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Abstract

Background: Grosmannia clavigera is a bark beetle-vectored fungal pathogen of pines that causes wood
discoloration and may kill trees by disrupting nutrient and water transport. Trees respond to attacks from beetles
and associated fungi by releasing terpenoid and phenolic defense compounds. It is unclear which genes are
important for G. clavigera's ability to overcome antifungal pine terpenoids and phenolics.

Results: We constructed seven cDNA libraries from eight G. clavigera isolates grown under various culture
conditions, and Sanger sequenced the 5" and 3’ ends of 25,000 cDNA clones, resulting in 44,288 high quality ESTs.
The assembled dataset of unique transcripts (unigenes) consists of 6,265 contigs and 2,459 singletons that mapped
to 6,467 locations on the G. clavigera reference genome, representing ~70% of the predicted G. clavigera genes.
Although only 54% of the unigenes matched characterized proteins at the NCBI database, this dataset extensively
covers major metabolic pathways, cellular processes, and genes necessary for response to environmental stimuli
and genetic information processing. Furthermore, we identified genes expressed in spores prior to germination,
and genes involved in response to treatment with lodgepole pine phloem extract (LPPE).

Conclusions: We provide a comprehensively annotated EST dataset for G. clavigera that represents a rich resource
for gene characterization in this and other ophiostomatoid fungi. Genes expressed in response to LPPE treatment
are indicative of fungal oxidative stress response. We identified two clusters of potentially functionally related
genes responsive to LPPE treatment. Furthermore, we report a simple method for identifying contig misassemblies
in de novo assembled EST collections caused by gene overlap on the genome.

Background

The ophiostomatoid fungus Grosmannia clavigera
(Robinson-Jeffrey and Davidson) is a fungal pathogen
that discolours wood, and kills pine host trees by dis-
rupting the flow of nutrients and water in phloem and
sapwood [1,2]. In its ecosystem, G. clavigera is vectored
between hosts by the mountain pine beetle (MPB, Den-
droctonus ponderosae). This pathogen can kill lodgepole
pine (Pinus contorta) when manually inoculated under
the bark at a high enough concentration [3,4]. Like
many bark beetle associated fungi, G. clavigera produces
slimy spores that stick to the exoskeleton of the insects,
but the fungus is also present in the beetle mycangia
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and alimentary canal [5]. During tree colonization, the
beetles spread fungal spores throughout their galleries
below the bark. The spores germinate and fungal hyphae
colonize the phloem and sapwood of the tree. Fungi
benefit the beetles by improving the host environment
for the beetle progeny, and serving as food for the larvae
and the teneral adult beetles [6]. In addition, G. clavi-
gera may counteract tree defenses that are activated
during bark beetle attacks.

Conifer trees respond to beetle attacks or fungal
inoculation by releasing resin from pre-formed and
inducible traumatic resin ducts, inducing the synthesis
of phenolic compounds in phloem parenchyma cells,
and forming a wound periderm tissue [7]. The main
constituents of conifer resin are terpenoids, many of
which have insecticidal and fungicidal properties [8,9].
Ophiostomatoid fungi can decrease the concentration of
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terpenoids when inoculated on sapwood [10-12]. How-
ever, the molecular and biochemical mechanisms
involved in these processes are unknown. Previously, we
analyzed a small set of expressed sequence tags (ESTs)
from G. clavigera and found putative gene candidates
that may be involved in terpenoid detoxification [13].
Lodgepole pine also constitutively produces a variety of
phenolic compounds, including flavonoids and tannins
[14-17]. Many of these chemicals inhibit the growth of
fungal pathogens [18]. To detoxify phenolic plant
defense compounds, fungi produce a variety of enzymes
such as phenol oxidases that polymerize phenolics [19],
peroxidases that degrade polymeric phenolic structures
[20], and glucosidases and glucuronidases that are
involved in metabolism of phenolic glycosides [21,22].
As well, fungi may release extracellular proteins that
bind to toxic phenolics preventing their interaction with
the fungal cell wall [23]. Whether G. clavigera encodes
and expresses genes necessary for detoxification of phe-
nolic compounds has not been determined.

The recently published genome of G. clavigera is the
first reference genome for an insect-vectored fungal tree
pathogen [24]. The genome sequence provides a funda-
mental resource for identifying fungal genes important
for symbiotic interactions with insect and tree hosts.
ESTs support gene discovery and gene structure annota-
tion. To cover a broad spectrum of expressed genes, we
extended the previous collection of 5,950 ESTs [13], and
sequenced the 5 and 3’ ends of 25,000 cDNA clones
from normalized and non-normalized cDNA libraries of
eight G. clavigera isolates grown in various conditions.
We conducted a de novo EST assembly and used the
resulting set of unique transcripts (unigenes) to verify
the assembly of the G. clavigera genome [24]. As well,
we used the genome sequence to address two problems
associated with de novo CAP3 EST assembly: 1) incom-
plete assembly of ESTs from multiple transcripts of a
given gene into a single contig due to incomplete spli-
cing, splice variants, incomplete read overlap, and
sequencing errors; and 2) incorrect assembly of ESTs
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from transcripts of different genes as a result of
sequence similarity.

