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Abstract

Background: The ovine Major Histocompatibility Complex (MHC) harbors clusters of genes involved in overall
resistance/susceptibility of an animal to infectious pathogens. However, only a limited number of ovine MHC genes
have been identified and no adequate sequence information is available, as compared to those of swine and
bovine. We previously constructed a BAC clone-based physical map that covers entire class I, class II and class III
region of ovine MHC. Here we describe the assembling of a complete DNA sequence map for the ovine MHC by
shotgun sequencing of 26 overlapping BAC clones.

Results: DNA shotgun sequencing generated approximately 8-fold genome equivalent data that were successfully
assembled into a finished sequence map of the ovine MHC. The sequence map spans approximately 2,434,000
nucleotides in length, covering almost all of the MHC loci currently known in the sheep and cattle. Gene
annotation resulted in the identification of 177 protein-coding genes/ORFs, among which 145 were not previously
reported in the sheep, and 10 were ovine species specific, absent in cattle or other mammals. A comparative
sequence analyses among human, sheep and cattle revealed a high conservation in the MHC structure and loci
order except for the class II, which were divided into IIa and IIb subregions in the sheep and cattle, separated by a
large piece of non-MHC autosome of approximately 18.5 Mb. In addition, a total of 18 non-protein-coding
microRNAs were predicted in the ovine MHC region for the first time.

Conclusion: An ovine MHC DNA sequence map was successfully assembled by shotgun sequencing of 26
overlapping BAC clone. This makes the sheep the second ruminant species for which the complete MHC sequence
information is available for evolution and functional studies, following that of the bovine. The results of the
comparative analysis support a hypothesis that an inversion of the ancestral chromosome containing the MHC has
shaped the MHC structures of ruminants, as we currently observed in the sheep and cattle. Identification of relative
large numbers of microRNAs in the ovine MHC region helps to provide evidence that microRNAs are actively
involved in the regulation of MHC gene expression and function.

Background
The sheep is one of the major domestic animal species
for human meat protein, milk, and its wool is a source
of industrial fiber. The Major Histocompatibility Com-
plex (MHC) of the sheep, also designated as ovine
Lymphocyte Antigen (OLA), harbors clusters of immu-
nological genes involved in overall resistance/susceptibil-
ity of the animal to infectious diseases [1-3]. A number
of agriculturally important traits, especially those related

to disease resistance to various pathogenic viruses, bac-
teria and parasites, are closely linked to genes in the
MHC [4-6]. Furthermore, genetic loci in the MHC are
organized to form distinct functional clusters as class I,
class II, and class III, which show a considerable level of
conservation among mammal species [7-19]. The impor-
tance of sheep MHC molecules in disease resistance
[6,20-23] and the associated structure features in artio-
dactyls have led to increased studies on the sheep MHC
[5,21,24-26]. However, the detailed sequence informa-
tion for ovine MHC is not sufficiently adequate, and
only a small number of ovine MHC genes have been
identified as compared to those in sheep and cattle.
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Studies of the ovine MHC also help to provide valu-
able information on comparative genome evolution in
mammals. The extreme high level of polymorphism
observed for MHC loci may be a result of the evolution-
ary consequences of intensive interactions between
infectious pathogens and the host defensive system [7].
Haplotype difference among different breeds adds
another level of complexity. Previous studies on the
OLA have largely been focused on the gene content and
polymorphisms of the class region [27-32]. Based on the
genetic linkage studies, the ovine MHC seems to have a
special feature in that the class II has been divided into
two sub-regions, similar to that of bovine [33-37]. How-
ever, with the limited sequence information available for
the sheep, such structural features can not be adequately
assessed by comparison with that of the cattle.
We previously constructed a BAC-clone-based physical

