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Mating alters gene expression patterns in
Drosophila melanogaster male heads
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Abstract

known how mating affects male gene expression.

robust male courtship behavior and mating success.

downstream components of this pathway as well.

Background: Behavior is a complex process resulting from the integration of genetic and environmental
information. Drosophila melanogaster rely on multiple sensory modalities for reproductive success, and mating
causes physiological changes in both sexes that affect reproductive output or behavior. Some of these effects are
likely mediated by changes in gene expression. Courtship and mating alter female transcript profiles, but it is not

Results: We used Drosophila genome arrays to identify changes in gene expression profiles that occur in mated
male heads. Forty-seven genes differed between mated and control heads 2 hrs post mating. Many mating-
responsive genes are highly expressed in non-neural head tissues, including an adipose tissue called the fat body.
One fat body-enriched gene, female-specific independent of transformer (fit), is a downstream target of the somatic
sex-determination hierarchy, a genetic pathway that regulates Drosophila reproductive behaviors as well as
expression of some fat-expressed genes; three other mating-responsive loci are also downstream components of
this pathway. Another mating-responsive gene expressed in fat, Juvenile hormone esterase (Jhe), is necessary for

Conclusions: Our study demonstrates that mating causes changes in male head gene expression profiles and
supports an increasing body of work implicating adipose signaling in behavior modulation. Since several mating-
induced genes are sex-determination hierarchy target genes, additional mating-responsive loci may be

Background

Behavior involves the perception and processing of sen-
sory information into a signaling cascade that mediates
physiological and motor outputs. This complex process
is influenced by an organism’s environment, genetic
make-up and nervous system function. Social interac-
tions influence an organism’s behavior [1-5], and these
behavioral changes are associated with alterations in
morphology [6-9] and gene expression [6,10-17]. How-
ever, the mechanisms mediating the changes are
unclear. As we work to understand responses to beha-
vior at the transcript level, we can clarify the regulatory
and intracellular processes governing nervous system
function and behavior.
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Therefore, we are studying reproductive behaviors in
the genetically tractable Drosophila melanogaster, which
exhibit stereotypical mating behaviors [reviewed in
[18,19]] regulated by genetics [reviewed in [20,21]] and
social interactions [[1,22,23]; reviewed in [19,24,25]].
The sex-determination gene hierarchy is the major regu-
lator of Drosophila reproduction [reviewed in [26,27]].
Components of this pathway affect sexually dimorphic
development, including the neural circuitries necessary
for sex-specific courtship behaviors [28-32]. However,
the behavioral functions of only a few of the down-
stream target genes of the hierarchy are known [33-43].

Although the potential for performing courtship beha-
vior is under genetic control, experience with other indi-
viduals alters behavior, particularly in the context of
courtship learning [19,24,25]. During courtship and mat-
ing, the male is inundated with sensory information that
must be interpreted so that the appropriate signals are
sent throughout the body for a successful mating.

© 2010 Ellis and Carney; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:gcarney@mail.bio.tamu.edu
http://creativecommons.org/licenses/by/2.0

Ellis and Carney BMC Genomics 2010, 11:558
http://www.biomedcentral.com/1471-2164/11/558

Therefore, it is reasonable to expect that a more experi-
enced male would be better at performing some aspect
of courtship to improve his mating success. In support
of this idea, Drosophila males experienced at courting
females initiate courtship toward novel, receptive
females more quickly than do inexperienced males
[44,45]. In a natural setting where many flies are com-
peting for mates, rapid courtship initiation may give an
experienced male a competitive advantage that increases
his mating success. Simply observing courtship and mat-
ing behavior of other flies is not sufficient to decrease
the male’s own mating latency, indicating that this
learning behavior requires active participation [45]. It is
possible that changes in courting and mated male gene
expression underlie this decreased courtship latency in
subsequent interactions.