Here we describe the G. clavigera unigene dataset, and
discuss fungal genes upregulated in two biological states
that are important for G. calvigera-MPB-pine interac-
tions: the vectored non-germinating asexual spores, and
mycelia treated with lodgepole pine phloem extract
(LPPE), which contains tree defense chemicals. Further-
more, we show that overlap of neighboring genes on the
genome was the major source for contig misassemblies
in this de novo EST assembly, and describe a simple
method for identifying such cases even in absence of a
sequenced genome.

Results

1 EST analysis

To identify a broad spectrum of G. clavigera genes
necessary for fungal growth we grew eight isolates
(Table 1) on five media, and for one medium we treated
the mycelia with LPPE (Table 2). We also harvested
spores from the reference isolate SLKW1407 that we
had used to sequence the G. clavigera genome [24]. To
maximize sequencing efficiency we pooled the media
and LPPE treatments, generating three isolate/treatment
combinations with the reference isolate, and one isolate/
treatment combination that contained the seven closely
related G. clavigera isolates (Table 3). Furthermore, we
prepared normalized cDNA samples for three isolate/
treatment combinations. We then constructed seven
unidirectional, full-length enriched cDNA libraries and
sequenced a total of 25,000 cDNA clones from both 5’
and 3’ ends (Table 3). After trimming vector and low
quality sequences the average PHRED 20 read length
was 693 bp. This resulted in 44,288 high quality ESTs
(NCBI dbEST GT571598-GT615878). After adding
5,950 quality-filtered ESTs from previous analyses with
the reference isolate [13], we reverse-complemented 3’
reads, removed polyA tails, and discarded sequences
with long mononucleotide stretches. The resulting data-
set contained 50,167 high quality ESTs.

Table 1 G. clavigera strains isolated from Pinus species used for cDNA library construction

ID Isolate ATCC/UAMH accession Isolation origin Host Isolated from Year
1 SLKW1407 UAMH11150 BC/Kamloops P. contorta Gallery 2003
2 ATCC18086 ATCC18086 BC/Cache Creek P. ponderosa Sapwood 1965
3 200-1-14 UAMH11151 BC/Kamloops P. contorta Sexual spore 2004
4 DPLKGT1B UAMH11152 BC/Kelowna P. contorta MPB body 2007
5 H55 UAMH11153 BC/Houston P. contorta MPB body 2003
6 B5 UAMH11154 Alberta/Banff P. contorta MPB body 2003
7 B10 UAMH11155 Alberta/Banff P. contorta MPB body 2003
8 DPCHMC3 * Alberta/Cypress Hills P. contorta MPB mycangia 2007

*Breuil culture collection, Dept. of Wood Science, University of British Columbia, Vancouver, Canada
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Table 2 Media and treatment for growing G. clavigera
mycelium for cDNA library construction

Media composition

wood 10 g/plate lodgepole pine sawdust

starch 0.17% YNB, 0.1% PHP, 0.3% asparagine, 1% starch

organic 0.17% YNB, 0.1% PHP, 0.3% asparagine, 1% maltose

nitrogen

inorganic 0.17% YNB, 0.1% PHP, 0.3% NaNO3, 1% maltose

nitrogen

olive oil 0.17% YNB, 0.1% PHP, 0.3% asparagine, 1% (v/v) olive
oil emulsified in 0.5% tergitol (olive oil and tergitol
were mixed and autoclaved separately before being
added to the media)

LPPE Cultures were grown on organic nitrogen medium for

treatment 48 h and then sprayed with LPPE

All media were solidified with 1.5% granulated agar. LPPE = lodgepole pine
methanol extract, YNB = yeast nitrogen base, PHP = potassium hydrogen
phthalate

Unigene assembly and unigene-locations on the genome
We assembled the 50,167 ESTs into unigenes and deter-
mined their locations on the G. clavigera genome.
Assembly resulted in 8,724 unigenes (2,459 singletons
and 6,265 contigs) that joined 91% of the 21,391 5’-3’
read pairs. Most of the unigenes (97%) mapped to the
genome at high stringency (>80% sequence similarity;
>80% unigene alignment length), while 219 unigenes
mapped with a quality below this threshold, and 48 uni-
genes did not align to the genome. We evaluated the
contig assembly using two methods. First, we aligned
the unassembled reads to the genome and tested
whether all reads from a contig would map to the same
genome location as the contig. For 74 contigs there was
disagreement. Manual inspection showed that 28 were
correctly assembled and could be matched to an NCBI
protein sequence, leaving 46 (0.5%) potentially misas-
sembled unigenes. Second, we searched for contigs con-
taining forward and reverse reads (FR contigs) despite
unidirectional orientation of the assembled reads. We
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identified 821 such contigs, and in most cases found
indications for transcript overlap between neighboring
genes encoded on opposite genome strands. For all but
21 (2.6% of 821) FR contigs, the unassembled reads
mapped to the same genome location as their respective
contig aligning, however, to both strands of the genome.
We manually inspected 50 FR contigs and found that
for 35 of them the reverse assembled reads belonged to
an adjacent gene model encoded on the opposite strand.
For the remaining 15 FR contigs all reads mapped to
the same region on the genome, but we found no evi-
dence for a neighboring gene.

