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Abstract

conditions that characterize complex diseases.

Background: Multifactorial diseases such as cancer and cardiovascular diseases are caused by the complex
interplay between genes and environment. The detection of these interactions remains challenging due to
computational limitations. Information theoretic approaches use computationally efficient directed search strategies
and thus provide a feasible solution to this problem. However, the power of information theoretic methods for
interaction analysis has not been systematically evaluated. In this work, we compare power and Type | error of an
information-theoretic approach to existing interaction analysis methods.

Methods: The k-way interaction information (KWII) metric for identifying variable combinations involved in gene-
gene interactions (GGI) was assessed using several simulated data sets under models of genetic heterogeneity
driven by susceptibility increasing loci with varying allele frequency, penetrance values and heritability. The power
and proportion of false positives of the KWII was compared to multifactor dimensionality reduction (MDR),
restricted partitioning method (RPM) and logistic regression.

Results: The power of the KWII was considerably greater than MDR on all six simulation models examined. For a
given disease prevalence at high values of heritability, the power of both RPM and KWII was greater than 95%. For
models with low heritability and/or genetic heterogeneity, the power of the KWII was consistently greater than
RPM; the improvements in power for the KWII over RPM ranged from 4.7% to 14.2% at for & = 0.001 in the three
models at the lowest heritability values examined. KWII performed similar to logistic regression.

Conclusions: Information theoretic models are flexible and have excellent power to detect GGl under a variety of

Background

Numerous complex diseases such as cancer, cardiovas-
cular disease, mental illnesses, and autoimmune disor-
ders are the result of interactions among many
exogenous and endogenous factors operating on one or
more biological pathways. However, reliably identifying
the key underlying gene-gene (GGI) and gene-environ-
ment interactions (GEI) has proven difficult because the
number of interactions increases combinatorially with
the number of variables considered and resultant high
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dimensionality presents significant statistical challenges
in interaction analyses.

Broadly, existing methods for analyzing GGI (and GEI)
can be either parametric or non-parametric and can
leverage dimensionality reduction or regression-based
methodologies. Parametric approaches model explicitly
the nature of the interaction, whereas the nonparametric
approaches do not model these relationships. Multifac-
tor Dimensionality Reduction (MDR) [1] and Restricted
Partitioning Method (RPM) [2] are representative exam-
ples of dimensionality reduction methods whereas logis-
tic regression [3] and logic regression [4] are examples
of regression-based methods. Generalized MDR is a
hybrid method that contains elements of both categories
[5]. Logistic regression is used for GGI analysis by treat-
ing the genotype and genotype combinations as
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predictors in genetic models (e.g., dominant, additive)
for categorical phenotypes.

Information theoretic methods are a promising and
novel approach for identifying GGI and GEI, which do
not require formulation and evaluation of specific inter-
action models. Information theoretic approaches such as
AMBIENCE [6] employ directed search using entropy-
based metrics and differ from dimensionality reduction
methods such as MDR and RPM that utilize pooling
into high and low-risk groups. Although some informa-
tion theory-based methods have begun to emerge for
interaction analysis, these methods have not been inves-
tigated sufficiently to gain widespread acceptance. For
example, interaction dendrograms [7], an information
theoretic visualization method and normalized mutual
information [8] have been used with MDR [9] to investi-
gate GGI and GEIL Previously we demonstrated the use-
fulness of the k-way interaction information (KWII), a
multivariate information theoretic metric, for analyzing
genetic association with both discrete and continuous
phenotypes [6,10]. In this information theoretic frame-
work, variable combinations with positive KWII values
are operationally defined as interactions [6]. Information
theoretic methods can be used for discrete phenotypes
with more than two classes and their underlying formal-
ism addresses the false associations that can be caused
by the presence of linkage disequilibrium (LD) [6].
Information theoretic methods do not require an expli-
cit model to be specified and can identify disease-asso-
ciated GGI when multiple loci are involved. The
mathematical properties of multivariate entropy mea-
sures can also be harnessed for the design of computa-
tionally efficient interaction analysis algorithms that do
not require exhaustive search and can therefore enable
the analysis of larger data sets [6].

Given the substantial differences between existing
approaches and information theoretic methods and the
potential applicability of the latter for genome-wide
interaction analysis [6], there is a critical need for sys-
tematic and comparative assessment of the power and
false positive rate of these methods. In this paper we
assess power of our approach, MDR and RPM to detect
GGI with and without genetic heterogeneity (GH);
genetic heterogeneity adds a layer of complexity to
interaction analysis and is a hallmark of many complex
human diseases (e.g., Alzheimer’s disease) and thus it is
important to study the performance of methods under
these conditions.

Methods

Description of the KWII Information Theoretic Method
Definition of Interaction

The k-way interaction information (KWII) is a parsimo-
nious, multivariate measure of information gain, defined
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below [11,12]. We use the KWII as the measure of
interaction information for each variable combination.
We operationally define “A positive KW1II value for a
variable combination indicates the presence of an inter-
action, negative values of KWII indicates the presence
of redundancy and a KWII value of zero denotes the net
absence of K-way interactions”.

