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Abstract

Background: Species of the crenarchaeon Sulfolobus harbour three replication origins in their single circular
chromosome that are synchronously initiated during replication.

Results: We demonstrate that global gene expression in two Sulfolobus species is highly biased, such that early
replicating genome regions are more highly expressed at all three origins. The bias by far exceeds what would be
anticipated by gene dosage effects alone. In addition, early replicating regions are denser in archaeal core genes
(enriched in essential functions), display lower intergenic distances, and are devoid of mobile genetic elements.

Conclusion: The strong replication-biased structuring of the Sulfolobus chromosome implies that the multiple
replication origins serve purposes other than simply shortening the time required for replication. The higher-level
chromosomal organisation could be of importance for minimizing the impact of DNA damage, and may also be
linked to transcriptional regulation.

Background
Genes are non-randomly ordered on chromosomes. In
eukaryotes, co-expressed genes tend to cluster across all
kingdoms [1-4], with cluster sizes ranging from kilobases
in yeast to megabases in mammals [5]. Co-expression of
neighbouring genes may result from use of common pro-
moters or upstream activating sequences, while the tran-
scriptional activity of larger chromosome domains is
regulated by the structure of the chromatin and/or its
spatial positioning within the nucleus [6]. Some of the
observed grouping of co-expressed genes likely reflects
clustering of functionally related genes [7], while some
may be attributed to transcriptional leakage [8].
In bacteria and archaea, the most obvious case of gene

clustering is the organisation of genes into co-transcribed
cassettes, operons. This facilitates tight co-regulation of
genes encoding proteins involved in the same cellular
pathway, or of subunits of the same protein complex
[9,10]. Adjacent location of multi-gene functional entities
also increases the chance for their co-transfer in lateral
transfer events, likely to be important for efficient hori-
zontal propagation [11,12]. Conserved bidirectionally
transcribed gene pairs have also been observed, typically

involving a transcriptional regulator that shares the pro-
moter region with a target operon [13]. Non-random
gene order is also evident at much larger scales [14], such
as a 600 - 700 kb periodic pattern of gene co-expression
observed in Escherichia coli and Bacillus subtilis [15,16],
which likely reflects how the chromosome is spatially
structured in the nucleoid. In bacteria, other trends have
also been observed, such as higher incidence of essential
genes on the leading strand [17], clustering of evolution-
ary persistent genes [12], and clustering of genes involved
in transcription and translation near the origin of replica-
tion in fast-growing bacteria [18].
Archaeal organisms exhibit both bacterial and eukaryo-

tic-like features. In particular, the information-processing
systems (replication, transcription, translation) closely
resemble their eukaryotic counterparts [19]. Sulfolobus
species are thermoacidophilic crenarchaea, serving as
model systems for the archaeal cell cycle [20]. The Sulfo-
lobus cell cycle is characterised by a short pre-replicative
phase, an S phase of about a third of the generation time,
and a long post-replicative phase [21,22]. Global gene
expression analysis has revealed that at least 10% of the
Sulfolobus acidocaldarius genes display cyclic expression
during cell cycle progression [23], including a unique cell
division machinery, the Cdv system, that recently was
identified based on the expression data [24,25].
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In contrast to all studied bacteria and most archaea,
Sulfolobus chromosomes harbour multiple origins of
replication. Marker frequency analysis has shown that
replication is initiated in near synchrony at the three
origins and, due to the uneven spacing of the origins,
asynchronously terminated on the circular chromosome
[26]. The selective advantage of multiple origins (if any)
is not clear: the fact that the origins are unevenly dis-
tributed on the chromosome (Figure 1) is, for instance,
not in agreement with models in which shortening of
the replication time would be the main selective force.
Here, we performed global gene expression analysis in

exponentially and stationary phase cells, and investigated
other properties of genome organisation in Sulfolobus.
The results demonstrate that the Sulfolobus chromo-
some is organised in a highly replication-biased manner,
such that levels of gene expression, as well as genome
sequence-derived parameters, are correlated with
distance to nearest replication origin.

