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Abstract

Background: Accurate identification of synteny blocks is an important step in comparative genomics towards the
understanding of genome architecture and expression. Most computer programs developed in the last decade for
identifying synteny blocks have limitations. To address these limitations, we recently developed a robust program
called OrthoCluster, and an online database OrthoClusterDB. In this work, we have demonstrated the application of
OrthoCluster in identifying synteny blocks between the genomes of Caenorhabditis elegans and Caenorhabditis
briggsae, two closely related hermaphrodite nematodes.

Results: Initial identification and analysis of synteny blocks using OrthoCluster enabled us to systematically improve
the genome annotation of C. elegans and C. briggsae, identifying 52 potential novel genes in C. elegans, 582 in

C. briggsae, and 949 novel orthologous relationships between these two species. Using the improved annotation,
we have detected 3,058 perfect synteny blocks that contain no mismatches between C. elegans and C. briggsae.
Among these synteny blocks, the majority are mapped to homologous chromosomes, as previously reported. The
largest perfect synteny block contains 42 genes, which spans 201.2 kb in Chromosome V of C. elegans. On average,
perfect synteny blocks span 18.8 kb in length. When some mismatches (interruptions) are allowed, synteny blocks
("imperfect synteny blocks") that are much larger in size are identified. We have shown that the majority (80%) of
the C elegans and C. briggsae genomes are covered by imperfect synteny blocks. The largest imperfect synteny
block spans 6.14 Mb in Chromosome X of C. elegans and there are 11 synteny blocks that are larger than 1 Mb in
size. On average, imperfect synteny blocks span 63.6 kb in length, larger than previously reported.

Conclusions: We have demonstrated that OrthoCluster can be used to accurately identify synteny blocks and have

identified.

found that synteny blocks between C. elegans and C. briggsae are almost three-folds larger than previously

Background

The conservation of large scale genomic sequences
across two or more genomes —synteny blocks— is of pri-
mary interest because their identification sets up a stage
for identifying and characterizing sequence and func-
tional differences among genomes [1]. The term synteny
has been used in different contexts in the past. Origin-
ally, synteny was used to indicate the colocalization of
different genes in corresponding chromosomes of differ-
ent species (a.k.a. “chromosomal synteny”) [2]. Recently,
with the availability of thousands of sequenced genomes,
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synteny has been used to describe the conservation of
co-localized genes in the same order within different
genomes (a.k.a “conserved segment”). In some occasions,
the term “conserved synteny” has been used to refer a
genomic region in which the chromosomal location of
multiple markers is conserved, but not necessarily their
precise order [3]. The term “synteny block” [4] has been
defined previously as a segment in one genome that can
be converted, through genome rearrangements, into a
conserved segment in another genome. As such, a syn-
teny block does not necessarily represent areas of per-
fectly continuous similarity between genomes. In this
paper, we use the term “perfect synteny block” as “a
genomic region of perfectly conserved gene content,
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order and strandedness”, as defined by Coghlan and
Wolfe [5]. As an extension to this definition, we use
“imperfect synteny block” as “a genomic region contain-
ing some level of interruption, and in which order and
strandedness is not necessarily conserved” [6].

In the past decade, different methods have been pro-
posed to identify synteny blocks [7-12]. However, these
methods usually lack one or more of the following func-
tionalities required for detailed analysis: (1) Comparing
more than two genomes, (2) Allowing interruptions
within synteny blocks; (3) Capturing the strandedness of
genes; and (4) Addressing one-to-many orthologous
relationships. Failure to provide these functionalities
makes these programs inapplicable for the identification
of genome rearrangement events such as inversions,
insertions, reciprocal translocations and segmental
duplications. To tackle these problems, we have recently
developed a new method called OrthoCluster, a compu-
ter program for the systematic detection of synteny
blocks between two or among multiple genomes [6].
Briefly, OrthoCluster takes as input genetic markers
(such as genes and microsatellites) and their relation-
ships (such as orthologous relationships) and scans
through two or more genomes for synteny blocks.
OrthoCluster distinguishes genetic markers as either in-
map or out-map. A genetic marker in one genome is
called in-map if it has orthologous genetic markers in
all corresponding genomes. In contrast, a genetic mar-
ker in one genome is called out-map if it does not have
orthologous genetic markers in corresponding genomes.

To facilitate the application of OrthoCluster, we have
recently developed a web server called OrthoClusterDB
[13]. Additionally, a book chapter describing its usage
and application has been published [14]. In addition to
its use in identifying synteny blocks, OrthoCluster can
be applied to identify segmental duplications within a
genome [15].

C. elegans is a free living soil-dwelling hermaphrodite
nematode and a popular model organism for biomedical
studies because of its small size, transparent body, short
life cycle, ease of propagation and compact genome.
C. elegans was also the first multicellular organism sub-
ject to whole genome sequencing [16], and the genome
sequence of this species has been declared to be com-
plete, with no remaining gaps in 2002. After more than
a decade of annotation after its first publication, the
genome of C. elegans is arguably the best annotated of a
multicellular organism to date [17,18]. The sequencing
of its sister species Caenorhabditis briggsae, also a her-
maphrodite, sets up an excellent platform for compara-
tive genomic analysis [5,19]. Recently, by applying
OrthoCluster, we have identified segmental duplications
in the nematode Caenorhabditis elegans genome, includ-
ing a large duplication that is polymorphic among
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C. elegans laboratory N2 strains [15]. In this project, we
applied OrthoCluster to identify synteny blocks between
C. elegans and its sister species Caenorhabditis briggsae,
whose genome was sequenced a few years ago [19].

Synteny block identification and characterization is
critical for understanding genome structure and func-
tional domains of genomes. Synteny between C. elegans
and C. briggsae was first explored when the first
sequenced reads of C. briggsae became available. Using
their program WABA (for “Wobble Aware Bulk Align-
ment”) [20], Kent and colleagues compared the whole
genome sequence of C. elegans and 8 Mb of C. briggsae
sequences (in 229 cosmids) and found that 59% of these
genomes are homologous at the base level, while 41% of
the genome sequences are found in nonalignable
regions. Using these alignments, they estimated the syn-
teny relationship between C. elegans and C. briggsae and
found that ~40% of the genome is resistant to rearran-
gements. Later, using a gene-based approach, Coghlan
and colleagues examined the slightly larger set of
sequences (12.9 Mb of C. briggsae genome) for synteny
blocks and genome rearrangement events [5] and found
many perfect synteny blocks. They also identified larger
imperfect synteny blocks between these two genomes
with an average size of 53 kb. The completion of the
C. briggsae genome sequencing project enabled the
C. briggsae genome analysis group to compare C. ele-
gans and C. briggsae at the whole genome scale at the
supercontig level [19]. To identify regions of colinearity,
the program WABA [20] was used to produce base level
alignments, followed by merging of adjacent blocks and
bridging of small transpositions and inversions. Even-
tually, 4,837 alignments were obtained that cover 84.6%
of the C. elegans genome, with a median length of 5.6
kb (mean = 37.5 kb) [19]. The average size is smaller
than that obtained using gene-based analysis reported
previously [5]. Recently, a chromosomal-level assembly
of the C. briggsae genome [21] has been constructed,
which can be utilized to facilitate synteny identification
and analysis. Here, taking advantage of this new assem-
bly and our newly developed program OrthoCluster, we
revisit and reanalyze synteny blocks between these two
genomes.

Results

Initial comparison between C. elegans and C. briggsae
genomes

Using the C. elegans genome annotation in WormBase
release WS180 [17], the genome assembly and annota-
tion of C. briggsae [21] (from the same release), and the
correspondence file generated using InParanoid [22], we
detected 3,075 perfect synteny blocks between the gen-
omes of C. elegans and C. briggsae using OrthoCluster.
These blocks range in size from 2 to 28 genes (961 bp
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Figure 1 Perfect synteny blocks in the C. elegans genome. a) Size distribution for perfect synteny blocks obtained using the improved
annotation. b) Size distribution for perfect synteny blocks obtained using the WS180 annotation. ¢) The largest perfect synteny block between
C. elegans and C. briggsae obtained using the improved annotation.

to 168.2 kb, Figure 1b). Examination of these synteny C. elegans suggests that these are two separate genes
blocks, including the gene models contained within (data not shown). Fixing cases like this will uncover
these blocks, immediately suggests that many gene mod-  many more bona fide orthologous relationships between
els (primarily the C. briggsae ones) are defective, which  C. elegans and C. briggsae.

leads to the unnecessary truncation of large synteny

blocks. One example of such case is shown in Figure 2,  Synteny-based gene model correction and ortholog
which illustrates two genomic regions in C. elegans and  assignment

C. briggsae that are nearly perfectly conserved with the =~ We developed a procedure (described in detail in Meth-
exception of one gene in C. elegans, B0240.4, which  ods) in order to detect and correct defective gene mod-
breaks the synteny. Based on the current WormBase els at the whole genome scale. Altogether, we identified
annotation (WS180), this gene does not have a clear 52 putative new genes in C. elegans (Table 1, Additional
ortholog in C. briggsae. Examination of the alignment of file 1). In contrast, in C. briggsae, we have generated
genes B0240.4 and B0240.2 in C. elegans and gene 582 revised gene models, 191 of which correspond to
CBG23278 in C. briggsae (which is the predicted ortho- novel gene structures in previously defined intronic or
log of B0240.2) suggests that the predicted C. briggsae intergenic regions (Table 1, Additional file 2). Most
gene is defective. Indeed, the current gene model of deletions and additions were due to gene splits and
CBG23278 can be split into two separate genes, one  gene merges (Figure 3). We assigned new orthologous
orthologous to B0240.4 and the other orthologous to  relationships based on sequence similarity revealed by
B0240.2. Experimental validation based on PCR reac- the improved gene annotation and synteny, which leads
tions that prove the existence of the two genes and the to the assignment of 949 new orthologous relationships
non-existence of the junction on a ¢cDNA library for (Table 2).
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Figure 2 An example of a defective gene model in C. briggsae. The alignment of the two adjacent genes B0240.4 and B0240.2 in C. elegans

Genome-wide identification and analysis of synteny
blocks

Orthologous relationships

Based on the improved orthologous relationships (see
Methods), the majority of the orthologous relationships
between C. elegans and C. briggsae are one-to-one

Table 1 Gene model improvement in C. elegans and
C. briggsae

C. elegans C. briggsae

Initial number of genes 20,140 19,522
Outmap genes replaced by predictions 0 9
Split genes 0 130
Merged genes 0 250
Predictions added because of split genes 0 262
Predictions added because of merged genes 0 124
Genes added because of new genes 52 191
Genes deleted because of special cases 0 7
Predictions added because of special cases 0 5

Final number of genes 20,192 19,717

relationships (Table 3), with only 7.9% of the C. ele-
gans genes with orthologous relationships (or 5.8% of
the total genes in the improved annotation of C. ele-
gans) having more than one ortholog in C. briggsae,
ranging from 2 to 147 orthologs. Likewise, 8.3% of the
C. briggsae genes with orthologous relationships (or
6.2% of the total genes in the improved annotation of
C. briggsae) have more than one ortholog in C. elegans,
ranging from 2 to 24 orthologs. One-to-one ortholo-
gous relationships exist mainly between homologous
chromosomes of C. elegans and C. briggsae (Table 3),
demonstrating strong chromosomal synteny, in good
agreement with previous studies [21].