We generated 6,467 unigene-locations (ULs) on the G.
clavigera reference genome based on strand-specific uni-
gene overlap and linking information from unassembled
5’-3” read pairs (Additional file 1: Table S1). Of these,
812 ULs (13%) overlapped with another UL encoded on
the opposite strand of the genome, with a 260 bp med-
ian overlap length. However, FR contig analysis sug-
gested that UL overlap occurs more frequently. For the
814 ULs with FR contigs, UL analysis identified 170
overlapping ULs (21%). Manual inspection of genome
locations with FR contigs indicated this fraction to be
~70% (i.e. ~570 ULs). This suggested that overall ~1212
G. clavigera ULs overlapped.

Genes represented in the unigene dataset

We predicted ORFs for all but five of the 8,724 uni-
genes; 1,584 of these unigenes (18%) were full length,
4,806 were truncated at the 5" end, and 771 were trun-
cated at the 3’ end. Seventy-three percent of the uni-
genes were similar to NCBI protein sequences (min e-
value 1.0 x 10™#). For these unigenes ORF predictions
were based on the best BLAST match, and we found
that for 1,115 of them the best predicted ORF was not
the longest ORF. We also noted that only 8% of the cor-
rectly assembled unigenes had a significant protein

Table 3 cDNA libraries from four G. clavigera isolate-treatment combinations and numbers of high quality ESTs

derived from each library.

Library Iso-lates  Media/treatment combinations Norma-lized Primary titre (cfu/ml) ESTs sequenced ESTs HQ (%)
OCLO1 1 W:S:ON:IN:OO No 2.1 x 10° 6,144 5,272 (86)
OCL02 1 W:S:ON:IN:0O Yes 21 x10° 15,360 14,075 (92)
OCLO3 1 ON+LPPE No 40 x10° 6,144 5618 (91)
OCLO4 1 ON+LPPE Yes 25 % 10° 9,216 7,794 (85)
OCLO5 2-8 W:S:ON:IN:OO:ON+LPPE No 20 x 10° 3,072 2,916 (95)
OCLO6 2-8 W:S:ON:IN:OO:ON+LPPE Yes 90 x 10* 3,072 2,819 (92)
0OCL08 1 Sp No 13 % 10° 6912 5,794 (84)

For the libraries OCLO1-OCLO6, mycelial cultures from each of the eight isolates were grown on five different media, and for one medium the mycelia were
treated with LPPE (W = wood, S = starch, ON = organic nitrogen, IN = inorganic nitrogen, OO = olive oil, LPPE = treatment with lodgepole pine methanol
extract). After extracting total RNA separately from each of the 48 isolate/media/LPPE-treatment variants and from the spore sample (Sp), equal amounts of total
RNA were pooled to obtain four isolate/treatment combinations. From these pooled samples we purified poly(A+) mRNA and generated cDNA. All three non-
spore cDNA samples were divided into two fractions, one of which was normalized. The resulting seven cDNA samples were used for library construction. HQ =

high quality.
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match on the reverse strand, while 56% of the FR con-
tigs had a significant hit on the minus frame. Using
InterProScan and KAAS, we assigned InterPro IDs,
Gene Ontology terms, and K-numbers with correspond-
ing BRITE classifications to 3,730 (43%), 2,504 (29%)
and 1,530 (18%) unigenes, respectively. The K-number
annotated unigenes belonged to 1,439 ULs.
Hierarchical classification of the unigenes using
KEGG-BRITE allowed mapping ULs to pathways and
infer higher-order functions (Figure 1, Additional file 1:
Table S1). Nearly half of the 1,439 ULs that were anno-
tated with K-numbers encoded proteins from metabolic
pathways, including amino acid metabolism, carbohy-
drate metabolism, energy metabolism, as well as lipid
and nucleotide metabolism. Proteins encoded by 575
ULs are potentially involved in genetic information pro-
cessing (i.e. transcription, translation, replication and
DNA repair). Furthermore, we verified that this G. clavi-
gera unigene collection covers essential metabolic path-
ways. Using reciprocal BLAST analysis we identified all
genes of the ergosterol pathway, all but one of the genes
of the citrate and pentose phosphate cycles, and 59 of
95 genes necessary for primary amino acid biosynthesis.