Our information theoretic methods identify statistical
interactions as determined by measurable changes in
entropy.

Entropy

The entropy, H(X), of a discrete random variable X can
be computed from the probabilities p(x) using the for-
mula:

H(X) ==Y p(x)log p(x)

k-way Interaction Information (KWII)

The KWII is presented as in [10]. For the 3-variable
case, the KWII is defined in terms of the individual
entropies of H(A), H(B) and H(C), the lower order com-
binations, H(AB), H(AC), H(BC) and all three variables
H(ABC): KWII(A;B;C) = - H(A) - H(B) - H(C) + H(AB)
+ H(AC) + H(BC) - H(ABC). For the case of K genetic
or environmental variables and phenotype variable P on
the set v = {X;, Xy, ..., Xx, P}, the KWII is written as an
alternating sum over all possible subsets T of v using
the difference operator notation of Han [13]:

KWII(v) = ‘2 )"HT H(T)

Tcv

The number of genetic and environmental variables K
in a combination is called the order of the combination.
The KWII represents the gain of information (positive
values) or synergy between the variables, the loss of
information (negative values) or redundancy between
the variables or no change in information (values of
zero) viewed as the absence of K-way interactions due
to the inclusion of additional variables in the model. It
quantifies interactions by representing the information
that cannot be obtained without observing all K vari-
ables at the same time [11,12,14,15].

AMBIENCE Algorithm

AMBIENCE is an information theoretic search method
and algorithm for detecting GEI that employs the KWIL.
The details of AMBIENCE are described in Chanda et
al. [6].

GGl Simulations

The power and proportion of false positives of the KWII
in detecting GGI were compared to that of MDR, RPM,
and Logistic Regression using three sets of simulations
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Table 1 Overview of simulation sets used to test power to detect GGI and type | error

Model Sample size Number of SNPs Number of Interactions MAF K, n
Set 1A: Comparison of KWII to MDR?
1-GH 2 0.5 0.05 0.013
2-GH 0.025
3-GH 400 10 2 0.25 0.06 0.007
3 1 0.03
4-GH 2 0.1 0.025 0.003
4 1 0.012
Set 1B: Comparison of KWII to RPMP
5A 0.3 0.62
5B 0.3
5C 015
6A 0.1 022
6B 200 7 1 0.5 0.11
6C 0.056
7A 0.01 0.02
7B 0.01
7C 0.005
Set 2: Comparison of KWII to MDR, RPM, and Logistic Regression Approaches®
1-GH and 7C 600, 1200 & 2400 10 3 0.5 0.037 0.013
Set 3: GAW15 Problem 2¢
1-GH 2400 865 2 0.5 0.05 0.013
2-GH 0.025
3-GH 865 2 0.25 0.06 0.007
3 1 0.03
4-GH 865 2 0.1 0.025 0.003
4 1 0.012

GH: Genetic Heterogenity; K, = population prevalence; h? = Broad sense heritability;

@ Penetrance is modeled as in Table 2 [16].

b Penetrance is modeled as in Table 3 [2].

€ Kp values for Interactions 1 and 2 are each 0.05 (penetrance table from Model 1-GH from [16]) and for interaction 3 Kp is 0.01 (penetrance table from Model 7C
from [2]).

4 [271.

(Table 1). Two groups of simulations were performed in
Set 1. First we compared power and type 1 error of Table 2 Penetrance tables for comparison of KWII to
KWII and MDR given models of disease heterogeneity = MDR

with varying allele frequency, penetrance and heritabil- Model 1-GH Model 2-GH

ity; GGI models were constructed using parameters as K, = 0.05, h* = 0.013 Ky = 0.025, h* = 0.013
described in Culverhouse (Table 2) [2]. Second, we BB Bb bb BB Bb bb
assessed power and type I error of KWII and RPM AA 00 0.1 00 AA 00 00 0.1
given varying allele frequencies, heritability and pene- Aa 0.1 00 0.1 Aa 00 005 00
trance using GGI models with parameters identical to aa 0.0 0.1 00 aa 0.1 0.1 00
those of Richie et al. (Table 3) [2,16]. The second set of Models 3 and 3-GH Models 4 and 4-GH
simulations compared the power and type I error of ~ Ke =006, h* = 0.03 and 0.007 K, = 0.025, h” = 0.012 and 0.003
KWII with MDR, RPM, and logistic regression. We B8 Bb bb BB Bb bb
simulated a disease model with genetic heterogeneity =~ A4 008 007 005  AA 007 005 002
(GH) combining the models of Culverhouse and Ritchie Aa 0.1 0.0 0.1 Aa 0.05 0.09 001
to evaluate the performance of these four approaches aa 003 0.1 0.04 aa 002 001 003

[2,16]. The third set of simulations was of a larger scale  The penetrance values are based on the models in [16].
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Table 3 Penetrance tables comparison of KWII to RPM