Results
To monitor the distribution of gene expression over the
Sulfolobus chromosome, we harvested RNA from Sulfolo-
bus solfataricus and S. acidocaldarius cell cultures in
exponential and stationary phase. The RNA was reverse
transcribed into cDNA, labelled and hybridised onto
spotted whole-genome DNA microarrays [27]. To com-
pensate for differences in array probe concentrations and
hybridisation efficiencies, the cDNA was co-hybridised
with differentially labelled genomic DNA derived from sta-
tionary phase cultures. As stationary phase cells exclusively
contain fully replicated chromosomes [21] and all genes,
consequently, are present in equal copy number, the
cDNA/genomic DNA ratios serve as estimates of relative
transcript abundances.
Gene expression was non-randomly distributed over the

chromosomes in both species (Figure 2; Additional file 1,
Figure S1). Transcriptionally active regions coincided with
replication origins, and gene expression was negatively

correlated with distance to the nearest origin in both gen-
omes (Figure 3; Additional file 1, Figure S2). The gene
expression gradients were significantly more pronounced
than what would be anticipated from gene dosage effects
alone in growing populations. Thus, while the average
gene copy number ratio between the earliest and latest
replicating chromosome regions in a growing Sulfolobus
population is about 1.3 fold [26], the average expression
ratio between genes located proximally and distantly rela-
tive to the nearest origin was >4 fold (Figure 3). A nega-
tive, but weaker, correlation to distance from the nearest
origin was observed also when cDNA derived from
S. acidocaldarius cells in stationary phase was hybridised
(Additional file 1, Figure S3), whereas in S. solfataricus
there was no such correlation (data not shown).
Comparative genomics has revealed a core of 166 genes
present in all archaea [28]. Evolutionary persistent genes
like these are highly enriched in house-keeping func-
tions essential to the organism [29], and such genes
have been found to cluster in both bacteria [12] and
eukaryotes [2]. We found that genes representing clus-
ters of orthologous groups (COGs; [30]) present in all
archaea (archaeal core genes) clustered in the early
replicating regions and were absent in large regions of
the genomes (Figure 4), and that the density of archaeal
core genes was significantly negatively correlated with
distance to nearest origin in both organisms (Table 1).
Also ribosomal RNA (rRNA) genes and transfer RNA
(tRNA) genes clustered in the highly expressed regions
(Additional file 1, Figure S4).

Figure 1 Schematic representation of the S. acidocaldarius (A)
and S. solfataricus (B) chromosomes. The ellipses indicate
replication origins (positions from [26]).
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Figure 2 Distribution of gene expression over the S.
acidocaldarius chromosome in exponentially growing cultures.
Each filled circle represents a single gene, with expression provided
as log2-transformed (cDNA/genomic DNA) ratio. Arrows indicate
positions of replication origins.

Andersson et al. BMC Genomics 2010, 11:454
http://www.biomedcentral.com/1471-2164/11/454

Page 2 of 7



Compared to eukaryotes, prokaryotic genomes are
highly compact, with short intergenic regions and gener-
ally few repeated elements. Nevertheless, elevated gene
densities were observed in the early replicating (highly
expressed) regions (Figure 4). Gene density was hence
negatively correlated with distance to nearest origin, and
positively correlated with gene expression, in both gen-
omes (Table 1). As this could potentially be a conse-
quence of that highly expressed genes relatively
frequently belong to polycistronic transcripts, with short
intergenic regions, we investigated distances between
adjacent genes on opposite strands (thus not belonging
to the same transcript). These distances increased with
distance to origin (Table 1), indicating that the increased
gene density in early replicating regions could not be
explained only by an increased operon incidence.
The S. solfataricus chromosome is one of the most

transposon-dense of all sequenced genomes [31]. Also
for this feature a non-random distribution could be
observed, as also noted previously [32], with transposon
density being positively correlated with distance to near-
est origin (Figure 4; Table 1).