2 Differential gene expression

We characterized gene expression in the G. clavigera
reference isolate (SLKW1407) by assessing EST frequen-
cies in the non-normalized cDNA libraries from myce-
lial culture (OCLO1), spores (OCL08), and cultures
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exposed to LPPE treatment (OCL03). Transcripts for
the majority of ULs (1699; 65%) appeared to be library
specific, 614 ULs (24%) contained transcripts from two
libraries, and only 288 ULs (11%) contained reads from
all three libraries (Figure 2). To identify genes associated
with processes that were overrepresented under any of
the three conditions tested, we analyzed the set of
library-specific ULs that were annotated with K-num-
bers and assigned to KEGG Pathways (Figure 3).
Table 4 shows selected pathways for which numbers of
specifically expressed genes differed between the three
c¢DNA libraries. Among the ULs expressed only in the
mycelial culture library we found twice as many carbo-
hydrate and amino acid metabolism genes than in the
other libraries. Spore-library specific ULs encoded a
higher variety of proteins necessary for oxidative phos-
phorylation, nucleotide metabolism, and translation. In
the LPPE library, genes for signal transduction and N-
glycan biosynthesis were specifically expressed. Below
we describe ULs that were identified as differentially
expressed by reciprocal comparison of read frequencies
of the three non-normalized cDNA libraries.

Spores (OCL08) vs mycelial culture (OCLO1)

Of the 2,039 ULs with reads from the libraries OCL0O1
and/or OCL08, 66 ULs had significantly (p < 0.05)
higher read frequencies in the spore than in the mycelial
library (Additional file 1: Table S1). Of these, 11 ULs
(355, 444, 2425, 2447, 2745, 3423, 3838, 4185, 4783,

B Amino Acid Metabolism (124)

B Carbohydrate Metabolism (143)

OEnergy Metabolism (120)

O Nucleotide Metabolism (75)

B Lipid Metabolism (88)

OMetabolism of Cofactors and Vitamins (61)
B Xenobiotics Biodegradation and Metabolism (63)
DOBiosynthesis of Secondary Metabolites (46)
DOGlycan Biosynthesis and Metabolism (45)
OTransport and Catabolism (60)

OCell Growth and Death (55)

OCytoskeleton proteins (19)

OMembrane Transport (19)

OSignal Transduction (62)

OSignalling Molecules and Interaction (32)
OTranscription (117)

BTranslation (150)

DOFolding, Sorting, Degradation (222)
OReplication and Repair (171)

Figure 1 Numbers of unigene-locations involved in metabolic pathways (M), cellular processes (C), environmental information
processing (E), and genetic information processing (G) based on KEGG-BRITE annotations.
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Figure 2 Numbers of unique and shared transcripts in the non-
normalized mycelial culture (OCLO1), LPPE (OCL03), and spore

(OCL08) cDNA libraries of G. clavigera.

5218, 5775) encoded heat shock proteins (HSPs) and
other protein chaperones/folding catalysts (e.g. cyclo-
phillin D). Other ULs that were overexpressed in spores
matched proteins involved in energy metabolism and
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ATP-dependent cellular processes: Ca®* transporting
ATPase (UL 904), F-type H+-transporting ATPase subu-
nit epsilon (UL 2399), arsenite-transporting ATPase (UL
4670), ATP-dependent Clp protease (UL 5775). For 73
ULs read frequencies were significantly higher in the
mycelial than in the spore libraries (Additional file 1:
Table S1). A high fraction of ULs that were overex-
pressed in mycelial culture encoded proteins important
for carbohydrate and amino acid metabolism: four gly-
colytic enzymes (ULs 2601, 4586, 6279, 6391), a glucose
transporter (UL 5108), a subtilase (UL 4937), and pro-
teins involved in methionine (ULs 1740, 6245) and mel-
anin (UL 4533) biosynthesis.

LPPE treatment (OCLO3) vs mycelial culture (OCLO1)

We identified eight ULs (85, 588, 1906, 2850, 3233,
3525, 4003, 4803) that were significantly (p < 0.05) over-
expressed in the LPPE treated culture library (Additional
file 1: Table S1). We analyzed the genomic neighbor-
hoods of these eight ULs and found that two ULs
(annotated as a steroid monoxygenase and a cupin
domain protein) co-localized with other ULs that were
expressed only in the LPPE treated libraries, and so may
be functionally related. The first cluster (Table 5) con-
tained the steroid monoxygenase and ULs encoding a
beta-lactamase (whose ESTs originated from the

Number of library specific ULs

Oculture (OCLO1)
Ospores (OCL08)
8| PPE (OCL03)

Figure 3 Library specific unigene-locations (ULs) from the non-normalized mycelial culture (OCLO1), LPPE (OCLO03), and spore (OCL08)
cDNA libraries classified based on KEGG-BRITE annotations (nocioq

141, nocros = 126, NocLos = 156).
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Table 4 Numbers of genes in selected KEGG pathways matched by ULs specific to cDNA libraries OCLO1 (mycelial

culture), OCLO3 (LPPE), and OCLO8 (spores)

Pathway

0OCLO1 0ocCLo3 0CLo8

Oxidative phosphorylation

Amino sugar and nucleotide sugar metabolism
Starch and sucrose metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis
N-Glycan biosynthesis