By combining behavioral assays with microarray tech-
nology, it is possible to assess behaviorally-responsive
gene expression changes on a genome-wide scale
[12,22,46-51] to find loci regulating or regulated by
behavior, including sex-determination hierarchy target
genes. Prior work in our lab demonstrated that males
rapidly alter gene expression at the whole-animal level
during courtship [12,22]. Next, we focused on changes
occurring in the male head as a result of mating since
these changes likely affect function of the nervous sys-
tem and other reproductively important tissues to pro-
mote reproductive success. Our study demonstrates that
courtship culminating in mating affects gene expression
patterns in male heads and that many of the gene pro-
ducts are expressed in non-neural adipose tissue that
may play an important modulatory role in neural func-
tion and behavior.

Results and Discussion

Mating causes expression changes in male heads

Gene expression levels change rapidly as males court
females [12,22]. To determine the effects of courtship
culminating in mating on male gene expression, we
compared transcriptional profiles of males that mated
with a female to those that were not presented with a
female (control). Labeled samples from control and
treatment groups were hybridized to Drosophila Gen-
ome 2.0 Arrays (Affymetrix, Santa Clara, CA, USA),
which are based on the Flybase 3.1 annotation, targeting
nearly 18,500 transcripts.

In the current study we focused on head expression,
rather than whole body expression [12,22], to identify
gene expression changes in the nervous system and
other tissues within the head (such as sensory systems
and fat body) that likely modulate reproduction. We iso-
lated male heads (rather than dissecting out the brains)
since accumulating evidence from our lab [[12,22]; L.L.
Ellis and G.E. Carney, unpublished results] as well as
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from other published studies [[37,39,40,43]; reviewed in
[52]] indicates that head tissues, such as the fat body
surrounding the brain (Fig. 1), likely also have important
modulatory functions in behavior. To have the potential
to identify gene expression changes in these tissues as
well, we elected to assay the entire male head for altera-
tions in gene expression patterns in response to mating.

We used five algorithms to extract expression values
from each array and performed paired ¢-test compari-
sons between the expression values derived from mated
male head arrays and control male head arrays. Using
this strategy we identified 47 mating-responsive genes
(See Methods). Two hours after mating with a female,
males significantly up regulated 25 genes (Table 1) and
down regulated 22 genes (Table 2). Such changes are
not likely to be activity-dependent since control males
had locomotor levels similar to males that courted
females (two-tailed ¢-test, p > 0.05).

Verification of microarray results by independent qPCR
To confirm the microarray results, we performed qPCR
analysis on independently collected mated and control
male head RNA samples. We tested a subset of genes
whose expression levels changed significantly in mated
male heads compared to control male heads. Eight out
of 10 up-regulated genes and 2 out of 3 down-regulated
genes had the expected directional change (Table 3).
We did not verify up regulation of CG4825 and fit or
down regulation of CG8112 by qPCR. However,
increased fit expression in the fat body lining the brain
was confirmed by in situ hybridization (see below).

Expression of candidate genes is not restricted to the
brain

We hypothesized that examining gene expression in
head tissue instead of whole bodies would uncover
genes that function in reproduction by regulating ner-
vous system signaling. This could be via direct effects
on neural gene expression or by effects on other tissues
in the head that receive or respond to courtship and
mating signals. We found that expression of many mat-
ing-responsive genes is enriched in the head but not the
brain (Table 4) [53], indicating expression occurs out-
side of the brain. While some of the genes are expressed
in the eye, others appear enriched in tissues other than
the brain and eye.

One possibility is that they are expressed in an adipose
tissue called the fat body that lines the head cavity sur-
rounding the brain (Fig. 1a-d) and is implicated in court-
ship behavior modulation [[37,39,40,43]; reviewed in
[52]]. Data showing that mating-responsive genes
enriched in the head are also enriched in the adult fat
body (Table 4) [53] support this hypothesis. I situ hybri-
dization confirmed that several mating-responsive loci



Ellis and Carney BMC Genomics 2010, 11:558
http://www.biomedcentral.com/1471-2164/11/558

Page 3 of 14

"

Figure 1 Fat body tissue in the adult male. Low magnification image (10x) from the front of an adult male head (A) or dorsal abdominal
cuticle (E). Boxed areas indicate adipose tissue magnified at 20X in 3 areas of the head (B-D) and 2 areas along the abdominal cuticle (F).