Discussion
We observed a strongly replication-biased genome orga-
nization in the two Sulfolobus species, despite that mas-
sive genomic rearrangements have occurred since the

organisms diverged ([32]; Additional file 1, Figure S5),
which indicates that the trait is under selection. Replica-
tion-biased genome organisation has also been reported
in bacteria (reviewed by [33]). The nature of the Sulfolo-
bus genome organisation is, however, different in several
aspects. Fast-growing bacteria with multiple simulta-
neously ongoing rounds of replication (and hence high
origin-to-terminus ratios) display increased densities of
highly expressed genes (genes with high codon adapta-
tion index) near origins. However, the relationship only
holds true for genes involved in transcription and trans-
lation and has been suggested to reflect selection for
gene dosage effects, advantageous during rapid growth
[18]. In contrast, in Sulfolobus the correlation between
gene expression and distance to origin remains even if
transcription and translation genes are excluded (Spear-
man P < 10-12 for both genomes). Moreover, in slow-
growing bacteria (comparable to Sulfolobus with 6 - 8
hour doubling time) only rRNA genes are generally
located close to origins [18].
If the replication-biased genome organisation in Sulfolo-

bus does not correspond to selection for gene dosage
effects, what does it reflect? The clustering of archaeal core
genes near the origins may indicate selection for early repli-
cation of essential genes, since evolutionary persistent
genes often are essential [29]. Also, since essential genes
often are highly expressed (core genes are significantly
higher expressed than non-core genes; Mann-Whitney
P = 0.029 in S. acidocaldarius), the observed expression
gradient could be a secondary effect of their biased distribu-
tion. To evaluate if core genes cluster near origins indepen-
dently of expression level, we binned the S. acidocaldarius
genes based on expression levels into 12 equally sized bins
(Additional file 1, Figure S6). The binning was sufficiently
fine-grained to remove expression differences between core
and non-core genes; within the 11 bins that included genes
of both categories there were no significant differences in
expression levels between the two groups (Mann-Whitney
P > 0.23 for all bins). However, the distance to nearest ori-
gin was significantly shorter (Mann-Whitney P < 0.05) for
core than non-core genes in 8 out of 11 bins, showing that
essential genes cluster near origins independently of expres-
sion level, and may, thus, cause the correlation between
expression and distance to origin. If so, one would perhaps
expect the expression gradient to disappear when analysing
core and non-core genes separately. This is however not
the case; although weaker than for the whole dataset, the
correlations remain for both groups of genes (Spearman
r = -0.19, P < 0.05 and r = -0.39, P < 10-15 for core and
non-core genes, respectively). However, the extent to which
individual genes contribute to fitness likely varies within
the two groups, and a more fine-grained binning according
to fitness contribution would be needed to determine its
effect on the expression gradient.
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Figure 3 Distribution of expression for genes within indicated
intervals of distance to nearest replication origin in exponential
phase cultures of S. acidocaldarius. Fifty percent of the data points
reside within boxes, 75% within whiskers, and medians are indicated
by horizontal lines within boxes (open circles indicate individual
genes). Gene expression was significantly negatively correlated with
distance to nearest origin (Spearman rank-order correlation, r = -0.41;
P < 10-15 calculated on individual genes).
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The multiple origins may hence potentially serve to
promote fast backup of essential genetic material. This
could also explain the shorter intergenic distances, lack
of transposons, and clustering of rRNA and tRNA genes
in early replicating regions. Having two copies of a gene
facilitates expression of a functional protein even if one
copy is damaged, thereby preventing cell death. The
intact chromosomal copy could potentially also facilitate
repair of the damaged DNA by homologous recombina-
tion. In support, sister chromatid junctions have been
observed near replication origins in S. solfataricus [34].
Sulfolobus species inhabit geothermal environments

where thermal DNA damage, in particular deamination,
depurination and oxidation, are prone to occur

frequently [35]. In addition, the aerobic metabolism
requires surface growth with consequent UV exposure.
It has been demonstrated that the DNA repair systems
of Sulfolobus are constitutively expressed in batch cul-
tures [36,37], reflecting this life style, and that expres-
sion is correlated to the replicative cell cycle stage [23].
A need for backup of genetic material would also be in
line with the organisation of the Sulfolobus cell cycle, in
which replication is initiated shortly after cell division,
and two complete chromosomes thus are present during
most of the cell cycle, as well as in all cells in stationary
phase [21]. This organisation of the cell cycle has been
shown to be widely conserved among crenarchaea [38].
However, despite the fact that pronounced clustering of