Model 5: K, = 0.3

Model 5A: h* = 0.62

Model 5B: h> = 0.30

Model 5C: h> = 0.15

BB Bb bb BB Bb bb BB Bb bb
AA 02 00 10 AA 023 009 079 AA 025 015 065
Aa 00 06 00 Aa 009 051 009 Aa 015 045 015
aa 10 00 02 aa 079 009 023 aa 065 015 025

Model 6: K, = 0.1

Model 6A: h* = 0.22

Model 6B: h* = 0.11

Model 6C: h* = 0.056

BB Bb bb BB Bb bb BB Bb Bb
AA 00 00 04 AA 003 003 031 AA 005 005 025
Aa 00 02 00 Ag 003 017 003 Aa 005 015 005
aga 04 00 00 aga 031 003 003 agag 025 005 005

Model 7: K, = 0.01

Model 7A: h* = Model 7B: h*> = 0.010 Model 7C: h* = 0.005
0.020

BB Bb bb BB Bb  bb BB Bb  bb

AA 00 00 004 AA 0003 0003 0031 AA 0005 0005 0.025

Aa 01 002 00 Aag 0003 0017 0003 Aa 0005 0015 0.005

aa 004 00 00

aa 0031 0003 0.003

aa 0025 0005 0.005

The penetrance values are based on the models in [2].

and was based on real genotype data. Simulated datasets
consisted of 50,000 samples from the GAW15 problem
2 data set were expanded by incorporating GH models
of Ritchie et al with varying allele frequencies, pene-
trances and heritabilities.

Power and Proportion of False Positives in KWII, MDR,
RPM and Regression Models

Power and proportion of false positives (PFP) of each of
the methods were compared using 1000 independent
repetitions of the simulation procedure.
Permutation-Based p-values of KWII

For each simulation step, the p-value of the KWII of
each combination was determined using 100,000 permu-
tations. The permutations for each combination were
conducted independently of the other combinations.
The permutation procedure provides the null distribu-
tion of the KWII, i.e., when the combination of variables
was not association with the phenotype. The p-value for
the combination was defined as the proportion of per-
mutations with KWII values that were greater than or
equal to the observed KWIIL.

PFP of KWII

The PFP was calculated as the ratio of the number of false
combinations detected as significant to the total number
of possible false combinations in 1000 replications of the
simulation procedure. The total number of false combina-
tions possible was computed to order 2 or less.

Power of KWII

KWII power was defined as the proportion of repeti-
tions in which the combinations involved in GGI were
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identified as significant at the a-values of interest. A
false combination was defined as a combination contain-
ing one or more SNPs that were not associated with the
phenotype in the simulation model. Because there were
no marginal effects in all of our simulated models, all
one-SNP combinations are also false combinations.

For the KWII, power calculations were conducted for
28 closely spaced p-values from 0.01 to 0.001 in inter-
vals of 0.001 and from 0.001 to 0.0001 in intervals of
0.0001 and from 0.0001 to 10°® in intervals of 107°.
Power of the KWII at a.-values of 0.01, 0.001 and 0.0001
were obtained by interpolating the two PFP values that
bracketed the o-value of interest.

MDR, RPM and Regression

Statistical significance for MDR models was obtained
using the R? statistic generated by comparing the
observed prediction error for each MDR model to the
null distribution obtained from 10,000 permutations.

An interaction is deemed detected when the deviance
of the full model [3] (see section on Logistic Regression
below) from the model containing only the main effect
terms is significant using the likelihood-ratio test with
degrees of freedom equal to the difference in the resi-
dual degrees of freedom between the two fitted models.

The power and PFP for MDR, RPM, and logistic
regression were obtained at nominal a-values of 0.01,
0.001 and 0.0001 corresponding to the KWII.

Simulation Set 1A: Comparing KWII to MDR

The four two-locus models and simulation parameters
(penetrance matrices, number of SNPs, allele frequency
and sample size) employed in the original MDR power
evaluation paper by Ritchie et al. [16] were used for
comparison against the KWII. The design parameters
and penetrance matrices for the models are summarized
in Table 1 and Table 2, respectively. The MDR imple-
mentation was downloaded from http://sourceforge.net/
projects/mdr/.

A case-control study design with 200 cases and 200
controls was assumed. Case control status was denoted
with indicator variable, C. Ten diallelic SNPs were simu-
lated. The allele frequency for all the SNPs in Models 1
and 2 was 0.5; for Models 3 and 4, the minor allele fre-
quencies (MAF) for all SNPs were 0.25 and 0.10,respec-
tively. Genotypes were assumed to be in Hardy-
Weinberg equilibrium proportions.

Models 1-GH, 2-GH, 3-GH and 4-GH contained
genetic heterogeneity (GH) with two pairs of interacting
loci, SNP(1) with SNP(2), defined as Interaction 1 and
SNP(9) with SNP(10), defined as Interaction 2. For all 4
GH models each Interaction increased risk in half of the
cases. The corresponding penetrance matrices in Table
2 were used for simulations for both pairs of interacting
loci. Models 3 and 4 contained only Interaction 1. The



Sucheston et al. BMC Genomics 2010, 11:487
http://www.biomedcentral.com/1471-2164/11/487

remaining SNPs were not associated with the phenotype.
For each model, we simulated 1000 data sets.