High-mannose type N-glycan biosynthesis
O-Mannosyl glycan biosynthesis

Biosynthesis of terpenoids and steroids
Pyrimidine metabolism

Purine metabolism

RNA polymerase

Spliceosome

Aminoacyl-tRNA biosynthesis

MAPK signaling pathway - yeast

Cell cycle - yeast

w
OOO—‘—‘N—‘O—‘E

— O N W O »Hh W W O N O U1 1 O —

N A = O N MO — O W —= = N

N — O U1 N

normalized LPPE library), an MSF transporter, a cyto-
chrome P450, and a P450 reductase. RT-PCR confirmed
that transcript abundance for all five of these clustered
ULs were increased in response to LPPE treatment at
the 36 h time point (Figure 4). Reciprocal BLAST
searches indicated that this cluster is not conserved in
Aspergillus spp., Fusarium spp., Magnaporthe grisea,
and Neurospora crassa. However, in Aspergillus nidu-
lans, the putative orthologues of the cytochrome P450
(AN5837) and the P450 reductase (AN5838) are located
next to each other. The second cluster (Table 6) con-
tained the cupin domain protein and ULs for an S15
family peptidase, an unknown protein, an aromatic ring-
opening dioxygenase, a PutA family dehydrogenase, and
a short chain dehydrogenase. Three ULs of this cluster
were specific to the LPPE treatment libraries. This clus-
ter was not conserved in the above fungal species. For
11 ULs (602, 769, 2601, 3744, 3874, 4487, 4533, 5218,
5833, 6220, 6391), read frequencies were significantly (p
< 0.05) lower in the LPPE library than in the mycelial
library (Additional file 1: Table S1). Eight of these,
including the ULs for trehalase, scytalone dehydratase 1,

and HSP90 were also downregulated in the spore
library. Analysis of the genomic regions flanking these
ULs did not indicate clustering of functionally related
genes.

Discussion and Conclusions

ESTs can be assembled de novo, or, when a high-quality
reference genome sequence is available, by mapping
sequence reads to the genome and assembling them by
genome location. We conducted a de novo EST assem-
bly to assess the quality of the G. clavigera genome
sequence [24]. For this, we applied CAP3, a widely used
EST assembly program that is a component of recent
assembly pipelines [25,26]. Of the 8,457 unigenes, 97%
mapped to the genome at high stringency (>80%
sequence similarity; >80% unigene alignment length).
Only 0.5% of the unigenes contained reads from distant
genome locations, indicating either unigene or genome
misassemblies. These results show that both the
assembled genome sequence and the unigene assembly
were of high quality. The unigene collection derived
from 50,167 high quality ESTs allowed identification of

Table 5 Unigene-locations of cluster 1, which is potentially involved in response to lodgepole pine phloem extract

Unigene-location Best annotated protein match from the NCBI nonredundant protein database e-value p-value*
3230 MFS sugar transporter [Aspergillus flavus) 4E-92 ns
3231 related to ARCA protein [Neurospora crassdl 4E-38 ns
Gc_00052 benzoate 4 monooxygenase cytochrome P450 [Neosatoria fisherif] 1E-165 ns
Gc_00102 NADPH-cytochrome P450 reductase (CprA) [Aspergillus fumigatus) 4E-143 ns
3232 small s protein [Podospora anserinal 7E-42 ns
3233 steroid monooxygenase [Aspergillus flavus) 1E-104 0.02
3234 beta-lactamase family protein [Pyrenophora tritici-repentis) 2E-58 Ns

* Fisher's exact p-value for the comparative analysis on transcript abundance between the mycelial culture (OCLO1) and LPPE (OCLO3) libraries.
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Figure 4 qRT-PCR results showing the expression levels of five unigene-locations at six time points after LPPE treatment relative to
their expression levels in cultures of G. clavigera treated with a methanol control solution. (3230 - MFS-transporter, Gc_00052 - P450,
Gc_00102 - P450 reductase, 3233 - steroid monooxygenase, 3234 - beta-lactamase)

6,467 ULs. In a separate analysis of the G. clavigera gen-
ome sequence we estimated ~9,000 genes (unpublished
results). Based on this number the unigene set repre-
sents ~70% of the G. clavigera genes. Unigene annota-
tion showed that our dataset covers in depth major
metabolic pathways for general and essential processes,
and provides sequence information on genes that may
be unique to G. clavigera. These data will be a useful
resource for future research on this pathogen, in parti-
cular for its symbiotic association with mountain pine
beetle and interaction with the chemical defenses of
host trees.

Antisense transcripts may be involved in controlling
gene expression [27,28]. We estimated that ~19% of G.
clavigera ULs overlap with another UL from the oppo-
site genome strand, and so potentially represent anti-
sense transcripts. Our analysis indicated, that in most
cases contigs containing forward and reverse assembled

reads despite unidirectional read orientation (FR con-
tigs) were assemblies of transcripts from overlapping
genes. Therefore, FR-filtering can help identify assembly
problems as well as potential antisense transcripts in de
novo assembled unigene collections.

