788; LPC_2541/2542
24B1 1pp2398/2399; LPC_1880/1881
8D6 1pg0514; 1pl0552

Absence of homologues indicates that no high similarity
homologue is present. The sequences are accessible through
GenBank accession numbers HM584933-HM584937).

cies such as Streptococcus pyogenes and Enterococcus
faecium [19,20]. By selecting clinical as well as environ-
mental strains for microarray construction gene loss and
acquisition in both groups of strains can be identified.
This is a clear advantage over the more commonly used
genome-sequencing approach which mostly focuses on
clinical strains, thereby dismissing the ability to identify
differences between environmental and clinical strains.
Here we show the feasibility of this discrimination for L.
pneumophila, the causative microorganism for Legion-
naires' disease. Clinical isolates of this bacterial species
could be identified in 100% of the cases based on a model
consisting of 5 DNA markers. This result will enable a
more detailed analysis of Legionella-contaminated water
sources and help to recognize potential public health
dangers before the onset of new LD outbreaks.

To achieve this result, two factors are of utmost impor-
tance: the use of an unbiased genomics approach and the
availability of a well-defined and well-characterized bac-
terial strain collection. When studying pathogenicity, the
availability of clinical strains is relatively straightforward,
especially if a surveillance program is ongoing, as is the
case in The Netherlands for L. pneumophila. Collecting
reliable environmental strains, however, is far more diffi-
cult. Probably the biggest issue in considering a strain as
non-pathogenic is the question of whether the specific
isolate lacks the potential to be pathogenic or just did not
have a chance to exhibit pathogenic behavior. In the case
of the Dutch Legionella surveillance program, not only
were patient isolates collected, but also attempts were
made to track the infectious source by analyzing the envi-
ronment in which a patient lived. This was done by ana-
lyzing hot water systems in homes and water systems in
caravans used by patients, and analyzing swimming
pools, saunas and other potential sources visited by
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patients shortly before getting ill. In a number of cases a
match could be made between an environmental isolate
and the patient isolate but, in most cases, isolates identi-
fied in a patient's environment were shown to be different
from the patient strain. It seems very likely that the
patient in these cases had been in contact with the spe-
cific environmental isolate and did not become ill, but did
become ill from another isolate; this, in combination with
the registration history of notified cases for those poten-
tial sources, leads us to conclude that this is the safest def-
inition currently possible for non-pathogenic strains.
Therefore, we have used this strain collection for a
genomic analysis of differences between clinical and envi-
ronmental strains, while understanding that it is still pos-
sible for an environmental strain to be pathogenic.

We have generated genomic fingerprints for 257 unique
L. pneumophila strains and used these to select DNA
markers enabling discrimination between clinical and
environmental L. pneumophila strains. The rationale
behind this approach is the hypothesis that bacterial spe-
cies are not a homogeneous group of organisms but con-
tain significant individual variation at the nucleotide level
(single nucleotide polymorphisms) and at the genome
composition level (one or more genes, operons, and so
on). In order to analyze genome composition variation,
we have developed our genomotyping platform. When
applied to pathogenic micro-organisms this type of analy-
sis might lead to more detailed discrimination between
the real pathogenic strains within such a species and the
non- (or far less) pathogenic strains. Since genomic dif-
ferences between bacterial strains probably lead to physi-
ological differences, better ability to discriminate
between strains may lead to better understanding of the
pathogenicity process itself and to more focused diagno-
sis, treatment or therapy. In many cases, the major hurdle
for applying this approach is the lack of well-character-
ized bacterial strain collections. In the case of L. pneumo-
phila, we were fortunate to have access to a very well-
characterized strain collection with respect to clinical as
well as non-clinical (environmental) isolates. The use of
this strain collection combined with our genomotyping
platform and novel way of analyzing genomic data has led
to the selection of five DNA markers that together can
discriminate between clinical and environmental L. pneu-
mophila strains with high reliability. Genetic program-
ming was instrumental in the selection of this minimal
set of predictive markers and in the definition of the rela-
tionships between the individual markers. The inclusion
of these relationships is an essential step since a univari-
ate approach looking at each marker individually would
never have selected some of our five markers. In addition,
some markers are important because they are nearly
always absent in clinical strains and would never have
been identified if environmental strains had not been
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included during array construction. These aspects are
often ignored when identifying predictive markers, but
they fit perfectly with the kind of relationships that play a
central role in biology.