(CG13360, bubblegum (bgm), Prx2540-2, CG8449 and
CG4825) are expressed in male fat body tissue (Fig. 2).
FlyAtlas data indicate that the fat-expressed genes
CG13360, bgm, and Prx2540-2 are expressed at very low
levels in brains, while CG8449 and CG4825 are
expressed at low to moderate levels in the brain [53]. By
in situ we did not detect brain expression of these five
transcripts (Fig. 2 and data not shown), although we

cannot rule out the possibility that low levels of message
are present.

To test the hypothesis that mating-induced changes in
gene expression occur in the fat body, we compared fit
expression in the heads of mated and control heads. fit
expression increased in the adipose tissue surrounding
the male brain after courtship culminating in mating
(Fig. 3).
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Gene Gene name Avg. fold GO Molecular function GO Biological process
identifier change
CG2163 polyA-binding protein Il (Pabp2) 14 Poly(A) binding mRNA polyadenylation
(CG4288 1.28 High affinity inorganic phosphate: sodium Transport
symporter activity
CG4501 bubblegum (bgm) 1.38 Long-chain-fatty acid-CoA ligase activity ~ Long-chain fatty acid metabolic
process
CG4825 Phosphatidyl-serine synthase 1.22 CDP-diacylglycerol-serine O- Phosphatidyl-serine
phosphatidyltrans-ferase activity biosynthetic process
CG5527 1.23 Endothelin-converting enzyme activity Proteolysis
CG5618 1.14 Dipeptidyl-peptidase Il activity Proteolysis
CG6188 1.64 Glycine N-methyltransferase activity Unknown
CG6342 Iron regulatory protein 1B (Irp-1B) 1.26 Iron ion binding Regulation of translational
initiation by iron
CG8425 Juvenile hormone esterase (Jhe) 1.86 Juvenile-hormone esterase activity Juvenile hormone catabolic
process
CG8449 1.28 Rab GTPase activator activity Regulation of Rab GTPase
activity
CG9989 1.52 Endonuclease activity Unknown
CG11765 Peroxiredoxin 2540 (Prx2540-2) 12 Antioxidant activity Unknown
CGI2116 1.22 Sepiapterin reductase activity Metabolic process
CG13360 1.28 Unknown Unknown
CG13607 1.23 Unknown Unknown
CG13965 1.35 Unknown Unknown
CG16772 1.5 Unknown Unknown
CG16901 squid (sqd) 1.25 mMRNA binding Oocyte axis determination
CG17364 167 GTP binding Microtubule-based process
CG17820  female-specific independent of transformer 14 Unknown Unknown
(fit
CG18262 13 Zinc ion binding Unknown
CG30026 142 Unknown Unknown
CG30095 1.86 Oxidoreductase activity Metabolic process
CG30084 Z band alternatively spliced PDZ-motif 1.38 Protein binding Unknown
protein 52 (Zasp52)
(CG33486 asparagine synthetase 1.28 Asparagine synthetase (glutamine- Asparagine biosynthetic

hydrolyzing) activity process

Twenty-five genes are significantly (p < 0.001) up regulated in male heads 2 hrs after mating when compared to control male heads.

Juvenile hormone esterases are important for male
reproductive behaviors

We hypothesized that if a gene is up regulated after
mating, that gene likely affects some aspect of reproduc-
tive behavior. Therefore, we assayed the percentage of
time a male spent courting a female, known as the
courtship index (CI), of candidate mating-responsive
gene mutants. A Jhe P-element insertion, Jhe®01859
resulted in significantly reduced CI values in homozy-
gous mutant males compared to heterozygous or
wild-type controls (Fig. 4). Heterozygous males showed
similar courtship activity compared to wild-type males,
ruling out heterozygous effects on CI levels. Though Jhe
males court females less vigorously, they perform stan-
dard courtship steps, eventually culminating in
copulation.

In addition to Jie there are three other candidate juve-
nile hormone esterase genes in the Drosophila genome
[54]. One of the genes, cricklet (clt), also had an avail-
able P-element insertion, so we tested c/£®***!” mutants
to see if they had a similar phenotype to /he mutants.
We found that ¢/t mutants also have decreased Cls rela-
tive to controls (Fig. 4). There is also a strong genetic
interaction between Jhe and clt. Transheterozygous
mutant males had significantly reduced courtship com-
pared to controls (Fig. 4).