Control of spore germination may be an important
factor in G. clavigera bark beetle symbiosis and tree
pathogenicity. Transcript analysis of the spore library
indicated that early germination processes may have
been induced in our spore samples. We identified sev-
eral protein chaperones, including two HSP70s (ULs
355, 2425) and one cyclophillin D (UL 3423) that
showed significant similarity to the A. nidulans proteins
XP_663614, XP_662733, and XP_662187, respectively.
Proteome analyses revealed that these proteins accumu-
lated in A. nidulans within 30 to 60 minutes after coni-
dia germination [29]. Other ULs with high transcript
frequencies in spores of G. clavigera encoded proteins

Table 6 Unigene-locations of cluster 2, which is potentially involved in response to lodgepole pine phloem extract

Unigene-location Best annotated protein match from the NCBI nonredundant protein database e-value p-value*
3999 X-Pro dipeptidyl-peptidase (515 family) protein [Neosartorya fischeri] 8E-113 ns
4000 predicted protein [Sclerotinia sclerotiorum] 1E-52 ns
4001 aromatic ring-opening dioxygenase family protein [Talaromyces stipitatus] 7E-81 ns
4002 PutA family dehydrogenase [Talaromyces stipitatus) 2E-13 ns
4003 cupin domain protein [Neosartorya fischeri] 3E-50 003
4004 short chain dehydrogenase [Aspergillus fumigatus) 4E-44 ns

* Fisher's exact p-value for the comparative analysis on transcript abundance between the mycelial culture (OCLO1) and LPPE (OCLO3) libraries.
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involved in energy metabolism and protein biosynthesis,
which is consistent with respiration and protein bio-
synthesis activated early in germination [30]. The genes
identified in this analysis may serve as markers for early
spore germination. However, analysis of gene expression
in resting and germinating G. clavigera spores requires
further work.

Genes whose transcripts were over-represented in
response to LPPE treatment suggested a fungal oxidative
stress response caused by host phenolic or other defense
compounds present in the phloem extract [31,32]. For
example, we observed a large number of ESTs for Cu/
Zn superoxide dismutase (SOD) in the LPPE treatment
library (UL 1906). SOD catalyses the conversion of
superoxide radicals to molecular oxygen. SOD1 mutants
of N. crassa are sensitive to superoxide-generating com-
pounds and have a high rate of spontaneous mutations
[33]. In contrast, deleting SOD1 did not change the sen-
sitivity of Claviceps purpurea to paraquat and did not
affect its pathogenicity [34], indicating that other detoxi-
fying systems may be involved. Interestingly, our EST
data revealed a second Cu/Zn superoxide dismutase (UL
3288), which does not appear to be upregulated by
LPPE treatment, suggesting that the two SODs may
have different functions. Similarly, a peroxidase (UL
588) overexpressed in the LPPE treatment library may
participate in scavenging reactive oxygen species. Alter-
natively, it may be involved in detoxification of phenolic
compounds, as previous studies have shown that peroxi-
dases can oxidize phenolic substrates and cleave aro-
matic ring structures [20,35]. EST frequencies in the
LPPE treatment library were also high for a nitroreduc-
tase (UL 4803), but functions of this gene in host colo-
nization are uncertain. Bacterial nitroreductases can
detoxify nitrosubstituted compounds [36], including
nitrophenols [37] in reactions that produce superoxides
and induce oxidative stress [38,39]. In S. cerevisiae two
nitroreductases have been identified [40], one of which
appears to act in the lipid-signaling pathway. Mutants
for these enzymes showed extreme sensitivity to nitrosa-
tive substances and have reduced superoxide dismutase
activity [41]. The authors hypothesized that the nitrore-
ductases may modulate antioxidant enzymatic activities
in yeast.

In filamentous fungi, functionally related genes and
genes involved in niche adaptation can occur in clus-
ters. For example, secondary metabolite genes in A.
fumigatus [42] and genes encoding secreted proteins in
Ustilago maydis [43] are clustered. For G. clavigera, we
identified two clusters of putatively functionally related
genes that were upregulated after LPPE treatment. The
first cluster contained five genes: a steroid monooxy-
genase, a P450, a P450 reductase, a beta lactamase,
and an MFS transporter. The steroid monooxygenase
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and the P450 may participate in detoxification of LPPE
compounds by adding or altering functions of metabo-
lites, similar for example to the P450s involved in fun-
gal detoxification of pisatin [44]. The conserved co-
localization of the P450 and the P450 reductase has
been noted in Aspergillus species [45] and led to the
hypothesis that this reductase may be specific for the
co-localized P450. The observed co-regulation of these
two G. clavigera genes in response to LPPE treatment
is consistent with this hypothesis. Whether the gene
showing high similarity to beta lactamase is involved
in ring cleavage of any LPPE metabolite remains to be
tested in future work. The second cluster contained an
extradiol ring-cleavage dioxygenase and two oxidore-
ductases, and may be involved in degrading aromatic
compounds such as phenolics. Further analyses on
genes in these two clusters are necessary to confirm
functions and relationships.