Attempts have been made previously to identify patho-
genicity markers by, e.g., comparing the complete genome
sequences of clinical and environmental strains. The dis-
advantage of such an approach is the fact that there are
usually dozens to hundreds of differences detected, only a
few of which may be important with regard to the prop-
erty under study. Furthermore, in most cases there is an
emphasis on the clinical strains (for example: four
genomic sequences are publicly available for L. pneumo-
phila, all for clinical strains [21,22]. Without the ability to
compare these to environmental strains it will be very dif-
ficult to reach a better understanding of pathogenicity. To
really start to understand pathogenicity a population-
based approach is necessary. This kind of approach has
been used for epidemiology research in microbiology, but
the methods used in those cases (Pulsed Field Gel Elec-
trophoresis, Restriction Fragment Length Polymorphism,
AFLP) have only a limited resolution, or they have a high
resolution but focus on genes not involved in pathogenic-
ity (Multi Locus Sequence Typing (also known as
Sequence Based Typing) of core genome/house-keeping
genes [23,24]. Cazalet et al [7] described a multigenomic
analysis of a large number of Legionella strains, but their
aim was not to select a minimal set of predictive markers.
Furthermore, their analysis was based on a microarray
derived from genomic sequences of clinical strains only.
In the work presented here, a combination of two differ-
ent approaches was used, combining a population-based
view with a detailed molecular analysis. When performed
as described here, this is a technically feasible and rela-
tively inexpensive way to identify predictive markers.
There are multiple ways to translate these markers into
practical applications which, in this case, can have a sig-
nificant impact on control of LD. Dutch regulations are
focused on finding legionellae in water systems, espe-
cially in relation to vulnerable populations in care facili-
ties, but also in relation to hotels and public buildings.
Positive cultures of water samples call for immediate
action, including implementation of costly measures and
potential closing of wards or buildings. The ability to dif-
ferentiate between clinical and environmental strains can
be used as a tool to fine-tune control procedures. Fur-
thermore, in the case of L. pneumophila as well as other
micro-organisms, the described technique may act as a
starting point for the development of new diagnostics
and therapeutics.

Conclusions
In conclusion, a novel way of studying the genome com-
position of L. pneumophila combined with the availability
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of a L. pneumophila strain collection derived from a sur-
veillance program allowed us to search for genomic dif-
ferences between patient-derived and environmental
strains of this bacterium. By using genetic programming
5 markers could be selected which together enable a reli-
able identification of clinical strains. This opens up the
way for novel diagnostic approaches better suited to rec-
ognize clinical L. pneumophila strains. This may also help
to improve the confounding situation that despite
increased awareness and preventive measures the inci-
dence of LD is still increasing in The Netherlands. Fur-
thermore, detailed analysis of the identified markers may
lead to better understanding of L. pneumophila virulence
and to improved protective measures.

Methods

Strains

All strains used in the research described here are derived
from the National Outbreak Detection Program [25].
Detailed information on the strains can be found in addi-
tional file 1.. In this Table the strains are divided into
three groups: the strains used to construct the genomic
library and the microarray, the strains used to develop the
predictive model (also referred to as training set) and the
strains used to test the model (also referred to as test set).

Genomic analysis

Comparative genome hybridization experiments were
performed with a mixed-genome L. pneumophila
microarray. For the construction of this microarray, eight
L. pneumophila strains were selected based on their
diversity (serotype and origin, see additional file 1).
Genomic DNA of these strains was isolated, mixed in
equimolar amounts, sheared to approximately 1.5 kb
fragments and used for construction of a genomic library
in pSMART (Lucigen), as earlier described [19,20]. A
total of 3,360 recombinant clones were collected; inserts
were amplified and spotted on aldehyde-coated glass
slides, as described previously [19,20]. Sequencing of
amplicons of randomly selected clones confirmed the
presence of L. pneumophila specific fragments.

This microarray (which theoretically had more than full
genome coverage) was used to analyze the genome com-
position of the collection of 257 unique Legionella strains
by comparing labeled DNA from each strain with a refer-
ence containing labeled DNA from the mixture of strains
used for array construction (see below for labeling
details). This leads to a fingerprint encompassing over
3,000 different markers for each strain. The total number
of experiments performed for the training and test sets
were 133 and 213 respectively (adding up to 346 in total),
but since this includes replicates (both technical and bio-
logical) most calculations are based on a selection of
unique strains only. In total 257 unique strains have been
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used for the work described here: 109 strains in the train-
ing set and 148 in the test set. In Table S1 all 133 and 213
experiments are given together with strain names and
replicate indications. Experiments for which the same
strain name is given multiple times represent technical
replicates, whereas experiments for which strain names
are different but the same replicate number is shown rep-
resent biological replicates (with the exception of repli-
cate number O which indicates unique data sets).
Reproducibility of the analysis was tested by running
multiple repeat experiments (duplicate or triplicate anal-
yses of identical strains).