Simulation Set 1B: Comparing KWII to RPM

The penetrance matrices, number of SNPs, allele fre-
quency and sample size for these comparisons were
identical to those evaluated by Culverhouse [2]. Tables 1
and 3 summarize the design parameters (sample size,
prevalence, K, and broad sense heritability, h2) and gen-
otype penetrance matrices, respectively for the nine
models [2]. The code for RPM was provided by Dr.
Culverhouse.

A case-control study design with 100 cases and 100
controls was assumed. Case control status was denoted
with indicator variable, C. Seven diallelic SNPs with
equally frequent alleles were assumed for all SNPs in
Models 5-7. Genotypes were assumed to be in Hardy-
Weinberg equilibrium proportions. SNP(1) and SNP(2)
were involved in the gene interactions that were asso-
ciated with the disease phenotype variable; SNP(3)
through SNP(7) were not associated. For each model, we
simulated 1000 data sets.

Simulation Set 2: Comparing KWIl to MDR, RPM and
Logisitic Regression

The power and type I error of KWII was compared to
that of MDR, RPM, and logistic regression under a
more complex model of GH for varying study sizes.
Logistic Regression

Logistic regression models used to test for interaction
are as outlined in Cordell [3]. The logistic model for a
GGI interaction is written:

r
log| — |=u+ax, +dz; +a,x, +d,z, +
1—r H 1%1 1?1 2X7 2%
laaX1Xy +10g%125 +1g,21%5 +1492125

where, r is the probability of each individual being a
case, y corresponds to the mean effect, the terms a;, d;,
as, do are the dominance and additive effect coefficients
of the two SNPS, i, isa iga igq represent their product
coefficients and x; and z; are dummy variables with x; =
1, z; = -0.5 for one homozygous genotype (AA or BB), x;
= 0, z; = 0.5 for the heterozygous genotypes (Aa or Bb),
and x; = -1, z; = -0.5 for the homozygous genotypes (aa
or bb). This model was expanded to capture the multi-
ple SNP interactions that characterized these
simulations.

We assumed a case-control study design with an equal
number of cases and controls for three sample sizes,
600, 1200, 2400. Case control status was denoted with
indicator variable, C. Ten equal frequent diallelic SNPs
in Hardy Weinberg Equilibrium proportions were
modeled.
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Case status was determined by three pairs of interact-
ing loci (Interaction 1-SNP(I) with SNP(2); Interaction 2
-SNP(5) with SNP(6) and Interaction 3 -SNP(9) with
SNP(10)), with each pair increasing risk in one-third of
the cases. The penetrance matrix of Model 1-GH was
used for Interaction 1 and Interaction 2 and the pene-
trance matrix of Model 7C was used for Interaction 3.
The remaining four SNPs, SNP(3), SNP(4), SNP(7), SNP
(8), were not associated with the phenotype. The pene-
trance matrices obtained from the simulations are
shown in Table 4 for the combinations of SNP pairs
involved in Interactions 1, 2 and 3. Power was assessed
from 1000 independent repetitions of the simulation
procedure as previously described.

Simulation Set 3: Application of KWII Method to a Larger

Dataset with Real Genotypes

Given the unavailability of publicly accessible real data-
sets with validated GGI in order to assess the perfor-
mance of the KWII approach in the presence of real
genotypes, we employed a hybrid approach in which
simulated interactions were planted in the context of
the real genotypes in the GAW15 problem 2 data set.
The data were obtained from http://www.gaworkshop.
org/ and used with permission. We selected SNPs span-
ning a 10 Kb region of chromosome 18 q containing a
dense panel of genotypes for 2300 SNPs in 920 samples.
The data were pre-processed to remove samples with
missing data and SNPs that were not in Hardy-Wein-
berg equilibrium (x? test at a = 0.05). The method of
Carlson et al. [17] was then used to select a set of SNPs
with an LD threshold of R? = 0.9. We refer to this data
set as the GAW15-P2 data set.

We generated a population of 50,000 individual geno-
types by resampling with replacement from the
GAW15-P2 data.

The six models assessed were those from Simulation
set 1la. For Model 1-GH and Model 2-GH, we identified
the SNPs with MAF of 0.5 + 0.01; for Model 3 and 3-
GH, we identified SNPs with MAF of 0.75 + 0.01 and

Table 4 Penetrance tables for comparing KWII to the
other four competing methods

Interaction 1 Interaction 2 Interaction 3
SNP(1) with SNP(2) SNP(5) with SNP(6) SNP(9) with SNP(10)

BB Bb bb BB Bb bb BB Bb bb
AA 002 0053 002 AA 002 0053 002 AA 0035 0035 0042
Aa 0053 002 0053 Ag 0053 002 0053 Aag 0035 0038 0035
aa 002 0053 002 aga 002 0053 002 aa 0042 0035 0035

The overall disease prevalence is K, = 0.037. Only pairwise penetrances for
SNP directly involved in Interactions 1, 2, and 3 are shown. The penetrance
values for Interaction 1 and Interaction 2 are from [16] whereas those for
Interaction 3 are from [2].
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for Model 4 and 4-GH, we identified the SNPs with
MAF of 0.90 + 0.01.