Perfect synteny blocks

Using OrthoCluster and the improved genome annota-
tions, we identified 3,058 perfect synteny blocks (each
synteny block contains at least two genes and no mis-
matches). Of these blocks, 2,687 are non-nested,
whereas 371 are nested within larger synteny blocks.
A nested synteny block corresponds to a subset of genes
within a larger synteny block that is found duplicated in
different genomic regions in either the same or different
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Figure 3 Examples of revised gene models in C. briggsae. a) A gene model (CBG00032) is split in two gene models (CBG50382 and
(CBG50528). b) Two gene models (CBG03252 and CBG03251) were merged to form one new gene model (CBG50043). ¢) A gene model was

chromosomes. The largest perfect synteny block
between the genomes of C. elegans and C. briggsae con-
tains 42 genes (Figure la, Figure 4) and spans a 201.2
kb genomic segment in Chromosome V of C. elegans,
corresponding to a 202.5 kb segment in Chromosome V
of C. briggsae (Figure 1c). The mean size of these per-
fect synteny blocks span 18.8 kb, while the median size
is 12.7 kb. Altogether, the perfect synteny blocks cover

11,058 genes in C. elegans (51.3 Mb, or 51.1% of the
C. elegans genomic sequence) and 10,879 genes in C.
briggsae (49.5 Mb, or 45.6% of the C. briggsae genomic
sequence) (Table 4). Genome-wide view of synteny
blocks can be generated using OrthoClusterDB [13]
(Additional file 3, Figure S1). Most (2,770, or 90.6%) of
the synteny blocks in C. briggsae are conserved within
the homologous C. elegans chromosome thus showing

Table 2 Ortholog assignment between C. elegans and C. briggsae

C. elegans

C. briggsae

Improved annotation

WS180 Annotation

Improved annotation WS180 annotation

Number % Number % Number % Number %
Orthologous genes 14,973 100 14,345 100 14,751 100 14,092 100
Genes in one-to-one relations 13,794 92.1 13,406 935 13,531 91.7 13,047 926
Genes in one-to-many relations 1,179 7.87 939 6.55 1,220 827 1,045 742
Total orthologous relations 17818 16,869 17818 16,869
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Table 3 One-to-one orthologous relationships between C. elegans (rows) and C. briggsae (columns)

Chromosomes Chrl Chrll Chrlll Chrlv Chrv ChrX ChrUn Total

| 1519 (360) 46 (2) 10 (2) 16 (0) 13 (0) 0 47 2,015

] 5@3) 1,698 (175) 8 (0) 12 (0) 18 (1) 6 38 1,964
] 9(1) 28 (0) 1,741 (67) 42 (0) 5(0) 1 51 1,945
v 27 (6) 11 (0) 34 (9) 1,779 (51) 21 (2) 20 67 2,027
Vv 9 (2 10 (2) 14 (0) 17 (0) 1,973 (249) 6 74 2,356
X 8 (0) 7 (1) 2 (0) 2 (0) 4(0) 1,888 11 1,923
Total 1,577 (372) 1,800 (180) 1,809 (78) 1,868 (252) 2,034 (252) 1,921 288 12,230

Numbers in parenthesis represent relationships found in the “_random” assembly of the chromosome, as reported by Hillier and colleagues [21].

strong chromosomal synteny (Table 5). Among the 288
synteny blocks (out of the 3,058 perfect blocks) in C.
elegans that are mapped to a non-homologous chromo-
some in C. briggsae, 78.2% are located in Chromosomes
II, IV and V of C. elegans and 72.9% are located in
Chromosomes I, IV and V of C. briggsae.

Perfect synteny blocks of different sizes are not evenly
distributed in all chromosomes. Our results indicate
that perfect synteny blocks on Chromosome X are sig-
nificantly larger than those on the autosomal ones.
The median length of perfect blocks within autosomal
chromosomes is 11.8 kb (mean = 16.7 kb), whereas the
median length of these type of blocks within Chromo-
some X is 23.4 kb (mean = 32.4 kb), more than two-
folds larger (p <0.01, Mann-Whitney U test). This
observation is consistent with previously reported
observations [19,21], suggesting that Chromosome X is
subject to fewer rearrangement events. Alternatively,
most rearrangements occurring in Chromosome X are
lethal and are therefore not preserved in evolution.
Taking the definition of clusters and arms provided by
Hillier and colleagues, we find that, within autosomes,
the median length of perfect synteny blocks in autoso-
mal centers is 11.6 kb (mean = 16.6 kb), whereas the

= All Perfect Blocks

1300
1200 o Non-operonic Blocks
1100 o Operonic Blocks

2345678 91011121314151617 18192021 2224253642

Figure 4 Size distribution of perfect, non-operonic and
operonic synteny blocks. The size of a block is defined by the
number of genes within that block.

median length of perfect synteny blocks in autosomal
arms is 12.2 kb (mean = 16.9 kb). This difference is
not statistically significant (p-value = 0.15, Mann-
Whitney Test). Among all six chromosomes, the one
with the highest genomic coverage is Chromosome X
(65.4%). Chromosome V, which is the largest chromo-
some in C. elegans, also contains the largest number of
blocks (22.6%).

Species-specific gene family expansions/contractions
were observed previously and many gene family mem-
bers have been found to form tandem clusters in C. ele-
gans and C. briggsae [19,23], which is consistent to our
recent observation that the C. elegans genome harbors a
large number of intrachromosomal duplications, many
of which occur in tandem [15]. In this project, we have
demonstrated that members of a same gene family can
form tandem clusters within synteny blocks identified
using OrthoCluster. We found 534 such cases, in which
424 contain more genes in C. elegans while 110 have
more genes in C. briggsae within these tandem gene
clusters. One example of this is a syntenic region that
has a higher presence of members of the GST (glu-
tathione-S-transferase) family of genes in C. elegans
than in C. briggsae (Additional file 4, Figure S2). Further
exploration of these regions is required to unveil the
mechanisms underlying the expansion/contraction of
these genes.

Our gene model improvement has greatly enhanced
our ability to identify larger synteny blocks. When we
use the WS180 annotation (before gene model
improvement) for the detection of perfect synteny
blocks, we found more (3,075) but smaller blocks
(Figure 1a, b; Additional file 5, Figure S3; Additional
file 6) compared to those described above. For exam-
ple, the largest synteny block contains 42 genes using
the improved annotation, but only 28 genes if we use
the WS180 annotation. In fact, the 28 genes are a
subset of the synteny block composed of 42 genes
detected using the improved annotation. Compared to
the WS180 annotation, the improved annotations
increase the coverage of the chromosomes (Additional
file 6).
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Table 4 Perfect synteny blocks, operons, and their corresponding genomic coverage, size and range in C. elegans

Chromosome All perfect synteny blocks Operons
Synteny Coverage Mean Median Range Range Operons Coverage Mean Median Range Range
blocks (%) (Kb) (Kb) (Kb) (genes) (%) (Kb) (Kb) (Kb) (genes)
| 445 534 183 136 [20-1029] [2-17] 246 16.5 10.2 80 [1.1-816]  [2-8]
Il 525 47.1 16.0 113 [1.0-111.9]  [2-24] 203 11.2 84 6.3 [16-519]  [2-8]
1} 442 54.1 18.1 14.5 [0.6-75.8] [2-20] 264 175 9.1 76 [1.1-33.0] [2-7]
v 525 436 16.6 124 [1.0-95.7] [2-20] 196 9.7 8.7 6.9 [1.1-46.7]  [2-7]
\" 690 433 152 9.0 [09-201.2] [2-42] 154 56 76 56 [16-415]  [2-7]
X 431 654 324 234 [1.0-1682] [2-25] 57 2.1 6.5 6.2 [1.7-236]  [2-3]
Total 3,058 511 188 12.7 [06-201.2] [2-42] 1,120 9.8 88 6.8 [1.1-816]  [2-8]

Contribution of operons to perfect synteny blocks
According to WormBase annotation (release WS180),
there are 1,120 operons in C. elegans, ranging in size from
two to eight genes (Table 4). Previous comparative studies
have concluded that these operons are highly conserved
between C. elegans and its sister species C. briggsae, with
the vast majority of the operons (96% [19] and 93.2% [24])
conserved between these two species. What is the contri-
bution of operons to the perfect synteny blocks identified
between these two species? In order to address this ques-
tion, we have examined the contribution of operons to
perfectly conserved synteny blocks (Table 4, Figure 4).
Our analysis suggests that operons constitute an insignifi-
cant part of the perfect synteny blocks.

First, the portion of the C. elegans genome covered by
the 1,120 annotated operons (9.8%) is dramatically smal-
ler than that covered by the 3,058 perfect synteny blocks
identified in this study (as shown above, 51.1% genomic
coverage). More recent studies have shown that operons
are not as conserved as previously reported and that
there is a greater turnover of operon composition
among Caenorhabditis species [25,26], suggesting that
the contribution of operons to the perfect synteny
blocks between C. elegans and C. briggsae is even lower.

Second, if we define an operonic synteny block as a
perfect synteny block with at least half of its genes

being conserved operons, we find 385 such operonic
synteny blocks (Figure 4). These operonic syntenic
blocks contain 498 operons (or 44.5% of the total oper-
ons). These 385 operonic synteny blocks cover only
7.4% of the C. elegans genome, still much smaller than
the 51.1% of the C. elegans genome covered by all per-
fect synteny blocks.

Third, the limited contribution of operons to the
observed synteny is further illustrated by the low cover-
age of the X Chromosome by operons (2.1%, 57 oper-
ons) in C. elegans, which is the chromosome that is
most covered by perfect synteny blocks (65.4%, 431 per-
fect synteny blocks) between C. elegans and C. briggsae
(Table 4).

Imperfect synteny blocks

During evolution, genome sequences are often inter-
rupted by small genome rearrangement events such as
insertions, deletions, inversions and duplications. It has
been suggested that small inversions and transpositions
can be regarded as noise in genome rearrangements
[27]. Identification of imperfect synteny blocks is valu-
able because they provide a global view of the existing
synteny between different species for regions that have
been subject to various types of rearrangement events.
To detect such synteny blocks, we ran OrthoCluster by
allowing mismatches (see methods) as well as by

Table 5 Distribution of perfect synteny blocks between C. elegans chromosomes (rows) and C. briggsae chromosomes

(columns)

Chromosome Chrl Chrll Chrlll Chrlv Chrv ChrX ChrUn Total Non-homologous
1 325 (89) 9 (0) 0(0) 3 (0) 2 (0) 0 17 445 14

I 13 (0) 370 (40) 1Q) 28 (1) 37 (2) 3 28 525 87

1] 3(0) 13 (0) 364 (14) 7 (0) 18 (0) 0 23 442 41

v 13 (3) 8 (9) 2.(1) 423 (12) 22 (3) 10 19 525 71

Vv 17 (0) 3( 1(0) 41 (0) 520 (72) 4 31 690 67

X 0 (0) 2 (0) 0 (0) 0 (0) 6 (0) 417 6 431 8

Total 371 (92) 405 (50) 368 (17) 502 (13) 605 (77) 434 124 3,058 288
Non-homologous 46 (3) 35 (10) 4 (3) 79 (1) 85 (5) 17 N.A. 288

Numbers in parenthesis correspond to the number of synteny blocks found in the

colleagues [21].