map of the ovine MHC for Chinese merino fine-wood
sheep [26], a valued sheep breed predominant in North-
west China especially in the Xinjiang Uygur autonomous
region. The DNA used for BAC library construction was
obtained from a heterozygous Chinese merino male, this
animal being a merino ram that shares less than 1/32 of
the blood from a local Chinese sheep breed. The BAC
clone source we established facilitates the physical map
construction for sheep MHC and for whole sheep gen-
ome, which serve as a reference frame work for subse-
quent sequencing. To facilitate the DNA sequencing, a
BAC clone gap which previously existed between locus
Notch4 and Btnl2 was successfully closed by addition of
two more overlapping BAC clones [38].
Here we describe our work on sequencing of the

entire ovine MHC by shotgun sequencing of the 26
BAC clones, assembling of the sequence data into a fin-
ished DNA sequence map as guided by the physical
map, and the sequence analysis that resulted in identifi-
cation and annotation of 177 genes and 18 microRNAs
in ovine MHC region.

Results and Discussion
DNA shotgun sequencing was successfully performed
for 26 overlapping BAC clones, generating approxi-
mately 8-fold coverage of the genome equivalent data.
The fully-assembled sequences for all of the BAC clones
were deposited into GenBank with accession numbers
FJ986852 - FJ985877 (Table 1). The quality of the
sequence determined was adequate, with an estimated
error rate less than 0.025% for most of the BAC clones.
An average of 1.3 gaps existed per BAC clone, mostly
due to highly repetitive sequence. A gap here refers to a
stretch of DNA for which the exact nucleotide base
identity (A, G, T, or C) remain ambiguous after rese-
quencing, represented by a tandem number of “N”
between the determined sequences.

A complete DNA sequence map of the ovine MHC
was successfully assembled as guided by the BAC clone
physical map (Figure 1). The map spans approximately
2,434,000 nucleotide bases in length, covering almost all
MHC loci currently known for both ovine and bovine
species. The finished sequence map was discontinuous,
as expected from the physical map. The major sequence
segment spans approximately 2,071,000 nucleotide
bases, harboring class I, class III, and class IIa of the
ovine MHC. The shorter sequence segment spans
approximately 363,000 nucleotide bases, harboring loci
in the class IIb region and extending into the non-MHC
region.
Sequence analysis resulted in the identification and

annotation of 177 protein-coding genes/ORFs in the
ovine MHC (Figure 1, Additional table 1). Of the 177
ovine genes identified, 131 were homologous to pre-
viously annotated genes in cattle, sheep or other mam-
mal species, 36 matched to the predicted but not yet
annotated genes in the cattle, and 10 were ovine species
specific, having not been found in human, mouse, cattle
or other mammal sequences. The location, transcrip-
tional orientation, and relative size of the identified
genes were determined (Figure 1). Among the genes
identified, a total of 145 identified ovine genes were
reported for the first time by this study. The ovine-spe-
cific genes were temporally nominated as “OaN“ fol-
lowed by a numeric number, where “Oa” is abbreviation
for Ovis aries, and “N” for novel (Additional file1). Preli-
minary experiments confirmed the mRNA transcripts
for 4 of the predicted ovine-specific genes (data not
shown). The distribution of these novel genes seems to
be random throughout the ovine MHC region. It is
interesting to notice that a multiple DQ loci (DQ clus-
ter) were identified, each with different orientation of
transcription, when compared with those of other sheep
breeds [39,40]. Such difference may be due either to
breed or haplotype differences, as a subsequence of dif-
ferential gene duplication [41].
An additional 18 genes encoding micro RNAs were

identified by software prediction in an effort to search
for non-protein-coding genes/components using the
Rfam database analysis tools (Table 2). The orientation
and distribution of these micro RNAs showed a rando-
mized pattern throughout MHC region. This is the first
time that a relatively large number of microRNAs have
been identified in ovine MHC region. Given the func-
tional importance of microRNAs for regulating gene
expression by mRNA cleavage or repression, this preli-
minary finding help to provide evidence that micro-
RNAs may be actively involved in the MHC response to
pathogens in general.
Sequence alignments among the human, sheep, and