For a pair of SNPs, SNP i and SNP j, for each indivi-
dual in the population, the case-control status was ran-
domly assigned based on the penetrance matrix for the
interaction models of interest with the genotypes of
SNP i and SNP j. Relative risk was set to 2.0 and 1200
cases and 1200 controls were then selected for analysis.
This process was repeated for 100 random pairs of
SNPs selected for each model.

Power was defined as the proportion of repetitions for
which the interacting SNP pairs had the highest values
of KWII. For the models with GH, two second-order
combinations with the highest KWII values were consid-
ered; for models without genetic heterogeneity, only the
second-order combination highest KWII value was
considered.

Results

Visualizing KWII Values in GGl Models Without Main
Effects

Ritchie et al. [16] and Culverhouse [2] conducted
detailed power and type I assessments of MDR and
RPM models, respectively, to detect gene interactions
without main effects. In these models, the phenotype
variation is not attributable to any of the individual loci
but is explained by the combined presence of two or
more loci (i.e., there are no marginal effects). We inves-
tigated the characteristics of the KWII metric in each of
the two-locus gene interactions models from the Ritchie
et al. [16] and Culverhouse [2] reports.

Figures 1A and 1B summarize the KWII for different
combinations of SNPs for Model 3 and Model 3-GH,
which were among the models used for comparing
KWII to MDR in Simulation set 1A. These two models
have a MAF of 0.25 and vary in heritability as well as
the number of underlying susceptibility loci contribut-
ing to case status. Both plots contain prominent peaks
for the informative two-SNP combination {I, 2, C},
which contains both SNPs, SNP(1) and SNP(2)
involved in Interaction 1. Peaks corresponding to com-
binations containing only SNPs that are not associated
with the phenotype or the single SNP combinations {1,
C} or {2, C} are not present. In the presence of GH in
Model 3-GH, an additional peak corresponding to
combination {9, 10, C} is present and the peak height
of combination {I, 2, C} is reduced. The heritability K
decreases from 0.03 (Model 3) to 0.007 (Model 3-GH)
in presence of GH with the prevalence K, remaining
constant at 0.06. Figure 1A and 1B effectively demon-
strate the characteristics of the simulated data, i.e.,
absence of main effects, the impact of a decrease in
heritability on the metric and the presence of genetic
heterogeneity.
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Thus, the KWII can be used to visualize information
regarding the GGI combinations including the presence
of GH and is also, as expected, sensitive to a reduction
in information content of a combination that would
occur with changes in penetrance and allele frequency.

Simulation Set 1A: Power and Type | Error Comparison of
KWII to MDR

In Table 5, we show the power of the KWII to MDR to
detect both Interaction 1 {I, 2, C} and Interaction 2, {9,
10, C} for a-values of 0.01, 0.001 and 0.0001. The power
of the MDR and KWII methods to detect Interaction 2
alone was similar to their power to detect Interaction 1
alone and is therefore not shown.

For all models in this simulation set, the power of
KWII was greater than that for MDR and KWII was
more robust to the presence of GH than MDR. The
greatest difference in power between the two approaches
was seen for Model 1-GH and Model 2-GH. For both of
these models the power of KWII was greater than 90%
for a values as low as 0.001. The power of both
approaches was substantially reduced when GH was
introduced into Models 3 and 4. Given two 2 SNP inter-
actions contributing equally to disease for a. = 0.001, the
power of MDR decreased to almost zero while KWII
faired better with power at ~30% and 20% for Model 3-
GH and Model 4-GH, respectively.

Simulation Set 1B: Power and Type | Error Comparison of
KWII to RPM

Table 6 summarizes the power and type I error for GGI
models for different values of population prevalence
(K,) and the heritability ().

For all A and B models the KWII and RPM had excel-
lent power, greater than 98% for both o.-values, to detect
GGIL For the lowest 42 values, Models 6C and 7C, the
power of the KWII was 17.1% (11.4%) and 11.1%
(14.2%) greater than that of RPM at a = 0.0001 (o =
0.001), respectively.

Power and Proportion of False Positives for Simulation
Set 1

Figure 2 graphically summarizes the relationships
between the power and the proportion of false positives
using receiver-operator characteristic (ROC) curves of
the KWII for each of the models examined in Simula-
tion set 1A and 1B. The power of the KWII to detect
the individual interacting pairs in Model 1-GH (Figure
2A) was 90% with the proportion of false positives of
0.0004. Both interacting pairs of loci in Model 2-GH
(Figure 2B) and the interacting loci in Model 3 (Figure
2C) were identified with power of greater than 95% at
the lowest proportions of false positives values obtained.
As expected GH, decreasing heritability and allele
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Figure 1 Figure 1A and B show the KWII spectra corresponding for Model 3 and Model 3-GH. Note the x-axis scales differ between
Figures 1A and B. To improve clarity, a subset of uninformative combinations is not included in the plot; this is indicated with the break. The
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frequency reduces the power of KWII to detect disease
susceptibility loci in the simulated data.