“_random” assembly of the chromosome, as reported by Hillier and
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relaxing the constraints of order and strandedness of the
genes within the blocks. In general, relaxing the con-
straints regarding gene order, strandedness and mis-
matches generates larger and fewer synteny blocks when
compared to the perfect synteny blocks. In contrast to
relaxing the number of mismatches, relaxing the con-
straints of order and strandedness within blocks alone
has only a weak impact on block size distribution, sug-
gesting that insertions/deletions and long-range transpo-
sition events are much more common than inversion
and short-range transposition events. One example of a
larger synteny block found when relaxing only order
and strandedness constraints is one with 9 genes in
Chromosome III of the C. elegans genome (Figure 5).
This synteny block was split into two smaller ones when
OrthoCluster was applied for detecting perfect synteny
blocks. These two blocks, one of size 5 and the other 3,
are separated by one in-map gene (F54G8.1) whose
ortholog (CBG50416) is inverted with respect to the
neighboring genes, hence disrupting the perfect conser-
vation of strandedness.

Allowing either in-map or out-map mismatches leads
to the identification of larger synteny blocks because
neighboring perfect synteny blocks start to merge. For
example, using the improved annotation, when the per-
centage of both the in-map and the out-map mis-
matches are set to 5%, the largest block contains 71
genes (Figure 6a and 6b) (mean = 20.2 kb, median =
12.4 kb), compared to 42 genes identified as the largest
block when no mismatches are allowed (Figure 1a; Fig-
ure 4). When these mismatch percentages are increased
to 10% and 20%, the largest block contains 209 genes
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(mean = 26,7 kb, median = 12.0 kb) and 838 genes
(mean = 45.1 kb, median = 14.1 kb), respectively. When
we ran OrthoCluster by allowing a maximum of 50% in-
map mismatch and 50% out-map mismatch within each
synteny block, we found 80.8% of the genomic sequence
of C. elegans being syntenic to 78.3% of the C. briggsae
genomic sequence. As illustrated in Figure 6c, allowing
more mismatches leads to merging of unrelated blocks
because the genomic coverage increases sharply for mis-
match percentages above this point. Also, for values lar-
ger than 50%, the number of synteny blocks decreases
dramatically, mostly due the inclusion of in-map mis-
matches from unrelated regions of the genome (Addi-
tional file 7, Figure S4). At this setting, the median
length of the synteny blocks found with this set of para-
meters is 15.6 kb (mean = 63.6 kb) (Figure 7). Again,
the imperfect synteny blocks are not evenly distributed
in the genomes. The mean size of imperfect synteny
blocks is 53.6 kb (median = 15.7 kb) for autosomal syn-
teny blocks, while 217.6 kb (median = 13.8 kb) for
Chromosome X. This extremely large mean for the X
chromosome compared to its median reflects that the
size distribution of synteny blocks in the X chromosome
is positively skewed (i.e., there are few very large synteny
blocks). Within autosomes, again we don’t observe a sig-
nificant difference between centers and arms (p-value =
0.42, Mann-Whitney Test), with the median length of
autosomal centers being 15.3 kb (mean = 62.1 kb),
whereas the median length of autosomal arms is 16.6 kb
(mean = 45.4 kb). This is in agreement with a previous
report [5]. The largest synteny block spans 6.14 Mb on
Chromosome X of C. elegans, between 1.68 Mb and
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7.82 Mb. Altogether, there are 11 synteny blocks that

are larger than 1 Mb between these two genomes. They
9 are distributed across all chromosomes of C. elegans
Alignment except Chromosome I and III. These 11 largest synteny
< blocks add up to 26 Mb. These large synteny blocks are
° unlikely to be found by chance under a random break-
age model, even after correcting for multiple testing
> 3 OrthoCluster (data not shown) [28]. There are altogether 161 synteny
§ blocks that are larger than 100 Kb, which add up to 66
° o Mb in size, strongly suggesting that C. elegans and
°© C. briggsae genomes share large synteny blocks. As
_ shown in Figure 7, synteny blocks identified here are
S 7] significantly larger that those identified using an align-

ment-based approach [19].

2
' ' ' ' ' ' ' Discussion

6 8 10 12 1 16 18 In this work we applied our newly developed tool,
Synteny Block Size ( log [bp] ) OrthoCluster, for the detection of synteny blocks
Figure 7 Size distribution of synteny blocks between C. elegans between the genome of C. elegans and the newly recon-
and C. briggsae. The red curve represents synteny blocks identified structed C. briggsae genome. This anchor-based program
using OrthoCluster (ip = 50%; op = 50%), while the black curve has a number of features that makes it useful for identify-
|_fepresents synteny blocks reported previously [19]. J  ing synteny blocks. In addition to identifying mismatches
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within syntenic regions, it takes into consideration one-
to-many orthologous relationships at the moment of
identifying synteny blocks. It is also sensitive to gene
strandedness. More importantly, OrthoCluster works
with multiple genomes so that users can explore synteny
among the expanding number of sequenced genomes.
Now that the genomes of three additional Caenorhabditis
species (C. remanei, C. japonica, and C. brenneri) have
been sequenced, we are eager to apply OrthoCluster to
identify and analyze synteny relationships among these
genomes. The appropriate handling of these types of fea-
tures enables users to detect genome rearrangement
events such as insertions, deletions, duplications, inver-
sions, and reciprocal translocations. Furthermore,
OrthoCluster can be used for the detection of segmental
duplications within a single genome [15]. Since
OrthoCluster is an anchor-based program, correct anno-
tation of the genetic markers coordinates used as anchors
is an essential condition for the accurate estimation of
synteny. Taken together, OrthoCluster is a flexible tool
for the detection of synteny blocks among species of dif-
ferent evolutionary distance.

We have demonstrated that syntenic information is
useful for the improvement of defective gene models
and detection of potential new genes and missing ortho-
logous relationships. In this attempt, we have identified
582 new gene models (Table 1) in C. briggsae and 52
candidate new gene models in C. elegans. These
improved annotations enabled us to identify 949 new
orthologous relationships. Some of the new gene models
that we have identified were independently detected by
WormBase curators. For example, gene C10A4.10 was
absent in WormBase release WS180, but was later
curated and released in WS190. This gene was detected
also with our procedure (Additional file 8, Figure S5).

The improved genome annotations and orthologous
relationships have helped the synteny block analysis
since larger synteny blocks are found in contrast to
those obtained with WS180 annotations (Figure 1).
Also, some conserved operon structures are restored
with the improved annotations (Additional file 9, Figure
S6). This methodology will be applied for improving the
annotation of the newly sequenced genomes of C. rema-
nei, C. brenneri, and C. japonica.

Hillier and colleagues constructed the first chromoso-
mal level assembly of C. briggsae [21]. Taking advantage
of OrthoCluster and this newly constructed C. briggsae
assembly, we found that 80.8% of the C. elegans genome
(and correspondingly 78.3% of the C. briggsae genome)
is covered by synteny blocks that contain at least two
genes. The amount of genome coverage by synteny
blocks is consistent with a previous report [19]. Includ-
ing “synteny blocks” composed of a single gene (in-map
genes) only slightly increases the coverage of the C.
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elegans genome to 84.4% (corresponding to 81.9% of the
C. briggsae). This coverage is also in excellent agreement
with the work of Stein and colleagues (84.6% for C. ele-
gans and 80.8% for C. briggsae) [19]. Thus, the conserva-
tion observed between the C. elegans and C. briggsae
genomes is accounted for largely by synteny blocks that
contain two or more genes. However, the synteny blocks
discovered between C. elegans and C. briggsae using
OrthoCluster (median size of 15.6 kb, average size of
63.6 kb) are much larger than those identified by the
previous whole genome analysis (median size of 5.6 kb,
average size of 37.5 kb).

Conclusions

Taken together, we have demonstrated that OrthoClus-
ter can be used to accurately identify synteny blocks.
Additionally, we have found that synteny blocks between
C. elegans and C. briggsae are almost three-folds larger
than previously identified.

Methods

OrthoCluster

OrthoCluster algorithm and development was described
previously [6]. Briefly, it uses an anchor-based approach to
effectively search for synteny blocks between two or more
genomes given parameters for controlling synteny block
size, mismatches within synteny blocks as well as preserva-
tion of order and strandedness (Additional file 10, Figure
S7). Since OrthoCluster takes into consideration both
order and strandedness of genes, it is useful for the detec-
tion of inversions and other genome rearrangement
events. In addition to identifying perfect synteny blocks
(that contain no mismatches and preserve gene order and
strandedness), it can be applied to identify imperfect syn-
teny blocks with various levels of mismatches. OrthoClus-
ter needs two types of input files (Additional file 11,
Figure S8): a genome file and a correspondence file. A
genome file contains genetic markers (which could be
annotated genes) with information regarding chromo-
some/supercontig names, start and end positions, as well
as the strand in which each genetic marker resides. A cor-
respondence file provides orthologous relationships
between two (for pair-wise analysis) or more genomes (for
multiple-genomes analysis). Genetic markers that are not
included in the correspondence file are called out-map
genetic markers (in this paper, “genes” and “genetic mar-
kers” are used interchangeably). In contrast, genetic mar-
kers that are part of the correspondence file are called in-
map genetic markers. A synteny block can be non-nested
or nested (Additional file 12, Figure S9) with nested block
defined as one that is contained within a larger block. A
nested synteny results from a segmental duplication of a
portion of a larger synteny block in one genome (Addi-
tional file 12, Figure S9d).
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Data Sources

Genome annotations of C. elegans and C. briggsae were
obtained from WormBase http://www.wormbase.org/
[17], release WS180. Since some genes produces multi-
ple alternative isoforms and all of these isoforms repre-
sent one gene (locus), we used the longest isoform to
represent a gene.

Correspondence file preparation

To generate the correspondence file required by
OrthoCluster, we assigned orthologous relationships
between different genomes using InParanoid [22,29]
with default settings. InParanoid has been evaluated to
be one of the best performing methods for orthology
detection [29]. Ortholog assignment between C. elegans
and C. briggsae is further improved based on gene
model improvement, sequence similarity, and synteny
when applying our gene model improvement procedure.
A correspondence file contains both one-to-one and
one-to-many relationships.

Synteny based gene model improvement and ortholog
assignment

As illustrated in Figure 8, we first identified imperfect syn-
teny blocks that contain out-map mismatch genes using
OrthoCluster. Out-map mismatches, which usually indi-
cate genome-specific genes, can also indicate these two
alternative possibilities: (1) the ortholog gene in the other

gl g2 o1l g3 g4 02 g5 o3 g6
C.elegans = =m—b tm— > — — > E— > E— —

A1

P @ e o @ T 3
QL LG L -

A2
\
o1

=
02

yﬁ\
=

’ 1 g2 g¥ g# pl g& 6
C. briggsae B

C. briggsae

. 1
C. briggsae S s e BE

\
| Length filter |
/ \

i i Hits Outmap Gene ! i Hits Intergenic/Intronic E
H Region H

Hits Inmap Gene

Figure 8 Synteny-based gene model improvement procedure.
First, out-map mismatches are identified in the synteny blocks.
Second, GeneWise is run to identify candidate genes using out-map
mismatches as queries and the corresponding syntenic region as
target. Third, predicted genes are examined and compared with
other genes in the synteny blocks (proteins encoded by the
predicted genes are at least 60% as long as their corresponding
query proteins).
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genome has not been found, and (2) the corresponding
gene model is defective in a way the orthologous relation-
ship can’t be established by orthology detection programs.
Synteny information helps narrow down genomic regions
that contain these missing or defective orthologous genes
and improve defective gene models. Once we identified
mismatches in synteny blocks, we attempted to identify
missing/defective gene models using the homology-based
gene prediction method GeneWise [30,31]. When we ran
OrthoCluster by allowing up to 20 out-map mismatches
per synteny block, we found 2,650 imperfect synteny
blocks, 2,389 of which are non-nested blocks and 261 are
nested ones. Of the 1,886 out-map mismatch genes within
synteny blocks in the C. elegans genome, 695 C. elegans
genes generated GeneWise predictions in C. briggsae that
satisfy the filtration criteria described below (Additional
file 13). We only consider predictions that cover at least
60% of the length of the query proteins with no internal
stop codons. We identified 771 GeneWise predictions in
C. briggsae genome. Note that some out-map mismatch
genes generate more than one valid prediction (paralogs)
within the corresponding synteny block. Applying the
same strategy, we identified 702 GeneWise predictions in
C. elegans. Depending on which location of the synteny
block the prediction hits, each of the predictions can be
categorized accordingly. There are two possibilities. First,
the predicted gene overlaps with an intergenic or intronic
region. In this case, we take the predicted gene as a new
candidate gene. Second, the predicted gene overlaps with
one or more existing genes within the corresponding syn-
teny block (Additional file 14, Figure S10).