Figure 4 Distance to nearest origin, average gene expression, proportion of archaeal core genes, protein-coding density, and
transposable element density over the chromosome of S. acidocaldarius (left panel) and S. solfataricus (right panel) in 100 kb sliding
windows, translocated in 1 kb steps. Chromosomal positions for window mid-points are shown on the x-axis.
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archaeal core genes, coinciding with elevated coding
densities, is apparent in all Sulfolobales genomes
(including Metallosphaera sedula), this does not appear
to be a general feature of crenarchaea (Additional file 1,
Figure S4). It is possible that the anaerobic lifestyle
characteristic of most other genome-sequenced cre-
narchaea may reduce the mutation frequency and, con-
sequently, the selective advantage of this higher-order
genome structure.
Our data indicate that genome organisation reflects

selection for early backup of essential genetic material,
but we cannot rule out that other selective forces may
affect gene localisation. In higher eukaryotes, chromo-
some structure is tightly linked to gene regulation and to
replication timing [39]. Although a suite of architectural
proteins have been identified and characterised in
archaea [40], relatively little is known about archaeal
chromosome structure and its potential role in gene reg-
ulation [41]. However, the identification of DNA-binding
proteins that can undergo methylation [42] and acetyla-
tion [43], as well as expression of chromatin-organizing
proteins that is dependent on growth phase [44] and cell
cycle progression [23], indicate dynamic chromosome
structures in archaea which may have implications for
transcriptional regulation. Thus, the organisation of
highly expressed genes near replication origins in Sulfolo-
bus might, in addition to selective forces related to DNA
repair and genetic back-up, reflect a higher order chro-
mosome structure centred at replication origins.
A recent comparative genomics study of seven S.

islandicus isolates revealed a large genomic region that
was enriched in gene insertion and deletions [45]. Our

analysis shows that this region coincides with a region
that is very low in archaeal core genes and has low gene
density (Additional file 1, Figure S4). Whether this
reflects selection against insertions and deletions in
regions dense in essential genetic material, or that the
chromosome structure of these regions physically pre-
vents recombination events, is an interesting topic for
further investigation.

Conclusion
Our study reports a strong replication-biased structuring
of the Sulfolobus chromosome which implies that the
multiple replication origins serve purposes other than
only shortening the time required for replication. The
higher-level chromosomal organisation may be of impor-
tance for minimizing the impact of DNA damage during
growth in extreme environments and is possibly related
to chromosome structure. The findings provide a basis
for further investigation of chromosome organisation,
transcription patterns and gene regulation in archaea, as
well as of the evolutionary forces that promote different
levels of transcriptional and chromatin organisation.

Methods
Cell cultivation
S. acidocaldarius DSM 639 and S. solfataricus DSM
1617 cultures were grown at 79°C in modified Allen
[46] mineral base medium containing 0.2% tryptone.
Growth was monitored by optical density (OD) mea-
surements at 600 nm. Samples for RNA preparation
were extracted from exponentially growing cultures at
OD 0.1, and for RNA and DNA preparation from

Table 1 Correlations between distance to nearest origin, average gene expression in exponential phase, proportion
archaeal core genes, protein-coding density, average distance between adjacent bidirectional (divergently transcribed)
genes, and transposable element density in the two Sulfolobus chromosomes