Simulation Set 2: Power and Proportion of False Positives
Comparing KWIl to MDR, RPM and Regression
Approaches

The studies of the power of MDR [16] and RPM [2]
used small sizes of 200 and 100 subjects per group,
respectively which are atypical for interaction studies.
To address this, we compared the KWII to four compet-
ing methods, MDR, RPM, logistic regression and logic
regression for total sample sizes of 600, 1200 and 2400
containing an equal number of cases and controls for o
= 0.001 and 0.0001. Data was simulated such that case
status was attributable to three pairs of interacting loci
with penetrance matrices from the MDR [16] and the
RPM papers [2].

Figure 3A-C compares the power of KWII to MDR,
RPM and logistic regression at a sample size of 1200 for
o = 0.001 and 0.0001. Table 7 compares the power and
proportion of false positives of the KWII method to
MDR, RPM, and logistic regression across the sample
sizes of 600, 1200 and 2400. The power was calculated
for each of the three interacting pairs of SNPs and as an
overall power for all three interactions.

For Interactions 1 and 3, the differences between the
methods were most apparent at the lowest value of sam-
ple size, n = 600. For both Interaction 1 and Interaction
3, the KWII method and logistic regression had the
highest power, followed in order by RPM, logic regres-
sion and MDR. For all methods, the power values for
Interaction 1 were generally higher greater than those
for Interaction 3. Not surprisingly, the power to detect
all three interactions generally followed the power of the
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Table 5 Power and proportion of false positive
comparison of the KWII to MDR

Model o Interaction 1 Interactions 1 & 2*  MDR PFP
KWII MDR KWiII MDR

0.01 98.7 199 98.1 0.7 0.0047
1-GH 0001 94.3 13 894 09 0.0003
0.0001 85.6 0.6 729 04 0.0002
2-GH 0.01 100 36.0 100 61.7 0.0116
0.001 99.7 12.2 99.5 339 0.0029
0.0001 98.1 50 9.3 233 0.0013
3 0.01 100 91.3 - - 0.0254
0.001 100 56.1 - - 0.0112
0.0001 100 33.1 - - 0.0067
3-GH 0.01 583 53 323 15 0.0028
0.001 282 14 82 0.6 0.0010
0.0001 153 0.1 22 03 0.0001
4 0.01 99.6 54.0 - - 0.0164
0.001 975 8.0 - - 0.0042
0.0001 915 05 - - 0.0010
4-GH 0.01 48.2 0.7 22.1 20 0.0019
0.001 19.6 0 34 0.6 0.0005
0.0001 9.1 0 09 03 0.0001

*Models 3 and 4 had only a two SNP interaction (Interaction 1) present and
thus power values are not applicable.

The simulations are based on models in [16].

Table 6 Comparison of the power and proportion of false
positives of KWII to RPM

K, g Model a Power % RPM PFP*
KWIl  RPM
03 062 SA 0.001 100 100 00010
00001 100 100 0.0002
03 5B 0.001 100 100 00018
00001 100 100 00004
0.15 5C 0001 977 930 00014
00001 901 842 00003
0.1 022 6A 0,001 100 100 00011
00001 100 100 0.0002
011 6B 0,001 100 100 00014
00001 100 100 00004
0056 6C 0001 866 752 00013
00001 736 565 0.0002
001 002 7A 0.001 100 100 00010
00001 100 100 0.0002
001 78 0001 993 984 00013
00001 984 958 0.0003
0005 7C 0.001 726 584 00016
00001 516 405 0.0005

* o is calibrated to the empirical false positive rate of KWII.
The simulations are based on the models in [2].
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method to detect Interaction 3. The results for Interac-
tion 2 were similar to those for Interaction 1 as the two
pairs interactions were based on the same penetrance
table and therefore the results are not shown.

These results highlight the power of the KWII method
and demonstrate that it has comparable or greater
power than a diverse range of competing methods.

Simulation Set 3: Application of KWII Method to a Larger
Dataset with Real Genotypes

We used the GAW15-P2 data set to assess the power
of the KWII in the context of a larger-scale data set
containing real genotypes. Our methodology incorpo-
rated known interactions planted in the context of real
genotypes to overcome the lack of real data sets with
experimentally validated examples of the gene-gene
interactions. Quality control filtering and tag SNP
selection yielded 895 individuals genotyped at 865
SNPs of which 23, 22 and 23 had minor allele frequen-
cies of 0.1 + 0.01, 0.5 £ 0.01 and 0.25 + 0.01 respec-
tively. We assessed power of the KWII at a sample size
of 2400 (1200 cases and 1200 controls) for Model 1-
GH, Model 2-GH, Model 3, Model 3-GH, Model 4 and
Model 4-GH.