We also assigned new orthologous relationships using
synteny information and similarity (blast alignment
scores). To achieve this, we compared the out-map
genes with the new gene models and calculate their per-
centage identity (PID). We accept a new pair of ortho-
logs if the PID between them is greater than or equal to
40% and the e-value is less or equal than le-10. The
revised orthologous relationships were then incorpo-
rated into the InParanoid-driven orthologous
relationships.

Additional material

Additional file 1: new gene models for C. elegans. ¢ff3 file with the
structure of all new genes in C. elegans.

Additional file 2: new genome annotation for C. briggsae. ¢ff3 file
with the structure of all genes in the new genome annotation for C.
briggsae New genes start with ID CBG5XXXX.

Additional file 3: Figure S1 genome view of the perfect synteny
blocks between C. elegans and C. briggsae. Each chromosome in C.
elegans has a distinctive color. The corresponding synteny blocks in C.
briggsae can be mapped to the reference chromosome according to the
color. This image was created using OrthoClusterDB http://genome.sfu.
ca/orthoclusterdby/.
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BackgroundThe conservation of large scale genomic sequences across two or more genomes --synteny blocks-- is of primary interest because their identification sets up a stage for identifying and characterizing sequence and functional differences among genomes 1. The term synteny has been used in different contexts in the past. Originally, synteny was used to indicate the colocalization of different genes in corresponding chromosomes of different species (a.k.a. �chromosomal synteny�) 2. Recently, with the availability of thousands of sequenced genomes, synteny has been used to describe the conservation of co-localized genes in the same order within different genomes (a.k.a �conserved segment�). In some occasions, the term �conserved synteny� has been used to refer a genomic region in which the chromosomal location of multiple markers is conserved, but not necessarily their precise order 3. The term �synteny block� 4 has been defined previously as a segment in one genome that can be converted, through genome rearrangements, into a conserved segment in another genome. As such, a synteny block does not necessarily represent areas of perfectly continuous similarity between genomes. In this paper, we use the term �perfect synteny block� as �a genomic region of perfectly conserved gene content, order and strandedness�, as defined by Coghlan and Wolfe 5. As an extension to this definition, we use �imperfect synteny block� as �a genomic region containing some level of interruption, and in which order and strandedness is not necessarily conserved� 6.In the past decade, different methods have been proposed to identify synteny blocks 789101112. However, these methods usually lack one or more of the following functionalities required for detailed analysis: (1) Comparing more than two genomes, (2) Allowing interruptions within synteny blocks; (3) Capturing the strandedness of genes; and (4) Addressing one-to-many orthologous relationships. Failure to provide these functionalities makes these programs inapplicable for the identification of genome rearrangement events such as inversions, insertions, reciprocal translocations and segmental duplications. To tackle these problems, we have recently developed a new method called OrthoCluster, a computer program for the systematic detection of synteny blocks between two or among multiple genomes 6. Briefly, OrthoCluster takes as input genetic markers (such as genes and microsatellites) and their relationships (such as orthologous relationships) and scans through two or more genomes for synteny blocks. OrthoCluster distinguishes genetic markers as either in-map or out-map. A genetic marker in one genome is called in-map if it has orthologous genetic markers in all corresponding genomes. In contrast, a genetic marker in one genome is called out-map if it does not have orthologous genetic markers in corresponding genomes.To facilitate the application of OrthoCluster, we have recently developed a web server called OrthoClusterDB 13. Additionally, a book chapter describing its usage and application has been published 14. In addition to its use in identifying synteny blocks, OrthoCluster can be applied to identify segmental duplications within a genome 15.C. elegans is a free living soil-dwelling hermaphrodite nematode and a popular model organism for biomedical studies because of its small size, transparent body, short life cycle, ease of propagation and compact genome. C.�elegans was also the first multicellular organism subject to whole genome sequencing 16, and the genome sequence of this species has been declared to be complete, with no remaining gaps in 2002. After more than a decade of annotation after its first publication, the genome of C. elegans is arguably the best annotated of a multicellular organism to date 1718. The sequencing of its sister species Caenorhabditis briggsae, also a hermaphrodite, sets up an excellent platform for comparative genomic analysis 519. Recently, by applying OrthoCluster, we have identified segmental duplications in the nematode Caenorhabditis elegans genome, including a large duplication that is polymorphic among C.�elegans laboratory N2 strains 15. In this project, we applied OrthoCluster to identify synteny blocks between C. elegans and its sister species Caenorhabditis briggsae, whose genome was sequenced a few years ago 19.Synteny block identification and characterization is critical for understanding genome structure and functional domains of genomes. Synteny between C. elegans and C. briggsae was first explored when the first sequenced reads of C. briggsae became available. Using their program WABA (for �Wobble Aware Bulk Alignment�) 20, Kent and colleagues compared the whole genome sequence of C. elegans and 8 Mb of C. briggsae sequences (in 229 cosmids) and found that 59% of these genomes are homologous at the base level, while 41% of the genome sequences are found in nonalignable regions. Using these alignments, they estimated the synteny relationship between C. elegans and C. briggsae and found that ~40% of the genome is resistant to rearrangements. Later, using a gene-based approach, Coghlan and colleagues examined the slightly larger set of sequences (12.9 Mb of C. briggsae genome) for synteny blocks and genome rearrangement events 5 and found many perfect synteny blocks. They also identified larger imperfect synteny blocks between these two genomes with an average size of 53 kb. The completion of the C.�briggsae genome sequencing project enabled the C.�briggsae genome analysis group to compare C. elegans and C. briggsae at the whole genome scale at the supercontig level 19. To identify regions of colinearity, the program WABA 20 was used to produce base level alignments, followed by merging of adjacent blocks and bridging of small transpositions and inversions. Eventually, 4,837 alignments were obtained that cover 84.6% of the C. elegans genome, with a median length of 5.6 kb (mean = 37.5 kb) 19. The average size is smaller than that obtained using gene-based analysis reported previously 5. Recently, a chromosomal-level assembly of the C. briggsae genome 21 has been constructed, which can be utilized to facilitate synteny identification and analysis. Here, taking advantage of this new assembly and our newly developed program OrthoCluster, we revisit and reanalyze synteny blocks between these two genomes.ResultsInitial comparison between C. elegans and C. briggsae genomesUsing the C. elegans genome annotation in WormBase release WS180 17, the genome assembly and annotation of C. briggsae 21 (from the same release), and the correspondence file generated using InParanoid 22, we detected 3,075 perfect synteny blocks between the genomes of C. elegans and C. briggsae using OrthoCluster. These blocks range in size from 2 to 28 genes (961 bp to 168.2 kb, Figure 1b). Examination of these synteny blocks, including the gene models contained within these blocks, immediately suggests that many gene models (primarily the C. briggsae ones) are defective, which leads to the unnecessary truncation of large synteny blocks. One example of such case is shown in Figure 2, which illustrates two genomic regions in C. elegans and C. briggsae that are nearly perfectly conserved with the exception of one gene in C. elegans, B0240.4, which breaks the synteny. Based on the current WormBase annotation (WS180), this gene does not have a clear ortholog in C. briggsae. Examination of the alignment of genes B0240.4 and B0240.2 in C. elegans and gene CBG23278 in C. briggsae (which is the predicted ortholog of B0240.2) suggests that the predicted C. briggsae gene is defective. Indeed, the current gene model of CBG23278 can be split into two separate genes, one orthologous to B0240.4 and the other orthologous to B0240.2. Experimental validation based on PCR reactions that prove the existence of the two genes and the non-existence of the junction on a cDNA library for C.�elegans suggests that these are two separate genes (data not shown). Fixing cases like this will uncover many more bona fide orthologous relationships between C. elegans and C. briggsae.Synteny-based gene model correction and ortholog assignmentWe developed a procedure (described in detail in Methods) in order to detect and correct defective gene models at the whole genome scale. Altogether, we identified 52 putative new genes in C. elegans (Table 1, Additional file 1). In contrast, in C. briggsae, we have generated 582 revised gene models, 191 of which correspond to novel gene structures in previously defined intronic or intergenic regions (Table 1, Additional file 2). Most deletions and additions were due to gene splits and gene merges (Figure 3). We assigned new orthologous relationships based on sequence similarity revealed by the improved gene annotation and synteny, which leads to the assignment of 949 new orthologous relationships (Table 2).Genome-wide identification and analysis of synteny blocksOrthologous relationshipsBased on the improved orthologous relationships (see Methods), the majority of the orthologous relationships between C. elegans and C. briggsae are one-to-one relationships (Table 3), with only 7.9% of the C. elegans genes with orthologous relationships (or 5.8% of the total genes in the improved annotation of C. elegans) having more than one ortholog in C. briggsae, ranging from 2 to 147 orthologs. Likewise, 8.3% of the C. briggsae genes with orthologous relationships (or 6.2% of the total genes in the improved annotation of C. briggsae) have more than one ortholog in C. elegans, ranging from 2 to 24 orthologs. One-to-one orthologous relationships exist mainly between homologous chromosomes of C. elegans and C. briggsae (Table 3), demonstrating strong chromosomal synteny, in good agreement with previous studies 21.Perfect synteny blocksUsing OrthoCluster and the improved genome annotations, we identified 3,058 perfect synteny blocks (each synteny block contains at least two genes and no mismatches). Of these blocks, 2,687 are non-nested, whereas 371 are nested within larger synteny blocks. A�nested synteny block corresponds to a subset of genes within a larger synteny block that is found duplicated in different genomic regions in either the same or different chromosomes. The largest perfect synteny block between the genomes of C. elegans and C. briggsae contains 42 genes (Figure 1a, Figure 4) and spans a 201.2 kb genomic segment in Chromosome V of C. elegans, corresponding to a 202.5 kb segment in Chromosome V of C. briggsae (Figure 1c). The mean size of these perfect synteny blocks span 18.8 kb, while the median size is 12.7 kb. Altogether, the perfect synteny blocks cover 11,058 genes in C. elegans (51.3 Mb, or 51.1% of the C.�elegans genomic sequence) and 10,879 genes in C. briggsae (49.5 Mb, or 45.6% of the C. briggsae genomic sequence) (Table 4). Genome-wide view of synteny blocks can be generated using OrthoClusterDB 13 (Additional file 3, Figure S1). Most (2,770, or 90.6%) of the synteny blocks in C. briggsae are conserved within the homologous C. elegans chromosome thus showing strong chromosomal synteny (Table 5). Among the 288 synteny blocks (out of the 3,058 perfect blocks) in C. elegans that are mapped to a non-homologous chromosome in C. briggsae, 78.2% are located in Chromosomes II, IV and V of C. elegans and 72.9% are located in Chromosomes I, IV and V of C. briggsae.Perfect synteny blocks of different sizes are not evenly distributed in all chromosomes. Our results indicate that perfect synteny blocks on Chromosome X are significantly larger than those on the autosomal ones. The median length of perfect blocks within autosomal chromosomes is 11.8 kb (mean = 16.7 kb), whereas the median length of these type of blocks within Chromosome X is 23.4 kb (mean = 32.4 kb), more than two-folds larger (p <0.01, Mann-Whitney U test). This observation is consistent with previously reported observations 1921, suggesting that Chromosome X is subject to fewer rearrangement events. Alternatively, most rearrangements occurring in Chromosome X are lethal and are therefore not preserved in evolution. Taking the definition of clusters and arms provided by Hillier and colleagues, we find that, within autosomes, the median length of perfect synteny blocks in autosomal centers is 11.6 kb (mean = 16.6 kb), whereas the median length of perfect synteny blocks in autosomal arms is 12.2 kb (mean = 16.9 kb). This difference is not statistically significant (p-value = 0.15, Mann-Whitney Test). Among all six chromosomes, the one with the highest genomic coverage is Chromosome X (65.4%). Chromosome V, which is the largest chromosome in C. elegans, also contains the largest number of blocks (22.6%).Species-specific gene family expansions/contractions were observed previously and many gene family members have been found to form tandem clusters in C. elegans and C. briggsae 1923, which is consistent to our recent observation that the C. elegans genome harbors a large number of intrachromosomal duplications, many of which occur in tandem 15. In this project, we have demonstrated that members of a same gene family can form tandem clusters within synteny blocks identified using OrthoCluster. We found 534 such cases, in which 424 contain more genes in C. elegans while 110 have more genes in C. briggsae within these tandem gene clusters. One example of this is a syntenic region that has a higher presence of members of the GST (glutathione-S-transferase) family of genes in C. elegans than in C. briggsae (Additional file 4, Figure S2). Further exploration of these regions is required to unveil the mechanisms underlying the expansion/contraction of these genes.Our gene model improvement has greatly enhanced our ability to identify larger synteny blocks. When we use the WS180 annotation (before gene model improvement) for the detection of perfect synteny blocks, we found more (3,075) but smaller blocks (Figure 1a, b; Additional file 5, Figure S3; Additional file 6) compared to those described above. For example, the largest synteny block contains 42 genes using the improved annotation, but only 28 genes if we use the WS180 annotation. In fact, the 28 genes are a subset of the synteny block composed of 42 genes detected using the improved annotation. Compared to the WS180 annotation, the improved annotations increase the coverage of the chromosomes (Additional file 6).Contribution of operons to perfect synteny