Methods

Fungal isolates and culture conditions

The eight fungal isolates used in this study are listed in
Table 1. To induce a broad spectrum of genes, cultures
from each isolate were grown on five different media
(Table 2) that varied in nitrogen and carbon sources.
For this, we first obtained young mycelial cultures by
inoculating plates containing 1% malt extract agar
(MEA, Oxoid, England) overlaid with cellophane with a
spore suspension (12 plates/isolate, 5 x 10° spores/
plate), and incubating them at ambient conditions for
48 h. Then, we transferred the cellophane with the
young mycelia to new plates that contained the different
media (2 plates/isolate/medium). The cultures were
grown for four days, and then harvested for RNA
extraction, pooling the mycelia from the two plates of
each isolate/medium combination.

To identify genes expressed in mycelial culture in
response to lodgepole pine phloem extract (LPPE) we
grew fungal cultures from the eight isolates on organic
nitrogen media (as described above) for 48 h, sprayed
them with 200 pl of crude LPPE, and harvested the
mycelia for RNA extraction 48 h after initial exposure
to LPPE. LPPE was prepared as follows: a lodgepole
pine bolt from a freshly cut tree was frozen at -20°C
and cut into disks. The frozen phloem was separated
and ground in a mill with liquid nitrogen. The powder
was extracted in 80:20 methanol:water (2.5 ml/g) and
sonicated at 4°C for 2 h. After centrifugation, the super-
natant was removed and concentrated by 1/3 under a
gentle flow of nitrogen gas (final concentration ~50:50,
MeOH:H,0). This concentrated crude extract was
stored at -20°C. To ensure uniform treatment of all cul-
tures, a single preparation of LPPE was used for the
experiment.
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For the spore library, cultures of the reference isolate
SLKW1407 were grown for seven days on 1% MEA.
Spores were harvested in 5 ml water and filtered
through a BD Falcon Cell strainer (40 pm) to remove
mycelial debris from the spore collection. The spore
suspension was centrifuged at 5,000 rpm for 20 min, the
pellets were transferred to 1.5 ml microtubes and centri-
fuged again for 2 min at 14,000 rpm. These tubes were
stored at -80°C until RNA extraction.

RNA isolation, cDNA library construction, cDNA
sequencing

Total RNA was isolated separately from each of the 48
isolate/media/LPPE treatment variants and the spores,
respectively, using the RNeasy Mini Plant RNA isolation
kit (Qiagen, Mississauga, ON, Canada). The total RNA
samples were then treated with DNasel (Fisher Scienti-
fic, Ottawa, ON, Canada), analyzed for quality by spec-
trophotometer and agarose gel analysis, and quantified.
To generate comparable treatments for the reference
isolate, and to ensure high sequencing efficiency, we
pooled equal amounts of total RNA from the different
isolate/media/LPPE treatment variants and prepared
four isolate/treatment combinations: three treatments
with the reference isolate, and one pool containing total
RNA from the other seven isolates (Table 3). From the
resulting four RNA samples we purified poly(A+)
mRNA using the Oligotex mRNA purification kit (Qia-
gen), and generated first strand cDNA using SuperScript
III reverse transcriptase (Invitrogen, Carlsbad, CA,
USA), CDS-3M primer (Evrogen, Moscow, Russia), and
SMART IV Oligonucleotide (Clontech, Mountain View,
CA, USA). Second strand cDNA was prepared by long
distance-PCR with Phusion Hot Start DNA Polymerase
(Finnzymes, Espoo, Finland). The cDNA samples were
split into two fractions and one fraction was normalized
using the TRIMMER-DIRECT ¢DNA normalization kit
(Evrogen). For library construction, normalized and
non-normalized cDNA was digested with Sfil and size
fractionated. The fractions >500 bp were directionally
cloned into the Sfil-digested pDNR-LIB vector (Clon-
tech). A set of 25,000 clones randomly selected from all
libraries were partially sequenced on a 3730XL DNA
analyzer (Applied Biosystems, Carlsbad, CA, USA) from
the 5" and 3’ ends using the -21 M13 forward and M13
reverse primers, respectively. Sequencing was done at
the British Columbia Cancer Agency Genome Sciences
Centre (Vancouver, BC, Canada).

gRT-PCR analysis

For quantitative real time PCR (qRT-PCR) we grew the
reference isolate SLKW1407 on organic nitrogen media
(as described above) and treated cultures with either
LPPE, or a methanol control solution (50:50, MeOH:
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H,0). We harvested mycelia at 0, 6, 12, 24, 36, 48, and
72 h after the beginning of treatment, and proceeded
with qRT-PCR analysis following the protocol described
by DiGuistini et al. [13]. For each time point we pre-
pared three biological and three technical replicates.
The primers used to amplify the transcript of interest
are shown in Table 7. Data collection and statistical ana-
lysis were conducted with the Roche CFX 96-real-time
PCR detection system (Roche, Quebec, CA).