For all GH Models power was consistently highest for
detecting Interaction 1 and lowest for detecting both
interactions; power to detect Interaction 2 was within
1% - 3% of that to detect Interaction 1 for all GH
modes. For the GH models power to detect Interaction
1 (both interactions) ranged from 74% (48%) in Model
4-GH to 91% (84%) in Model 2-GH. The power to
detect GGI in models without GH, Models 3 and 4, was
100% and 99%, respectively.

Discussion

We examined the power and proportion of false posi-
tives of the KWII against a diverse group of multi-locus
methods that included MDR, RPM, logistic regression
and logic regression, demonstrating that the power of
KWII metric is greater than MDR, RPM and logic
regression and comparable to logistic regression for a
class of realistic models both with and without genetic
heterogeneity. To our knowledge, this is the first
detailed comparison of power and false positive propor-
tion comparisons between existing interaction analysis
approaches and those based on information theory.

The power of KWII exceeded the power of MDR for
all models in Simulation sets 1 and 2. The discrepancy
in power is attributable to differences in the algorithms.
KWII has greater power than MDR because it selects all
significant combinations separately while MDR selects
only the best model, such that if two or more combina-
tions of the same order are associated with a phenotype,
as in the case of GH, MDR selects only one of them. In
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Figure 2 Figure 2A-F are receiver-operating characteristic plots showing the dependence of the power of the KWII on proportion of
false positives for models 1-GH, 2-GH, 3, 3-GH, 4, 4-GH, 5C, 6C and 7A-7B in Table 1. Models 5A, 5B, 6A, 6B and 7C had power greater
than 99% over the range of proportion of false positives examined and are not shown. The open circles in Figure 2A-3 D represent the power
for detecting one of the two interacting pairs of loci and the open squares represent the power for detecting both loci. The filled circles in
Figures 2C and 2 D correspond to the corresponding model without genetic heterogeneity whereas in Figures 2E and 2F the filled circles are
used to distinguish between the different models. The power of the KWII at ai-values of 0.001 and 0.0001 are summarized in Table 5 and 6.

Proportion of False Positive

addition to the inability to detect the independent
genetic contributions to models of GH MDR can be
dependent on higher order combinations for power.
This is illustrated by Model 2-GH; the power of MDR
to detect both Interaction 1 and Interaction 2 is greater

than its power to detect the interactions individually.
This dependence coupled with the fact that MDR uses
an exhaustive search approach also means that MDR
would be very computationally inefficient for larger
datasets as the number of combinations increases
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Figure 3 Figures 3A-C compare the power of KWII (green bars)
to that of MDR (red bars), RPM (orange bars) and blue for
logistic regression at a-values of 0.001 and 0.0001. The sample
size was 1200. Figure 3A corresponds to Interaction 1, Figure 3B
corresponds to Interaction 3 and Figure 3C represents the power to
detect all three interactions. The penetrance matrices for the
combinations of SNP pairs involved in Interactions 1, 2 and 3 are
shown in Table 4. The bar corresponding to MDR in Figure 3C is
apparently not visible because the power was low.
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Table 7 Comparison of the power and false positive
proportions of KWII to MDR, RPM, and regression
approaches.

Interaction Sample o Power %

Size

KWIl MDR RPM Logistic

Interaction 1 600 0001 689 78 488 68.3

00001 422 37 295 433

1200 0001 989 391 949 9.1

0.0001 956 100 878 954

2400 0001 100 653 100 100

0.0001 100 138 100 100

Interaction 3 600 0001 151 004 72 14.8
00001 48 003 32 52

1200 0001 476 36 28.1 48.7

00001 266 004 152 246

2400 0.001 951 6.6 844 94.0

00001 835 005 708 84.2

All 3 600 0001 76 001 22 7.5
Interactions

00001 152 001 0.5 14.1
1200 0001 481 003 257 478
00001 266 001 115 221
2400 0001 951 29 844 94.0
00001 835 001 708 84.2

Interaction Sample a*  Proportion of False Positives
Size

KWIl MDR RPM Logistic

All 3 600 0.001 - 00021 00010 0.0013

Interactions

0.0001 - 00010 0.0001 0.0001

1200 0.001 - 00075 00013 0.0016

0.0001 - 00011 00003 0.0002

2400 0.001 - 00103 00009 0.0013

0.0001 - 00014 00002 0.0002

*o is calibrated to the empirical false positive rate of KWII.