blocksAccording to WormBase annotation (release WS180), there are 1,120 operons in C. elegans, ranging in size from two to eight genes (Table 4). Previous comparative studies have concluded that these operons are highly conserved between C. elegans and its sister species C. briggsae, with the vast majority of the operons (96% 19 and 93.2% 24) conserved between these two species. What is the contribution of operons to the perfect synteny blocks identified between these two species? In order to address this question, we have examined the contribution of operons to perfectly conserved synteny blocks (Table 4, Figure 4). Our analysis suggests that operons constitute an insignificant part of the perfect synteny blocks.First, the portion of the C. elegans genome covered by the 1,120 annotated operons (9.8%) is dramatically smaller than that covered by the 3,058 perfect synteny blocks identified in this study (as shown above, 51.1% genomic coverage). More recent studies have shown that operons are not as conserved as previously reported and that there is a greater turnover of operon composition among Caenorhabditis species 2526, suggesting that the contribution of operons to the perfect synteny blocks between C. elegans and C. briggsae is even lower.Second, if we define an operonic synteny block as a perfect synteny block with at least half of its genes being conserved operons, we find 385 such operonic synteny blocks (Figure 4). These operonic syntenic blocks contain 498 operons (or 44.5% of the total operons). These 385 operonic synteny blocks cover only 7.4% of the C. elegans genome, still much smaller than the 51.1% of the C. elegans genome covered by all perfect synteny blocks.Third, the limited contribution of operons to the observed synteny is further illustrated by the low coverage of the X Chromosome by operons (2.1%, 57 operons) in C. elegans, which is the chromosome that is most covered by perfect synteny blocks (65.4%, 431 perfect synteny blocks) between C. elegans and C. briggsae (Table 4).Imperfect synteny blocksDuring evolution, genome sequences are often interrupted by small genome rearrangement events such as insertions, deletions, inversions and duplications. It has been suggested that small inversions and transpositions can be regarded as noise in genome rearrangements 27. Identification of imperfect synteny blocks is valuable because they provide a global view of the existing synteny between different species for regions that have been subject to various types of rearrangement events. To detect such synteny blocks, we ran OrthoCluster by allowing mismatches (see methods) as well as by relaxing the constraints of order and strandedness of the genes within the blocks. In general, relaxing the constraints regarding gene order, strandedness and mismatches generates larger and fewer synteny blocks when compared to the perfect synteny blocks. In contrast to relaxing the number of mismatches, relaxing the constraints of order and strandedness within blocks alone has only a weak impact on block size distribution, suggesting that insertions/deletions and long-range transposition events are much more common than inversion and short-range transposition events. One example of a larger synteny block found when relaxing only order and strandedness constraints is one with 9 genes in Chromosome III of the C. elegans genome (Figure 5). This synteny block was split into two smaller ones when OrthoCluster was applied for detecting perfect synteny blocks. These two blocks, one of size 5 and the other 3, are separated by one in-map gene (F54G8.1) whose ortholog (CBG50416) is inverted with respect to the neighboring genes, hence disrupting the perfect conservation of strandedness.Allowing either in-map or out-map mismatches leads to the identification of larger synteny blocks because neighboring perfect synteny blocks start to merge. For example, using the improved annotation, when the percentage of both the in-map and the out-map mismatches are set to 5%, the largest block contains 71 genes (Figure 6a and 6b) (mean = 20.2 kb, median = 12.4 kb), compared to 42 genes identified as the largest block when no mismatches are allowed (Figure 1a; Figure 4). When these mismatch percentages are increased to 10% and 20%, the largest block contains 209 genes (mean = 26,7 kb, median = 12.0 kb) and 838 genes (mean = 45.1 kb, median = 14.1 kb), respectively. When we ran OrthoCluster by allowing a maximum of 50% in-map mismatch and 50% out-map mismatch within each synteny block, we found 80.8% of the genomic sequence of C. elegans being syntenic to 78.3% of the C. briggsae genomic sequence. As illustrated in Figure 6c, allowing more mismatches leads to merging of unrelated blocks because the genomic coverage increases sharply for mismatch percentages above this point. Also, for values larger than 50%, the number of synteny blocks decreases dramatically, mostly due the inclusion of in-map mismatches from unrelated regions of the genome (Additional file 7, Figure S4). At this setting, the median length of the synteny blocks found with this set of parameters is 15.6 kb (mean = 63.6 kb) (Figure 7). Again, the imperfect synteny blocks are not evenly distributed in the genomes. The mean size of imperfect synteny blocks is 53.6 kb (median = 15.7 kb) for autosomal synteny blocks, while 217.6 kb (median = 13.8 kb) for Chromosome X. This extremely large mean for the X chromosome compared to its median reflects that the size distribution of synteny blocks in the X chromosome is positively skewed (i.e., there are few very large synteny blocks). Within autosomes, again we don�t observe a significant difference between centers and arms (p-value = 0.42, Mann-Whitney Test), with the median length of autosomal centers being 15.3 kb (mean = 62.1 kb), whereas the median length of autosomal arms is 16.6 kb (mean = 45.4 kb). This is in agreement with a previous report 5. The largest synteny block spans 6.14 Mb on Chromosome X of C. elegans, between 1.68 Mb and 7.82 Mb. Altogether, there are 11 synteny blocks that are larger than 1 Mb between these two genomes. They are distributed across all chromosomes of C. elegans except Chromosome I and III. These 11 largest synteny blocks add up to 26 Mb. These large synteny blocks are unlikely to be found by chance under a random breakage model, even after correcting for multiple testing (data not shown) 28. There are altogether 161 synteny blocks that are larger than 100 Kb, which add up to 66 Mb in size, strongly suggesting that C. elegans and C.�briggsae genomes share large synteny blocks. As shown in Figure 7, synteny blocks identified here are significantly larger that those identified using an alignment-based approach 19.DiscussionIn this work we applied our newly developed tool, OrthoCluster, for the detection of synteny blocks between the genome of C. elegans and the newly reconstructed C. briggsae genome. This anchor-based program has a number of features that makes it useful for identifying synteny blocks. In addition to identifying mismatches within syntenic regions, it takes into consideration one-to-many orthologous relationships at the moment of identifying synteny blocks. It is also sensitive to gene strandedness. More importantly, OrthoCluster works with multiple genomes so that users can explore synteny among the expanding number of sequenced genomes. Now that the genomes of three additional Caenorhabditis species (C. remanei, C. japonica, and C. brenneri) have been sequenced, we are eager to apply OrthoCluster to identify and analyze synteny relationships among these genomes. The appropriate handling of these types of features enables users to detect genome rearrangement events such as insertions, deletions, duplications, inversions, and reciprocal translocations. Furthermore, OrthoCluster can be used for the detection of segmental duplications within a single genome 15. Since OrthoCluster is an anchor-based program, correct annotation of the genetic markers coordinates used as anchors is an essential condition for the accurate estimation of synteny. Taken together, OrthoCluster is a flexible tool for the detection of synteny blocks among species of different evolutionary distance.We have demonstrated that syntenic information is useful for the improvement of defective gene models and detection of potential new genes and missing orthologous relationships. In this attempt, we have identified 582 new gene models (Table 1) in C. briggsae and 52 candidate new gene models in C. elegans. These improved annotations enabled us to identify 949 new orthologous relationships. Some of the new gene models that we have identified were independently detected by WormBase curators. For example, gene C10A4.10 was absent in WormBase release WS180, but was later curated and released in WS190. This gene was detected also with our procedure (Additional file 8, Figure S5).The improved genome annotations and orthologous relationships have helped the synteny block analysis since larger synteny blocks are found in contrast to those obtained with WS180 annotations (Figure 1). Also, some conserved operon structures are restored with the improved annotations (Additional file 9, Figure S6). This methodology will be applied for improving the annotation of the newly sequenced genomes of C. remanei, C. brenneri, and C. japonica.Hillier and colleagues constructed the first chromosomal level assembly of C. briggsae 21. Taking advantage of OrthoCluster and this newly constructed C. briggsae assembly, we found that 80.8% of the C. elegans genome (and correspondingly 78.3% of the C. briggsae genome) is covered by synteny blocks that contain at least two genes. The amount of genome coverage by synteny blocks is consistent with a previous report 19. Including �synteny blocks� composed of a single gene (in-map genes) only slightly increases the coverage of the C. elegans genome to 84.4% (corresponding to 81.9% of the C. briggsae). This coverage is also in excellent agreement with the work of Stein and colleagues (84.6% for C. elegans and 80.8% for C. briggsae) 19. Thus, the conservation observed between the C. elegans and C. briggsae genomes is accounted for largely by synteny blocks that contain two or more genes. However, the synteny blocks discovered between C. elegans and C. briggsae using OrthoCluster (median size of 15.6 kb, average size of 63.6 kb) are much larger than those identified by the previous whole genome analysis (median size of 5.6 kb, average size of 37.5 kb).ConclusionsTaken together, we have demonstrated that OrthoCluster can be used to accurately identify synteny blocks. Additionally, we have found that synteny blocks between C. elegans and C. briggsae are almost three-folds larger than previously identified.MethodsOrthoClusterOrthoCluster algorithm and development was described previously 6. Briefly, it uses an anchor-based approach to effectively search for synteny blocks between two or more genomes given parameters for controlling synteny block size, mismatches within synteny blocks as well as preservation of order and strandedness (Additional file 10, Figure S7). Since OrthoCluster takes into consideration both order and strandedness of genes, it is useful for the detection of inversions and other genome rearrangement events. In addition to identifying perfect synteny blocks (that contain no mismatches and preserve gene order and strandedness), it can be applied to �identify imperfect synteny blocks with various levels of mismatches. OrthoCluster needs two types of input files (Additional file 11, Figure S8): a genome file and a �correspondence file. A genome file contains genetic markers (which could be annotated genes) with information regarding chromosome/supercontig names, start and end positions, as well as the strand in which each genetic marker resides. A correspondence file provides orthologous relationships between two (for pair-wise analysis) or more genomes (for multiple-genomes analysis). Genetic markers that are not included in the correspondence file are called out-map genetic markers (in this paper, �genes� and �genetic markers� are used interchangeably). In contrast, genetic markers that are part of the correspondence file are called in-map genetic markers. A synteny block can be non-nested or nested (Additional file 12, Figure S9) with nested block defined as one that is contained within a larger block. A nested synteny results from a segmental duplication of a portion of a larger synteny block in one genome (Additional file 12, Figure S9d).Data SourcesGenome annotations of C. elegans and C. briggsae were obtained from WormBase http://www.wormbase.org/17, release WS180. Since some genes produces multiple alternative isoforms and all of these isoforms represent one gene (locus), we used the longest isoform to represent a gene.Correspondence file preparationTo generate the correspondence file required by OrthoCluster, we assigned orthologous relationships between different genomes using InParanoid 2229 with default settings. InParanoid has been evaluated to be one of the best performing methods for orthology detection 29. Ortholog assignment between C. elegans and C. briggsae is further improved based on gene model improvement, sequence similarity, and synteny when applying our gene model improvement procedure. A correspondence file contains both one-to-one and one-to-many relationships.Synteny based gene model improvement and ortholog assignmentAs illustrated in Figure 8, we first identified imperfect synteny blocks that contain out-map mismatch genes using OrthoCluster. Out-map mismatches, which usually indicate genome-specific genes, can also indicate these two alternative possibilities: (1) the ortholog gene in the other genome has not been found, and (2) the corresponding gene model is defective in a way the orthologous relationship can�t be established by orthology detection programs. Synteny information helps narrow down genomic regions that contain these missing or defective orthologous genes and improve defective gene models. Once we identified mismatches in synteny blocks, we attempted to identify missing/defective gene models using the homology-based gene prediction method GeneWise 3031. When we ran OrthoCluster by allowing up to 20 out-map mismatches per synteny block, we found 2,650 imperfect synteny blocks, 2,389 of which are non-nested blocks and 261 are nested ones. Of the 1,886 out-map mismatch genes within synteny blocks in the C. elegans genome, 695 C. elegans genes generated GeneWise predictions in C. briggsae that satisfy the filtration criteria described below (Additional file 13). We only consider predictions that cover at least 60% of the length of the query proteins with no internal stop codons. We identified 771 GeneWise predictions in C. briggsae genome. Note that some out-map mismatch genes generate more than one valid prediction (paralogs) within the corresponding synteny block. Applying the same strategy, we identified 702 GeneWise predictions in C. elegans. Depending on which location of the synteny block the prediction hits, each of the predictions can be categorized accordingly. There are two possibilities. First, the predicted gene overlaps with an intergenic or intronic region. In this case, we take the predicted gene as a new candidate gene. Second, the predicted gene overlaps with one or more existing genes within the corresponding synteny block (Additional file 14, Figure S10).We also assigned new orthologous relationships using synteny information and similarity (blast alignment scores). To achieve this, we compared the out-map genes with the new gene models and calculate their percentage identity (PID). We accept a new pair of orthologs if the PID between them is greater than or equal to 40% and the e-value is less or equal than 1e-10. The revised orthologous relationships were then incorporated into the InParanoid-driven orthologous relationships.Authors� contributionsNC conceived of the study. IAV conducted the experiments and NC and IAV wrote the manuscript. All authors have read and approved the final manuscript.