cattle MHC showed an overall conservation, with the
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level of homology reaching over 85% for the MHC class
I, class III, and part of class II regions. The major differ-
ence in the MHC structures was found in the class II
region. In human it was a continuous segment with no
interruption, while in the sheep and cattle it was divided
into IIa and IIb subregions by a large piece of non-
MHC autonomic insertion. In addition, the gene order
of class IIb in both ovine and bovine regions showed an
opposite orientation relative to that of human (Figure 2).
Analysis of the sequence homology between ovine and

bovine MHC regions demonstrated a remarkable con-
servation, with the overall homology reaching 86%. The
actual level of homology could be higher because a
number of gaps (over 10-40 kb) in the available bovine
sequence contributed negatively to the homology score.
For virtually any locus currently identified in bovine
MHC, a homologous match could be identified in the

ovine MHC, including those in the class IIb region
(Figure 2). It is noteworthy that the ovine and bovine
MHC class IIa and IIb regions exhibited exactly the
same gene order and structural layout. In addition, the
piece of non-MHC autonomic insertion between IIa and
IIb was estimated to be of the same length (approxi-
mately 18.5 Mb) for both species. Furthermore, the
order of bovine and ovine genetic loci within the
inserted autonomic region was essentially the same as
tested by over 120 SS-PCRs (data not shown). Taken
together, these results support the hypothesis that cattle
and sheep shared an ancestral chromosome containing
the MHC before their divergence by evolution.
The hypothesis that cattle and sheep shared an ancestral

chromosome was previously proposed in the studies of
cattle [42-44]. Detailed mapping of BTA23 by radiation
hybrid analysis [43,45] suggested that the ancestral MHC

Table 1 Assembly of 26 BAC-clone based DNA sequences covering entire Ovine MHC region

BAC
clone
ID

GenBank
Accession
Number

Insert
length
(bp)