The genomic DNA of specific L. pneumophila strains
was labeled fluorescently with Cy5-dUTP using the
BioPrime system (Invitrogen). Reference DNA (0.5 pg
from the mix used for microarray construction) was
labeled with Cy3-dUTP. Both sets of samples were
hybridized on pre-hybridized microarrays overnight at
42°C. For scanning, a ScanArray TM Express (Packard
BioScience) was used. Quantification of hybridization
signals was done using ImaGene version 5.6 software
(BioDiscovery).. To correct for differences in labeling,
hybridization conditions, slide quality, and scanning cir-
cumstances, each slide was normalized independently. At
first, ratios of Cy5 minus background to Cy3 minus back-
ground were calculated. Filtering was applied to exclude
spots with flags; for estimating the correction factor in
normalization, only spots were included with Cy3 values
larger than two times background. Mean ratios were then
calculated and applied to each independent ratio result-
ing in normalized ratios for each spot. After obtaining full
array data for 133 isolates, a selection of markers showing
variation between individual strains was made. In total
480 markers were selected, 18 of which represented con-
stant (always present) markers which were needed to nor-
malise data between microarrays. The other 462 markers
all represent markers showing clear variation in presence
between individual strains. The number of 480 markers
was chosen for practical reasons since this number fitted
within the microarray format used for the further experi-
ments which was a multi-well microarray, allowing for
higher throughput. All data for the test set strains were
obtained from those multi-well microarrays. All proto-
cols for labeling, hybridization and quantification
remained unchanged. Normalisation between microar-
rays was now based on the results obtained for the 18
constant markers by calculating mean ratios based on
these markers only and applying the normalisation factor
then to each independent ratio resulting in normalized
ratios for each spot. Normalised raw data for both the
training (133 dataset) and test (213 dataset) sets are given
in additional files 2 and 3.

Hierarchical clustering of differentiating biomarkers
from all strains was done with TIGR software (available at
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http://www.tigr.org/software/tm4, [26]), using average

linkage and Pearson correlation as distance matrix.

Conversion of data to binary values

A closer look at the data obtained for the variable mark-
ers showed that the binary nature of the data distribution
over the strain population was evident. We developed a
novel approach for binarization which works as follows.
First, we scaled our data symmetrically around 1 using a
calculation (if R > 1 then 2-1/R) in which R is the ratio of
specific strain signal divided by the reference pool signal
(we introduced Ry;,,, for this which was calculated with the
Excel formula R}, = if(R < 1, R, 2-1/R). In this way all
ratios are in the 0-2 range centered around 1 in which low
values are nearing 0 and high values are nearing 2. Then,
we ordered all data for each spot in an increasing row and
plotted these values (see additional file 4 for examples).
We performed this separately for the training set (133
values) and the test set (213 values). Next, we empirically
determined the cut-off for each spot from these plots and
classified all individual datapoints as being absent (0) or
present (1), based on this cut-off. In cases where no clear
cut-off could be determined, all datapoints were classified
as being present (1). In cases where multiple cut-offs were
possible, we decided to apply all cut-offs by splitting up
these markers and using all variants for further data anal-
ysis. An example of such a situation is shown in addi-
tional file 4, panel D, which a data distribution which
clearly suggests a triple distribution of data. It is tempting
to speculate that such a distribution could represent a
marker which is either absent, present in a single copy or
present in multiple copies in a specific L. pneumophila
strain. One of the markers in the five marker model
(11A2-b) in fact shows this distribution and this marker
appears to represent part of a plasmid. Attempts were
made to automate the binarisation process: this worked
out for a single cut-off but not for multiple cut-offs. Bina-
rized data for both the training (133 dataset) and test (213
dataset) sets are given in additional files 5 and 6.

Selection of discriminating markers

Genetic programming analysis was performed with 133
data sets. Careful examination of all the data showed that
this set of 133 contained 109 unique strains. The redun-
dancy was caused mainly by the inclusion of replicate
experiments (both technically and biologically). The
same was true for the reserved test set which originally
contained 213 data sets; this decreased to 160 when
removing replicates and to 148 when data sets overlap-
ping the training set were also removed. Additional file 7
shows that the inclusion of these replicate data sets did
not significantly influence the stability or predictive value
of the model. A shows the outcome when all individual
data sets were considered unique, B shows the outcome
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when replicate experiments were removed and C shows
the outcome when data sets overlapping between the
training and test sets were removed from the test set.

Additional material

Additional file 1 SupplTable1 List of strains. list of strains used in this
work.

Additional file 2 supplTable2 rawdatatrainingset. non-binarized
microarray data used as a trainingset for constructing the predictive model.
Additional file 3 supplTable3 rawdatatestset. non-binarized microarray
data used as a testset for validating the predictive model.

Additional file 4 Supplementary Figure 1 binarisation examples. Fig-
ure showing examples of the binarization process used for the microarray
data.

Additional file 5 supplTable4 binarizeddatatrainingset. binarized
microarray data used as a trainingset for constructing the predictive model.
Additional file 6 supplTable5 binarizeddatatestset. binarized microar-
ray data used as a testset for validating the predictive model.

Additional file 7 supplementary table 6. performance of the predictive
model with different sets of data used.
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