BackgroundThe conservation of large scale genomic sequences across two or more genomes --synteny blocks-- is of primary interest because their identification sets up a stage for identifying and characterizing sequence and functional differences among genomes 1. The term synteny has been used in different contexts in the past. Originally, synteny was used to indicate the colocalization of different genes in corresponding chromosomes of different species (a.k.a. �chromosomal synteny�) 2. Recently, with the availability of thousands of sequenced genomes, synteny has been used to describe the conservation of co-localized genes in the same order within different genomes (a.k.a �conserved segment�). In some occasions, the term �conserved synteny� has been used to refer a genomic region in which the chromosomal location of multiple markers is conserved, but not necessarily their precise order 3. The term �synteny block� 4 has been defined previously as a segment in one genome that can be converted, through genome rearrangements, into a conserved segment in another genome. As such, a synteny block does not necessarily represent areas of perfectly continuous similarity between genomes. In this paper, we use the term �perfect synteny block� as �a genomic region of perfectly conserved gene content, order and strandedness�, as defined by Coghlan and Wolfe 5. As an extension to this definition, we use �imperfect synteny block� as �a genomic region containing some level of interruption, and in which order and strandedness is not necessarily conserved� 6.In the past decade, different methods have been proposed to identify synteny blocks 789101112. However, these methods usually lack one or more of the following functionalities required for detailed analysis: (1) Comparing more than two genomes, (2) Allowing interruptions within synteny blocks; (3) Capturing the strandedness of genes; and (4) Addressing one-to-many orthologous relationships. Failure to provide these functionalities makes these programs inapplicable for the identification of genome rearrangement events such as inversions, insertions, reciprocal translocations and segmental duplications. To tackle these problems, we have recently developed a new method called OrthoCluster, a computer program for the systematic detection of synteny blocks between two or among multiple genomes 6. Briefly, OrthoCluster takes as input genetic markers (such as genes and microsatellites) and their relationships (such as orthologous relationships) and scans through two or more genomes for synteny blocks. OrthoCluster distinguishes genetic markers as either in-map or out-map. A genetic marker in one genome is called in-map if it has orthologous genetic markers in all corresponding genomes. In contrast, a genetic marker in one genome is called out-map if it does not have orthologous genetic markers in corresponding genomes.To facilitate the application of OrthoCluster, we have recently developed a web server called OrthoClusterDB 13. Additionally, a book chapter describing its usage and application has been published 14. In addition to its use in identifying synteny blocks, OrthoCluster can be applied to identify segmental duplications within a genome 15.C. elegans is a free living soil-dwelling hermaphrodite nematode and a popular model organism for biomedical studies because of its small size, transparent body, short life cycle, ease of propagation and compact genome. C.�elegans was also the first multicellular organism subject to whole genome sequencing 16, and the genome sequence of this species has been declared to be complete, with no remaining gaps in 2002. After more than a decade of annotation after its first publication, the genome of C. elegans is arguably the best annotated of a multicellular organism to date 1718. The sequencing of its sister species Caenorhabditis briggsae, also a hermaphrodite, sets up an excellent platform for comparative genomic analysis 519. Recently, by applying OrthoCluster, we have identified segmental duplications in the nematode Caenorhabditis elegans genome, including a large duplication that is polymorphic among C.�elegans laboratory N2 strains 15. In this project, we applied OrthoCluster to identify synteny blocks between C. elegans and its sister species Caenorhabditis briggsae, whose genome was sequenced a few years ago 19.Synteny block identification and characterization is critical for understanding genome structure and functional domains of genomes. Synteny between C. elegans and C. briggsae was first explored when the first sequenced reads of C. briggsae became available. Using their program WABA (for �Wobble Aware Bulk Alignment�) 20, Kent and colleagues compared the whole genome sequence of C. elegans and 8 Mb of C. briggsae sequences (in 229 cosmids) and found that 59% of these genomes are homologous at the base level, while 41% of the genome sequences are found in nonalignable regions. Using these alignments, they estimated the synteny relationship between C. elegans and C. briggsae and found that ~40% of the genome is resistant to rearrangements. Later, using a gene-based approach, Coghlan and colleagues examined the slightly larger set of sequences (12.9 Mb of C. briggsae genome) for synteny blocks and genome rearrangement events 5 and found many perfect synteny blocks. They also identified larger imperfect synteny blocks between these two genomes with an average size of 53 kb. The completion of the C.�briggsae genome sequencing project enabled the C.�briggsae genome analysis group to compare C. elegans and C. briggsae at the whole genome scale at the supercontig level 19. To identify regions of colinearity, the program WABA 20 was used to produce base level alignments, followed by merging of adjacent blocks and bridging of small transpositions and inversions. Eventually, 4,837 alignments were obtained that cover 84.6% of the C. elegans genome, with a median length of 5.6 kb (mean = 37.5 kb) 19. The average size is smaller than that obtained using gene-based analysis reported previously 5. Recently, a chromosomal-level assembly of the C. briggsae genome 21 has been constructed, which can be utilized to facilitate synteny identification and analysis. Here, taking advantage of this new assembly and our newly developed program OrthoCluster, we revisit and reanalyze synteny blocks between these two genomes.ResultsInitial comparison between C. elegans and C. briggsae genomesUsing the C. elegans genome annotation in WormBase release WS180 17, the genome assembly and annotation of C. briggsae 21 (from the same release), and the correspondence file generated using InParanoid 22, we detected 3,075 perfect synteny blocks between the genomes of C. elegans and C. briggsae using OrthoCluster. These blocks range in size from 2 to 28 genes (961 bp to 168.2 kb, Figure 1b). Examination of these synteny blocks, including the gene models contained within these blocks, immediately suggests that many gene models (primarily the C. briggsae ones) are defective, which leads to the unnecessary truncation of large synteny blocks. One example of such case is shown in Figure 2, which illustrates two genomic regions in C. elegans and C. briggsae that are nearly perfectly conserved with the exception of one gene in C. elegans, B0240.4, which breaks the synteny. Based on the current WormBase annotation (WS180), this gene does not have a clear ortholog in C. briggsae. Examination of the alignment of genes B0240.4 and B0240.2 in C. elegans and gene CBG23278 in C. briggsae (which is the predicted ortholog of B0240.2) suggests that the predicted C. briggsae gene is defective. Indeed, the current gene model of CBG23278 can be split into two separate genes, one orthologous to B0240.4 and the other orthologous to B0240.2. Experimental validation based on PCR reactions that prove the existence of the two genes and the non-existence of the junction on a cDNA library for C.�elegans suggests that these are two separate genes (data not shown). Fixing cases like this will uncover many more bona fide orthologous relationships between C. elegans and C. briggsae.Synteny-based gene model correction and ortholog assignmentWe developed a procedure (described in detail in Methods) in order to detect and correct defective gene models at the whole genome scale. Altogether, we identified 52 putative new genes in C. elegans (Table 1, Additional file 1). In contrast, in C. briggsae, we have generated 582 revised gene models, 191 of which correspond to novel gene structures in previously defined intronic or intergenic regions (Table 1, Additional file 2). Most deletions and additions were due to gene splits and gene merges (Figure 3). We assigned new orthologous relationships based on sequence similarity revealed by the improved gene annotation and synteny, which leads to the assignment of 949 new orthologous relationships (Table 2).Genome-wide identification and analysis of synteny blocksOrthologous relationshipsBased on the improved orthologous relationships (see Methods), the majority of the orthologous relationships between C. elegans and C. briggsae are one-to-one relationships (Table 3), with only 7.9% of the C. elegans genes with orthologous relationships (or 5.8% of the total genes in the improved annotation of C. elegans) having more than one ortholog in C. briggsae, ranging from 2 to 147 orthologs. Likewise, 8.3% of the C. briggsae genes with orthologous relationships (or 6.2% of the total genes in the improved annotation of C. briggsae) have more than one ortholog in C. elegans, ranging from 2 to 24 orthologs. One-to-one orthologous relationships exist mainly between homologous chromosomes of C. elegans and C. briggsae (Table 3), demonstrating strong chromosomal synteny, in good agreement with previous studies 21.Perfect synteny blocksUsing OrthoCluster and the improved genome annotations, we identified 3,058 perfect synteny blocks (each synteny block contains at least two genes and no mismatches). Of these blocks, 2,687 are non-nested, whereas 371 are nested within larger synteny blocks. A�nested synteny block corresponds to a subset of genes within a larger synteny block that is found duplicated in different genomic regions in either the same or different chromosomes. The largest perfect synteny block between the genomes of C. elegans and C. briggsae contains 42 genes (Figure 1a, Figure 4) and spans a 201.2 kb genomic segment in Chromosome V of C. elegans, corresponding to a 202.5 kb segment in Chromosome V of C. briggsae (Figure 1c). The mean size of these perfect synteny blocks span 18.8 kb, while the median size is 12.7 kb. Altogether, the perfect synteny blocks cover 11,058 genes in C. elegans (51.3 Mb, or 51.1% of the C.�elegans genomic sequence) and 10,879 genes in C. briggsae (49.5 Mb, or 45.6% of the C. briggsae genomic sequence) (Table 4). Genome-wide view of synteny blocks can be generated using OrthoClusterDB 13 (Additional file 3, Figure S1). Most (2,770, or 90.6%) of the synteny blocks in C. briggsae are conserved within the homologous C. elegans chromosome thus showing strong chromosomal synteny (Table 5). Among the 288 synteny blocks (out of the 3,058 perfect blocks) in C. elegans that are mapped to a non-homologous chromosome in C. briggsae, 78.2% are located in Chromosomes II, IV and V of C. elegans and 72.9% are located in Chromosomes I, IV and V of C. briggsae.Perfect synteny blocks of different sizes are not evenly distributed in all chromosomes. Our results indicate that perfect synteny blocks on Chromosome X are significantly larger than those on the autosomal ones. The median length of perfect blocks within autosomal chromosomes is 11.8 kb (mean = 16.7 kb), whereas the median length of these type of blocks within Chromosome X is 23.4 kb (mean = 32.4 kb), more than two-folds larger (p <0.01, Mann-Whitney U test). This observation is consistent with previously reported observations 1921, suggesting that Chromosome X is subject to fewer rearrangement events. Alternatively, most rearrangements occurring in Chromosome X are lethal and are therefore not preserved in evolution. Taking the definition of clusters and arms provided by Hillier and colleagues, we find that, within autosomes, the median length of perfect synteny blocks in autosomal centers is 11.6 kb (mean = 16.6 kb), whereas the median length of perfect synteny blocks in autosomal arms is 12.2 kb (mean = 16.9 kb). This difference is not statistically significant (p-value = 0.15, Mann-Whitney Test). Among all six chromosomes, the one with the highest genomic coverage is Chromosome X (65.4%). Chromosome V, which is the largest chromosome in C. elegans, also contains the largest number of blocks (22.6%).Species-specific gene family expansions/contractions were observed previously and many gene family members have been found to form tandem clusters in C. elegans and C. briggsae 1923, which is consistent to our recent observation that the C. elegans genome harbors a large number of intrachromosomal duplications, many of which occur in tandem 15. In this project, we have demonstrated that members of a same gene family can form tandem clusters within synteny blocks identified using OrthoCluster. We found 534 such cases, in which 424 contain more genes in C. elegans while 110 have more genes in C. briggsae within these tandem gene clusters. One example of this is a syntenic region that has a higher presence of members of the GST (glutathione-S-transferase) family of genes in C. elegans than in C. briggsae (Additional file 4, Figure S2). Further exploration of these regions is required to unveil the mechanisms underlying the expansion/contraction of these genes.Our gene model improvement has greatly enhanced our ability to identify larger synteny blocks. When we use the WS180 annotation (before gene model improvement) for the detection of perfect synteny blocks, we found more (3,075) but smaller blocks (Figure 1a, b; Additional file 5, Figure S3; Additional file 6) compared to those described above. For example, the largest synteny block contains 42 genes using the improved annotation, but only 28 genes if we use the WS180 annotation. In fact, the 28 genes are a subset of the synteny block composed of 42 genes detected using the improved annotation. Compared to the WS180 annotation, the improved annotations increase the coverage of the chromosomes (Additional file 6).Contribution of operons to perfect synteny blocksAccording to WormBase annotation (release WS180), there are 1,120 operons in C. elegans, ranging in size from two to eight genes (Table 4). Previous comparative studies have concluded that these operons are highly conserved between C. elegans and its sister species C. briggsae, with the vast majority of the operons (96% 19 and 93.2% 24) conserved between these two species. What is the contribution of operons to the perfect synteny blocks identified between these two species? In order to address this question, we have examined the contribution of operons to perfectly conserved synteny blocks (Table 4, Figure 4). Our analysis suggests that operons constitute an insignificant part of the perfect synteny blocks.First, the