Average
coveragea

Single-base error
probabilityb

Reads
numberc

High repeat
sequence

Scaffoldsd No. of Gaps
insidee

No. of Gaps
outside

271H22 FJ985865 159959 7.93491 1.118 × 10-4 2974 No 1 0 0

304C7 FJ985867 134586 8.0733 2.127 × 10-4 2509 Yes 1 1 0

142M19 FJ985860 134479 8.11391 4.257 × 10-4 2715 Yes 1 2 0

373D13 FJ985872 172485 8.15691 5.308 × 10-4 3311 No 1 3 0

283N15 FJ985866 155021 7.165 0.268 × 10-4 2472 No 1 0 0

222G18 FJ985862 167309 7.78757 0.790 × 10-4 2783 No 1 0 0

55L9 FJ985854 145292 8.22565 0.195 × 10-4 2941 No 1 0 0

197N2 FJ985876 90102 6.50404 0.488 × 10-4 1438 No 1 2 0

429P24 FJ985873 198404 9.02502 3.497 × 10-4 4009 No 1 2 0

225J15 FJ985863 139059 7.9057 68.30 × 10-4 2335 Yes 1 1 0

453O11 FJ985874 143310 8.05201 0.802 × 10-4 2473 No 1 2 0

63M17 FJ985856 129209 8.52801 37.780 × 10-4 2394 No 1 1 0

163P3 FJ985861 165447 7.55517 1.049 × 10-4 2833 No 1 0 0

119K1 FJ985858 156603 7.75008 0.309 × 10-4 2665 No 1 2 0

349I12 FJ985871 149708 8.4984 7.600 × 10-4 2994 No 1 2 0

345B17 FJ985869 134643 7.69046 10.58 × 10-4 2736 No 2 0 1

68G10 FJ985857 165531 8.14164 6.535 × 10-4 3681 Yes 1 1 0

346G21 FJ985870 138311 8.67944 9.059 × 10-4 2807 No 1 1 0

44I10 FJ985853 134434 8.32584 16.47 × 10-4 2705 No 1 2 0

282P19 FJ985875 174317 7.27217 0.490 × 10-4 2989 No 2 1 1

239C1 FJ985864 142287 7.9438 0.736 × 10-4 2940 No 1 2 0

141C4 FJ985859 160633 7.65743 0.624 × 10-4 2992 No 1 1 0

374N21 FJ985877 83460 9.112 3.860 × 10-4 3648 No 2 1 1

21H3 FJ985852 119055 8.13723 0.380 × 10-4 2157 No 1 1 0

304D17 FJ985868 140735 8.14013 4.291 × 10-4 2599 No 1 1 0

58G13 FJ985855 135958 8.827674 2.187 × 10-4 3845 No 2 4 0
a Defined as a ratio between total number of base pairs sequenced and total number of base pairs of the inserts in a given BAC clone.
b Error probability of a particular base call, corresponding to a quality value as determined by the equation:

Q = -10log10(Pe), where Pe is the error probability.
c The total number of shotgun DNA sequencing reactions performed for a given BAC clone.
d In genomic mapping, a series of contigs that are in the right order but not necessarily connected in one continuous stretch of sequence.
e The number of regions where the exact nucleotide base (G, A, T, or C) could not determined, represented by a strips of “N” in a given BAC clone.
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was likely disrupted by a large inversion that produced the
bovine MHC class IIa and IIb regions. With the availability
of detailed sequence information from the two ruminant
species (bovine and ovine), the hypothesis has now gained
additional support from the experimental data.
Our sequence analysis also identified a butyrophilin-

like (Btnl ) cluster at the boundary between the ovine
class IIa and III (Figure 3). Banal is critical for milk
secretion and production [46]. Comparison of Btnl loci
duplication showed that sheep has a moderate number
of Btnl copies, more than that seen in platypus but less
than those shown by mouse, rat or swine that have a
larger litter sizes (Figure 3). Btnl is absent in non-mam-
mal species like amphioxus, frog, and chicken, appears
(Btnl2) in platypus, and is duplicated extensively in
mammals that have more litter sizes. This might be an
indication that milk production was closely associated
with the function of MHC in mammals, due to the
apparent need for mammals to protect their offspring
from microbial infections via milk ingestion. Taken
together, we propose a hypothesis that, formation of the
Btnl loci is associated not only with the gene duplication
of immunological loci, but also with the emergence of
mammals in evolutionary history.

Conclusion
A complete ovine MHC sequence map was assembled
by successful shotgun sequencing of 26 overlapping
BAC clones. This makes the sheep the second ruminant
species for which the MHC sequence is available for
evolutionary and functional studies. Gene annotation
resulted in the identification of 177 genes, among which
145 were identified for the first time, and 10 were
ovine-species specific. In addition, a total of 18 micro-
RNAs coding sequences were predicted in the ovine
MHC for the first time. Comparative analysis revealed a
remarkable conservation of MHC sequence between
sheep and cattle, supporting the hypothesis that the two
species shared an ancestral chromosome that shaped the
ruminant MHC as currently observed. Identification of a
relatively large number of micro RNAs in the ovine
MHC region helps to provide evidence that micro RNAs
are actively involved in the regulation of MHC gene
expression and function.

Methods
DNA shotgun sequencing
Shotgun sequencing libraries were constructed individu-
ally for each of the 26 BAC clones following the modified

Figure 1 A feature map of Ovine MHC sequence. The map spans 2,434,000 nucleotide bases in length, containing 177 protein-coding genes/
ORFs and 18 miRNA coding genes. Each locus is represented by an arrow or arrow head, and annotated according to type, orientation, and
location within the MHC. The tiling path of the sequenced BACs and the MHC structure are shown on the top. Micro RNA (18 shown):
Identified gene that has high sequence homology with conserved gene encoding the functional mircoRNA in other species, noted following the
given name of that species. Predicted (36 shown): Gene that either has high sequence similarity to that of the predicted gene in other species,
or has a predicted ORF but no high sequence homologies with ESTs of Ovine or other species. Novel (10 shown): Ovine-specific gene identified
with a defined open reading frame (ORF) that has not been found in any other species to date. The novel genes are annotated with OaN1 to
OaN8 (Oa for Ovis aries; N for novel; another two with no cloning data, no annotation), from left to the right of the map. Known (131 in total):
The functional genes previously annotated in Bovine, Ovine or other species.
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protocols described by Celera Genomics Group [47].
Briefly, E. coli stock containing the target BAC clones
were used to prepare the BAC clone DNA, which were
solicited to form randomized small DNA fragments
between 0.5 - 2.0 kb. After cloning of the small fragments
into the plasmids, random DNA sequencing was per-
formed with an ABI 3730 automated DNA sequencers