The model used for the simulations contained three interacting pairs of SNP
as summarized in Table 1: Interaction 1 and Interaction 2 in were based on
[16] whereas Interaction 3 was based on [2].

combinatorially with number of variables and combina-
tion order [18]. MDR is being continuously improved
and used to analyze quantitative phenotypes and family
data [19-21], computational efficiency remains the rate-
limiting factor irrespective the improvements [22,23].
Cattaert et al. [19] have developed FAM-MDR method,
which addresses correlation between observations in
family-based studies and extends the model based MB-
MDR approach [24] to handle continuous covariates
and continuous phenotype. In contrast with the classical
MDR, FAM-MDR considers multiple multi-SNP models
for significance evaluation. Further research on extend-
ing the KWII based approach to handle family data is
ongoing.
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For Simulation sets 1 and 2, we found that RPM has
reduced power when compared to KWII. When working
with quantitative outcomes, RPM uses variances of the
trait for each genotype group for merging groups of
genotypes with closest mean trait values. While this
works well for quantitative traits this approach does not
translate as well for case-control data for particularly for
less frequent diseases. This effect is compounded when
only a small proportion of the variance of the trait is
explained by genetics (Simulation 1B, Model 7C). While
RPM performed reasonably well in models without GH,
when GH was introduced (Table 7, Interaction 3) the
ability of RPM to properly partition based on the pro-
portion of cases for a given genotype is hampered
because multiple different loci are contributing equally
to disease. This is evidenced by a reduction in power,
which is only overcome by substantially increasing the
sample size.

In Simulation set 2, it is clear that logistic regression
and KWII have almost identical power (within ~1% for
all sample sizes and alpha values). Logistic regression
models were also run for Simulation set 1B (results not
shown) and again KWII and logistic models were pow-
ered within 2% of one another for all simulations; one
approach was not consistently better than another.
Despite similar power, the two methods differ in their
model fitting approach. In logistic regression, model
parameters are fit simultaneously but with the KW1II
approach, higher-order interactions are inferred after
investigating and eliminating lower-order contributions.
While we did not run models to detect power for three
way interactions, Marchini et al. [25] found that loci with
specific 3-way interactions are more likely to be detected
by looking for two-locus effects. Thus while power is
equivalent when considering two-locus models with and
without GH, the genetic contribution to complex disease
is proving to be oligogenic. Because KWII looks at
increasing orders of interaction from low to high the
method is well suited to finding these higher order com-
binations because it finds the lower order ones first.

For Simulation set 3, we employed a hybrid approach
in which simulated interactions were planted in the con-
text of the real genotypes from the GAW15 Problem 2
data set. This approach has the advantage of overcoming
the limitations imposed by the lack of real data sets with
well-validated interactions. Although there is a strong
interest in detecting genes distantly located, and using a
dense panel of SNPs spanning a 10 Kb region of single
chromosome is not optimal, it could be argued that this
approach is appropriate for post-genome wide studies (i.
e., sequencing, deep genotyping). Furthermore SNPs
selected from different chromosomal regions would
have less LD amongst themselves, which may make
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interaction detection feasible with more traditional sta-
tistical approaches.

While KWII performed equivalently to the statistical
gold standard (logistic regression) for the simple two
locus models, with potential for greater power to detect
higher order interactions, the method does have some
limitations. KWII has sensitivities to missingness, sample
size, low MAF and LD. As the number of missing geno-
types increases in a dataset the estimation of entropies
becomes more inaccurate. However given genotype
imputation is regularly used for both candidate gene
and genome wide studies this is easily remedied. As
with statistical approaches such as MDR, RPM and
regression low sample size reduces power when estimat-
ing higher order interactions, particularly when SNPs
with very low allele frequencies are involved. Addition-
ally KWII permutations have slightly higher false posi-
tive rate than logistic and MDR, although not
substantially different. Lastly, the power of KWII to
detect GGI is reduced when LD between the causal var-
iant and the genotyped (or imputed) variant is low.
However current chip and Hapmap coverage is quite
good and this is problematic for all statistical methods
used to test for allelic association.

The results of these simulations provide clues as to
how to perhaps more effectively search for interacting
loci. One possible approach when working with a large
dataset would be to combine our approach with logistic
regression by running the AMBIENCE algorithm first
with an anti-conservative alpha and then testing the
combinations obtained using logistic regression models.
This would be an improvement upon the computational
speed of logistic regression and yield lower false positive
rates than using KW1II alone. This two stage approach is
similar in spirit to that suggested by both Hoh et al.
[26] and Marchini et al. [25] in which a liberal alpha is
set for testing interactions in stage one in order to find
SNPs with small marginal effects but large interaction
effects.

Higher-order interactions are computationally inten-
sive because of the rapid growth of the number of com-
binations. The power to detect higher order interactions
is also limited because the number of samples within
each multi-locus genotype stratum is a limiting factor.
Given the challenges associated with higher-order inter-
actions, it may be preferable to base model building on
multiple lower-order interactions. Alternatively given
pathway information from Gene Ontology (GO) or
KEGG for example, AMBIENCE [6] could spend more
computation time testing SNPs within the same pathway
than across pathways. This will help to identify biologi-
cal meaningful epistatic interactions that could then be
analyzed using logistic models.
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Conclusions

In this article, we compare an information theoretic
approach with existing statistical methods to test for
GGI and find that our method has excellent power and
to detect interaction in both simulated and real data.
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