portion of the C. elegans genome covered by the 1,120 annotated operons (9.8%) is dramatically smaller than that covered by the 3,058 perfect synteny blocks identified in this study (as shown above, 51.1% genomic coverage). More recent studies have shown that operons are not as conserved as previously reported and that there is a greater turnover of operon composition among Caenorhabditis species 2526, suggesting that the contribution of operons to the perfect synteny blocks between C. elegans and C. briggsae is even lower.Second, if we define an operonic synteny block as a perfect synteny block with at least half of its genes being conserved operons, we find 385 such operonic synteny blocks (Figure 4). These operonic syntenic blocks contain 498 operons (or 44.5% of the total operons). These 385 operonic synteny blocks cover only 7.4% of the C. elegans genome, still much smaller than the 51.1% of the C. elegans genome covered by all perfect synteny blocks.Third, the limited contribution of operons to the observed synteny is further illustrated by the low coverage of the X Chromosome by operons (2.1%, 57 operons) in C. elegans, which is the chromosome that is most covered by perfect synteny blocks (65.4%, 431 perfect synteny blocks) between C. elegans and C. briggsae (Table 4).Imperfect synteny blocksDuring evolution, genome sequences are often interrupted by small genome rearrangement events such as insertions, deletions, inversions and duplications. It has been suggested that small inversions and transpositions can be regarded as noise in genome rearrangements 27. Identification of imperfect synteny blocks is valuable because they provide a global view of the existing synteny between different species for regions that have been subject to various types of rearrangement events. To detect such synteny blocks, we ran OrthoCluster by allowing mismatches (see methods) as well as by relaxing the constraints of order and strandedness of the genes within the blocks. In general, relaxing the constraints regarding gene order, strandedness and mismatches generates larger and fewer synteny blocks when compared to the perfect synteny blocks. In contrast to relaxing the number of mismatches, relaxing the constraints of order and strandedness within blocks alone has only a weak impact on block size distribution, suggesting that insertions/deletions and long-range transposition events are much more common than inversion and short-range transposition events. One example of a larger synteny block found when relaxing only order and strandedness constraints is one with 9 genes in Chromosome III of the C. elegans genome (Figure 5). This synteny block was split into two smaller ones when OrthoCluster was applied for detecting perfect synteny blocks. These two blocks, one of size 5 and the other 3, are separated by one in-map gene (F54G8.1) whose ortholog (CBG50416) is inverted with respect to the neighboring genes, hence disrupting the perfect conservation of strandedness.Allowing either in-map or out-map mismatches leads to the identification of larger synteny blocks because neighboring perfect synteny blocks start to merge. For example, using the improved annotation, when the percentage of both the in-map and the out-map mismatches are set to 5%, the largest block contains 71 genes (Figure 6a and 6b) (mean = 20.2 kb, median = 12.4 kb), compared to 42 genes identified as the largest block when no mismatches are allowed (Figure 1a; Figure 4). When these mismatch percentages are increased to 10% and 20%, the largest block contains 209 genes (mean = 26,7 kb, median = 12.0 kb) and 838 genes (mean = 45.1 kb, median = 14.1 kb), respectively. When we ran OrthoCluster by allowing a maximum of 50% in-map mismatch and 50% out-map mismatch within each synteny block, we found 80.8% of the genomic sequence of C. elegans being syntenic to 78.3% of the C. briggsae genomic sequence. As illustrated in Figure 6c, allowing more mismatches leads to merging of unrelated blocks because the genomic coverage increases sharply for mismatch percentages above this point. Also, for values larger than 50%, the number of synteny blocks decreases dramatically, mostly due the inclusion of in-map mismatches from unrelated regions of the genome (Additional file 7, Figure S4). At this setting, the median length of the synteny blocks found with this set of parameters is 15.6 kb (mean = 63.6 kb) (Figure 7). Again, the imperfect synteny blocks are not evenly distributed in the genomes. The mean size of imperfect synteny blocks is 53.6 kb (median = 15.7 kb) for autosomal synteny blocks, while 217.6 kb (median = 13.8 kb) for Chromosome X. This extremely large mean for the X chromosome compared to its median reflects that the size distribution of synteny blocks in the X chromosome is positively skewed (i.e., there are few very large synteny blocks). Within autosomes, again we don�t observe a significant difference between centers and arms (p-value = 0.42, Mann-Whitney Test), with the median length of autosomal centers being 15.3 kb (mean = 62.1 kb), whereas the median length of autosomal arms is 16.6 kb (mean = 45.4 kb). This is in agreement with a previous report 5. The largest synteny block spans 6.14 Mb on Chromosome X of C. elegans, between 1.68 Mb and 7.82 Mb. Altogether, there are 11 synteny blocks that are larger than 1 Mb between these two genomes. They are distributed across all chromosomes of C. elegans except Chromosome I and III. These 11 largest synteny blocks add up to 26 Mb. These large synteny blocks are unlikely to be found by chance under a random breakage model, even after correcting for multiple testing (data not shown) 28. There are altogether 161 synteny blocks that are larger than 100 Kb, which add up to 66 Mb in size, strongly suggesting that C. elegans and C.�briggsae genomes share large synteny blocks. As shown in Figure 7, synteny blocks identified here are significantly larger that those identified using an alignment-based approach 19.DiscussionIn this work we applied our newly developed tool, OrthoCluster, for the detection of synteny blocks between the genome of C. elegans and the newly reconstructed C. briggsae genome. This anchor-based program has a number of features that makes it useful for identifying synteny blocks. In addition to identifying mismatches within syntenic regions, it takes into consideration one-to-many orthologous relationships at the moment of identifying synteny blocks. It is also sensitive to gene strandedness. More importantly, OrthoCluster works with multiple genomes so that users can explore synteny among the expanding number of sequenced genomes. Now that the genomes of three additional Caenorhabditis species (C. remanei, C. japonica, and C. brenneri) have been sequenced, we are eager to apply OrthoCluster to identify and analyze synteny relationships among these genomes. The appropriate handling of these types of features enables users to detect genome rearrangement events such as insertions, deletions, duplications, inversions, and reciprocal translocations. Furthermore, OrthoCluster can be used for the detection of segmental duplications within a single genome 15. Since OrthoCluster is an anchor-based program, correct annotation of the genetic markers coordinates used as anchors is an essential condition for the accurate estimation of synteny. Taken together, OrthoCluster is a flexible tool for the detection of synteny blocks among species of different evolutionary distance.We have demonstrated that syntenic information is useful for the improvement of defective gene models and detection of potential new genes and missing orthologous relationships. In this attempt, we have identified 582 new gene models (Table 1) in C. briggsae and 52 candidate new gene models in C. elegans. These improved annotations enabled us to identify 949 new orthologous relationships. Some of the new gene models that we have identified were independently detected by WormBase curators. For example, gene C10A4.10 was absent in WormBase release WS180, but was later curated and released in WS190. This gene was detected also with our procedure (Additional file 8, Figure S5).The improved genome annotations and orthologous relationships have helped the synteny block analysis since larger synteny blocks are found in contrast to those obtained with WS180 annotations (Figure 1). Also, some conserved operon structures are restored with the improved annotations (Additional file 9, Figure S6). This methodology will be applied for improving the annotation of the newly sequenced genomes of C. remanei, C. brenneri, and C. japonica.Hillier and colleagues constructed the first chromosomal level assembly of C. briggsae 21. Taking advantage of OrthoCluster and this newly constructed C. briggsae assembly, we found that 80.8% of the C. elegans genome (and correspondingly 78.3% of the C. briggsae genome) is covered by synteny blocks that contain at least two genes. The amount of genome coverage by synteny blocks is consistent with a previous report 19. Including �synteny blocks� composed of a single gene (in-map genes) only slightly increases the coverage of the C. elegans genome to 84.4% (corresponding to 81.9% of the C. briggsae). This coverage is also in excellent agreement with the work of Stein and colleagues (84.6% for C. elegans and 80.8% for C. briggsae) 19. Thus, the conservation observed between the C. elegans and C. briggsae genomes is accounted for largely by synteny blocks that contain two or more genes. However, the synteny blocks discovered between C. elegans and C. briggsae using OrthoCluster (median size of 15.6 kb, average size of 63.6 kb) are much larger than those identified by the previous whole genome analysis (median size of 5.6 kb, average size of 37.5 kb).ConclusionsTaken together, we have demonstrated that OrthoCluster can be used to accurately identify synteny blocks. Additionally, we have found that synteny blocks between C. elegans and C. briggsae are almost three-folds larger than previously identified.MethodsOrthoClusterOrthoCluster algorithm and development was described previously 6. Briefly, it uses an anchor-based approach to effectively search for synteny blocks between two or more genomes given parameters for controlling synteny block size, mismatches within synteny blocks as well as preservation of order and strandedness (Additional file 10, Figure S7). Since OrthoCluster takes into consideration both order and strandedness of genes, it is useful for the detection of inversions and other genome rearrangement events. In addition to identifying perfect synteny blocks (that contain no mismatches and preserve gene order and strandedness), it can be applied to �identify imperfect synteny blocks with various levels of mismatches. OrthoCluster needs two types of input files (Additional file 11, Figure S8): a genome file and a �correspondence file. A genome file contains genetic markers (which could be annotated genes) with information regarding chromosome/supercontig names, start and end positions, as well as the strand in which each genetic marker resides. A correspondence file provides orthologous relationships between two (for pair-wise analysis) or more genomes (for multiple-genomes analysis). Genetic markers that are not included in the correspondence file are called out-map genetic markers (in this paper, �genes� and �genetic markers� are used interchangeably). In contrast, genetic markers that are part of the correspondence file are called in-map genetic markers. A synteny block can be non-nested or nested (Additional file 12, Figure S9) with nested block defined as one that is contained within a larger block. A nested synteny results from a segmental duplication of a portion of a larger synteny block in one genome (Additional file 12, Figure S9d).Data SourcesGenome annotations of C. elegans and C. briggsae were obtained from WormBase http://www.wormbase.org/17, release WS180. Since some genes produces multiple alternative isoforms and all of these isoforms represent one gene (locus), we used the longest isoform to represent a gene.Correspondence file preparationTo generate the correspondence file required by OrthoCluster, we assigned orthologous relationships between different genomes using InParanoid 2229 with default settings. InParanoid has been evaluated to be one of the best performing methods for orthology detection 29. Ortholog assignment between C. elegans and C. briggsae is further improved based on gene model improvement, sequence similarity, and synteny when applying our gene model improvement procedure. A correspondence file contains both one-to-one and one-to-many relationships.Synteny based gene model improvement and ortholog assignmentAs illustrated in Figure 8, we first identified imperfect synteny blocks that contain out-map mismatch genes using OrthoCluster. Out-map mismatches, which usually indicate genome-specific genes, can also indicate these two alternative possibilities: (1) the ortholog gene in the other genome has not been found, and (2) the corresponding gene model is defective in a way the orthologous relationship can�t be established by orthology detection programs. Synteny information helps narrow down genomic regions that contain these missing or defective orthologous genes and improve defective gene models. Once we identified mismatches in synteny blocks, we attempted to identify missing/defective gene models using the homology-based gene prediction method GeneWise 3031. When we ran OrthoCluster by allowing up to 20 out-map mismatches per synteny block, we found 2,650 imperfect synteny blocks, 2,389 of which are non-nested blocks and 261 are nested ones. Of the 1,886 out-map mismatch genes within synteny blocks in the C. elegans genome, 695 C. elegans genes generated GeneWise predictions in C. briggsae that satisfy the filtration criteria described below (Additional file 13). We only consider predictions that cover at least 60% of the length of the query proteins with no internal stop codons. We identified 771 GeneWise predictions in C. briggsae genome. Note that some out-map mismatch genes generate more than one valid prediction (paralogs) within the corresponding synteny block. Applying the same strategy, we identified 702 GeneWise predictions in C. elegans. Depending on which location of the synteny block the prediction hits, each of the predictions can be categorized accordingly. There are two possibilities. First, the predicted gene overlaps with an intergenic or intronic region. In this case, we take the predicted gene as a new candidate gene. Second, the predicted gene overlaps with one or more existing genes within the corresponding synteny block (Additional file 14, Figure S10).We also assigned new orthologous relationships using synteny information and similarity (blast alignment scores). To achieve this, we compared the out-map genes with the new gene models and calculate their percentage identity (PID). We accept a new pair of orthologs if the PID between them is greater than or equal to 40% and the e-value is less or equal than 1e-10. The revised orthologous relationships were then incorporated into the InParanoid-driven orthologous relationships.Authors� contributionsNC conceived of the study. IAV conducted the experiments and NC and IAV wrote the manuscript. All authors have read and approved the final manuscript.
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Additional file 4: Figure S2 an example of syntenic tandem gene
expansion/contraction. A GST tandem gene cluster in C. elegans has
nine genes, while its orthologous region in C. briggsae has four genes.