Gene
expression

Archaeal core
genes

Coding
density

Bidirectional gene pair
distances

Proportion
transposons

S. solfataricus

Distance to origin -0.68 (10-3) -0.62 (10-2) -0.64 (10-2) 0.57 (10-2) 0.71 (10-3)

Gene expression 0.83 (10-5) 0.72 (10-3) -0.71 (10-3) -0.64 (10-2)

Archaeal core genes 0.74 (10-4) -0.58 (10-2) -0.75 (10-4)

Coding density -0.92 (10-5) -0.87 (10-6)

Bidirectional gene
distances

0.74 (10-4)

S. acidocaldarius

Distance to origin -0.83 (10-5) -0.77 (10-4) -0.64 (10-2) 0.57 (10-2)

Gene expression 0.85 (10-6) 0.70 (10-3) -0.67 (10-3)

Archaeal core genes 0.51 (10-1) -0.59 (10-2)

Coding density -0.79 (10-5)

Bidirectional gene
distances

The genomic parameters were calculated in 100 kb, non-overlapping windows (22 and 29 windows for S. acidocaldarius and S. solfataricus, respectively). Numbers
indicate Spearman rank-order correlation coefficients, r, with P values (rounded upwards) within parenthesis.
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stationary phase at OD 0.6 for S. acidocaldarius and at
OD 0.7 for S. solfataricus. DNA content and cell size
distributions were analysed by flow cytometry as
described [21], to confirm that the cells were in expo-
nential and stationary phase, respectively (data not
shown).

Extraction of RNA and DNA
RNA was extracted as described in the protocol “RNA
Extraction from Sulfur-utilizing Thermophilic Archaea”
protocol in the Archaea manual [47] with an additional
DNase I treatment and phenol purification step. DNA
was extracted as described previously [26].

Labelling of cDNA and genomic DNA
Five μg of total RNA was reverse transcribed into Cy5/
Cy3-labelled cDNA using aminoallyl-modified nucleo-
tides, as described http://www.biotech.kth.se/molbio/
microarray/. Stationary phase genomic DNA (1.4 μg)
was labelled with Cy3/Cy5-dUTPs, as described [26].

Microarray analysis of transcript abundance
Microarrays with gene-specific tags (GSTs) were pro-
duced as previously described [27]. Probes were printed
in duplicates on Ultra GAPS slides (Corning) at the
KTH Microarray Center. cDNA from exponential and
stationary phase cultures was co-hybridised in triplicates
with genomic DNA from stationary phase cells for 16 -
20 hr as described http://www.biotech.kth.se/molbio/
microarray/. After washing, slides were scanned with an
Agilent Scanner (Agilent Technologies) and data was
collected with GenePix 5.0 software (Axon Instruments).
Low-quality spots were excluded as described [48]; 1288
and 1210 S. solfataricus and 1650 and 1667 S. acidocal-
darius genes remained after filtering for exponentially
and stationary phase, respectively. Cy5/Cy3 log2 ratios of
background-subtracted intensities were extracted, and
each array was normalised such that the mean log ratio
equalled zero. For each gene the log ratio was averaged
first over probe replicates and then over arrays. The
microarray data have been deposited in ArrayExpress
(E-MEXP-2770).

Genomic analysis
Genomic data on sequenced archaeal genomes was
downloaded from National Center for Biotechnology
Information ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
in December 2008 and was later supplemented with
data on two S. islandicus genomes. Orthologous gene
pairs for S. acidocaldarius and S. solfataricus were iden-
tified with Inparanoid [49]. Archaeal core genes were
defined as COGs present in all completed archaeal gen-
omes, excluding the symbiont Nanoarchaeum equitans.
Since the aim of this was to identify essential genes, in

each genome COGs that were represented by multiple
genes were excluded from the core (for instance
COG0183 (acetyl-CoA acetyltransferase) with 11 copies
in S. acidocaldarius), since not all of these proteins were
likely to be essential. Data plotting and statistical analy-
sis was performed in R http://www.r-project.org.

Additional material

Additional file 1: Supplementary figures. Supplementary figures 1-6.
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