EST assembly

We processed chromatograms and trimmed low quality
sequences using PHRED [46], requiring a minimum of
100 bp with quality scores above PHRED 20. Using
cross-match (http://www.phrap.org/), we removed vector
sequences and filtered the remaining sequences for
Escherichia coli. To account for possible contamination
from the lab environment we also screened for Sacchar-
omyces cerevisiae, Agrobacterium, and Aspergillus spp.
To the resulting set of 44,288 quality-filtered reads we
added 5,950 quality-filtered G. clavigera reads (isolate
SLKW1407) from previous work [13]. Since the cDNA
libraries contained directionally cloned inserts,
sequences obtained using the M13 reverse primer (3’
reads) had a 3’-5" orientation with respect to the original
mRNA. These 3’ reads were reverse-complemented to
produce a 5’-3” oriented read collection. Then we
removed the polyA tails, which interfere in contig
assembly, and discarded sequences with long mononu-
cleotide stretches. The resulting set of 50,167 high-qual-
ity reads was assembled with CAP3 [47] using default
settings except for a minimum overlap of 40 bp and a
minimum identity of 95%.

Because the reads were 5’-3’ oriented prior to assem-
bly, most of the unigenes had a 5’-3” orientation. This
was verified by comparing the input fasta files and the
assembler’s ACE-format output files. Then, we screened
the ACE file for contigs that contained reads in both
orientations. Because proteins are encoded on the

Table 7 Primers used for quantitative RT-PCR analysis of
unigene locations (ULs)

Target UL Primer name 5’-3’ sequence

3230 R1718-F1 GTG TCC TCC ACC TTC CTC ACC
R1718-R1 CGT GAC TCC CTT GAC TTC TGG G

Gc_00052 Gc_0052-F1 GCT CTC TCT TTT GCC GGC GGA
Gc_0052-R1 GAG CCG GCC AGC GTT GAG TAA

Gc_00102 Gc_00102-F1 TCG GAC GGA CTG CAA ACG CG
Gc_00102-R1 CGA GCC CCA GAA AAG GAC GAC

3233 R1719-F1 CTC AGC AAC GGT CCA ACC TC
R1719-R1 GTG CTT CTT CCA CTT GCG GG

3234 F1718-F3 GAGCTGCTGACGCTCGATAA
F1718-R3 ACCTGACTGCTGTCGTCCAT
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forward strand of the transcript, such contigs potentially
represent misassembled unigenes.

Unigene-locations on reference genome

The unigenes were mapped against the G. clavigera gen-
ome [24] using BLAT [48]. For each unigene, we
selected the best hit to the genome, and recorded
sequence similarity (%) and unigene alignment length
(%). Since all unigenes were 5’-3’ oriented they mapped
to the genome strand that encoded the respective gene.
To group unigenes that represented the same gene, we
generated unigene-locations (ULs) based on strand-spe-
cific overlap of unigenes on the genome, and linking
information from unassembled 5’-3’ clone pairs. We ver-
ified unigene assembly by mapping all reads to the gen-
ome with BLAT and testing whether the unassembled
reads of a contig mapped to the same genome location
as the contig.

Unigene annotation

For annotation, all unigenes were compared to the
non-redundant NCBI protein database using BLAST
(NCBI, Bethesda, MD, USA; min e-value 1.0 x 107%).
We used custom Perl scripts to capture the best
BLAST hit on the forward frame and determine the
most likely open reading frame (ORF) for each
sequence. For the latter, all ORFs longer than 25
amino acids were identified using CLC Genomics
Workbench (CLC bio, Aarhus, Denmark). If the
sequence had a significant BLAST match on the for-
ward frame, the best ORF covering that match and the
most likely transcription start and stop were deter-
mined, keeping track of 5" and 3’ ORF truncations. If
no BLAST match was available, the longest ORF on
the forward frame was selected for the sequence. In
addition, unigenes were annotated with InterPro IDs
and Gene Ontology terms using InterProScan (EBI,
Cambridge, UK), and assigned K-numbers with corre-
sponding KEGG-BRITE classifications using KAAS
[49]. To evaluate unigene representation in essential
metabolic pathways, we conducted a reciprocal BLAST
analysis on the translated G. clavigera unigene ORFs
against the annotated Magnaporthe grisea and Asper-
gillus fumigatus protein datasets downloaded from the
Broad Institute (http://www.broadinstitute.org/).

Statistical analysis

We identified potentially differentially expressed genes
by comparing read frequencies in the non-normalized,
reference isolate cDNA libraries constructed from
(i) mycelial cultures, (ii) cultures treated with LPPE, and
(iii) spores. To account for unigene redundancy per
gene we assessed library-specific read frequencies per
UL rather than per unigene. Also, we counted only one
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read per transcript, and ignored reverse-assembled reads
in contigs. After normalizing the read counts, we per-
formed pair wise comparisons of libraries using a modi-
fied Fisher’s exact test.

Additional material

Additional file 1: Table S1. Excel file containing the supplementary

table with all unigene locations, their coordinates on the G. clavigera

genome, the ESTs that mapped to each UL, relevant annotations, and
expression analysis results.
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