Additional file 5: Figure S3 Cumulative distribution of perfect

synteny blocks in C. elegans. Black bars represent perfect synteny
blocks found using WS180 annotation, while empty bars represent

perfect synteny blocks found using improved annotation.

Additional file 6: Perfect synteny blocks and their corresponding
genomic coverage in C. elegans for the improved and the WS180
annotations.

syntenic blocks as a function of both in-map and out-map
mismatches.

Additional file 8: Figure S5 A new gene model in C. elegans. This
new gene model, absent in WS180, was reported independently by
WormBase curators in WS190 and found with our methodology.

Additional file 9: Figure S6 Conserved operon revealed by

identified two putative genes, CBG50308 and CBG50462, which are
orthologs to the operonic genes C14A4.1 and C14A4.4, that were
missing orthologs previous to the application of the gene model
improvement procedure.

Additional file 10: Figure S7 Different types of order and
strandedness handled by OrthoCluster. a) Consistent order and

order, reversed strandedness. Blocks A1 in genome G1 and A2 in
genome G2 are composed of four genes. The order of the genes within
each block is the same, but each pair of genes has different orientation.
) Inverted order, consistent strandedness. Blocks A1 in genome G1 and
A2 in genome G2 are composed of four genes. The order of the genes
within block A1 is inverted with respect to that within block A2, and
each pair of genes has the same orientation. d) Inverted order, reversed
strandedness. Blocks A1 in genome G1 and A2 in genome G2 are
composed of four genes. The order of the genes in block A1 is inverted
with respect to that in block A2, and each pair of genes has different
orientation. All four cases are found if the user sets -r -s when running
OrthoCluster. Cases a) and d) are found only if user sets -rs when
running OrthoCluster. For the synteny blocks detected in this work, the
parameter -rs was used.

Additional file 11: Figure S8 input and output data for
OrthoCluster. The input of the program consists of the genome
annotation for each species (gene name, Chromosome/Contig, Start
position, End Position, and Strand) and a correspondence file with the
orthologous relationships among genes. The output corresponds to the

of M genes is shown for each one.

in genomes G1 and G2 respectively, A1 contains a gene (shown in

the corresponding syntenic regions A1 and A2 in genomes G1 and G2
respectively, A1 contains a gene, g5, which has a correspondence in G2,

be include within the synteny block. Different numbers of in-map and
out-map mismatches can be included in each block by varying the
parameters -i, -ip, for in-map mismatches, and -o, -op for out-map

G1 are located in different regions of the genome, and the
corresponding regions A2 and B2 in genome G2 are also located in
different regions. d) A nested synteny block. Block B1 in genome G1 is
fully contained within block A1, but the corresponding syntenic regions
B2 and A2 in genome G2 are located in different regions of that
genome.

Additional file 13: out-map mismatches used for gene model

genes that are associated to each number of mismatches.

Additional file 7: Figure S4 C. elegans distribution of the number of

improved genome annotation. The improved annotation of C. briggsae

consistent strandedness. Blocks A1 in genome G1 and A2 in genome G2
are composed of four genes. The order of the genes within each block is
the same, and each pair of genes has the same orientation. b) Consistent

synteny blocks found. In ths example, there are N genomes and a region

Additional file 12: Figure S9 out-map and in-map mismatches. a) An
out-map mismatch. Given the corresponding syntenic regions AT and A2

white) that has no correspondence in G2. b) An in-map mismatch. Given

but is distant enough from the other genes conforming A2 so it can not

mismatches. ¢) A non-nested synteny block. Blocks AT and B1 in genome

improvement. Numbers in parentheses represent the number of unique

Additional file 14: Figure S10 Gene model improvement procedure
for the reparation of genes. If the prediction hits a gene, then different
procedures are defined depending on the gene been an in-map or out-
map gene. If the gene hit is an in-map gene, then we measure the
genomic coverage of the in-map gene. If the coverage is greater or
equal than the threshold defined, then the prediction is discarded. If the
coverage is less than the threshold, then the peptide of the ortholog of
gl1’, g1, is used as query against the genomic span if g1" If the
predictions overlap, then they are discarded. If the predictions do not
overlap and g1 is in C. briggsae, then g1' is replaced by o1"and g1”. If
gl isin C elegans, then its peptide is used as query against the genomic
span of g1 - o1 in C. briggsae to determine if those genes can be
merged (g1"™). If the prediction hits an out-map gene and the coverage
is less than the original gene model, then the prediction is discarded. If
the coverage is greater or equal than the original gene model, then o1’
is discarded if p1 is located in C. elegans. If p1 is located in C. briggsae,
the prediction o1’ replaces p1.
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