(Applied Biosystems, USA) to generate the randomized
short DNA sequence reads.

Assembling of BAC clone sequences
The short random DNA sequences generated by the
sequencing were assembled into full-length sequence uti-
lizing the Prep program (U.W., Seattle, WA, USA) for each

Table 2 List of non-protein-codning microRNA genes identified in MHC by Rfam analysis

Gene Name Rfam Accession No. Start coordinate End coordinate Orientation Scorea

let-7 RF00027 35 51 + 34.2

miR-160 RF00247 173327 173343 + 34.2

miR-156 RF00073 180706 180722 - 34.2

miR-17 RF00051 243137 243153 - 34.2

miR-166 RF00075 465267 465295 + 34.2

miR-166 RF00075 1062114 1062131 - 36.2

miR-2 RF00047 1243062 1243078 + 34.2

lin-4 RF00052 1608564 1608580 + 34.2

miR-10 RF00104 1978042 1978059 + 36.2

miR-101 RF00253 2046800 2046816 + 34.2

miR-395 RF00451 2082358 2082373 - 32.2

miR-156 RF00073 2084006 2084023 - 36.2

miR-219 RF00251 2098884 2098955 - 127

miR-219 RF00251 2098930 2098950 - 42.1

miR-156 RF00073 2131290 2131307 - 36.2

miR-156 RF00073 2339014 2339030 + 34.2

miR-166 RF00075 2348202 2348217 - 32.2

miR-399 RF00445 2354071 2354086 + 32.2
a The scores are bits (logs-odds) scores which represent the log of the probability of the query given the model over the probility of random sequence given the model.

Figure 2 Gene order comparisons for the selected class II loci from HLA, OLA, and BoLA. Genetic loci in class II region were compared by
aligning HLA, OLA and BoLA at telemere®centromere orientation. The orthologous loci were linked by solid lines. Solid and open box represent
the selected class II loci and non-MHC loci, respectively. Shaded carmine boxes indicate regions of conservation among species. Red ellipses
indicate the potential breaking points.Tel: Telomere, Cen: Centromere.
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of the BAC clones. Resequencing was performed when
necessary for gaps detected during the sequence assembly,
including sequencing by primer walking of the PCR-ampli-
fied fragments for regions showing low level of accuracy.
Blast alignments [48] of the repeat-masked, assembled
sequence against NCBI EST and non-redundant nucleo-
tide databases were performed to identify expressed
sequences and other highly conserved regions likely to
contain functional genes.

Sequence analysis
The assembled ovine MHC sequence was analyzed using
an automatic Ensemble pipeline [49] with modifications
to aid the manual duration process. Simple and inter-
spersed repeats were detected using Tandem Repeats
Finder [50] and Repeat Masker, respectively, using the
mammalian library along with cow-specific repeats sub-
mitted to EMBL/NCBI/DDBJ. The combination of sim-
ple and interspersed repeats was used as a filter to mask
the sequence during analysis. Novel genes or CDS loci
were identified by having an open reading frame (ORF),
plus certain similarity to the known genes or proteins. A
predicted gene was defined by having high sequence
homology to the predicted gene or ORF in other spe-
cies. Pseudo genes were identified by sequence homol-
ogy to known Pseudo genes (not shown). Comparative
sequence alignments were performed using the waviest
pipeline http://genome.lbl.gov/cgi-bin/WGVistaInput.
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