We predicted that mating-responsive loci would func-
tion to prime the male for subsequent mating encoun-
ters by regulating courtship or mating latency and
duration. Therefore, we predicted that decreasing Jhe,
which was up regulated in mated male heads, would
increase courtship or mating latency. To test this
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Gene Gene name Avg. fold GO Molecular function GO Biological process
identifier change
CG1897 Drop (Dr) -1.5 DNA binding Central nervous system development
CG2505 a-Esterase-2 (o-Est2) -13 Carboxylesterase activity Unknown
CG3200 Rhythmically expressed gene 2 -1.27 Phosphoglycolate phosphatase activity Metabolic process
(Reg-2)
CG3926 Serine pyruvate aminotrans- -1.34 Serine-pyruvate transamine activity Glyoxylate catabolic process
ferase (Spat)
CG4105 Cytochrome P450-4e3 (Cyp4e3) -13 Electron carrier activity Unknown
CG5840 -1.34 Pyrroline-5-carboxylate reductase activity Proline biosynthetic process
CG6806 Larval serum protein 2 (Lsp2) -1.28 Nutrient reservoir activity Transport
CGr7224 -1.16 Unknown Unknown
CG7390 senescence marker protein-30 -1.36 Unknown Unknown
(smp-30)
caG8112 -142 Sterol O-acyltransferase activity Unknown
CG8846 Thor -1.26 Eukaryotic initation factor 4E binding Immune response
CGY9%416 -1.25 Sequence-specific DNA binding Regulation of transcription
CG9733 -1.6 Trypsin activity Proteolysis
CG11909 target of brain insulin (tobi) -1.42 a-glucosidase activity Carbohydrate metabolic process
CG11919 -1.36 ATP binding Peroxisome organization and
biogenesis
CG16898 -1.68 Unknown Unknown
CG18003 -1.36 Glycolate oxidase activity Metabolic process
CG30489 Cyp12di1-p -1.3 Electron carrier activity Unknown
CG31075 -1.26 Aldehyde dehydrogenase (NAD) activity Pyruvate metabolic process
CG31628 adenosine 3 (ade3) -1.28 Phosphoribo-sylamine-glycine ligase Purine base biosynthetic process
activity
CG31689 -1.25 ATPase activity Unknown
CG33462 -4.08 Trypsin activity Proteolysis

Average fold changes, molecular functions and biological processes are shown for 22 genes that are significantly (p < 0.001) down regulated in male heads 2 hrs

after mating.

hypothesis we examined the courtship and mating
kinetics of mutants for Jhe and the related esterase clt.
Courtship latency (time to initiation of courtship) did
not differ among mutants and controls. Though Jhe and
clt males mated with females, they had a significant (p <
0.05) increase in mating latency (Fig. 5) (ANOVA,

Table 3 Confirmation of microarray results by qPCR

genotype p < 0.05, trial p > 0.05), while mating duration
was unaffected. The increased mating latency was not
dependent on the mating trial (1%, 2™ or 3). However,
as we increased the number of mating attempts, the
mating success (as measured by the act of copulation)
of Jhe and clt mutant males was significantly reduced

Gene Gene Microarray qPCR Relative fold Avg. relative expression level in Avg. relative expression level in
identifier symbol Fold change change *+ SEM control male heads + SEM mated male heads + SEM
CG5618 1.14 202 + 049* 0.36 + 0.09 0.74 £ 0.18

CG6188 1.64 1.94 + 0.26* 225+ 042 438 £ 058

CG8449 1.28 1.35 £ 0.15% 1.24 £ 026 168 £ 0.18
CG16772 15 407 £ 1.55 6.86 + 1.72 2794 + 1061
CG30026 142 223 + 0.35% 436 £ 0.84 9.74 £ 153

CG4501 bgm 1.38 447 £1.11% 142 £ 031 6.37 £ 1.57
CG6342 Irp-1B 1.26 142 +0.12 1.09 + 0.18 155+ 0.13
CG11765  Prx2540- 12 123 £ 0.12% 047 + 0.08 0.58 + 0.06

2
CG2505 akst? -13 -1.26 + 0.15 284 + 059 225+ 042
CG7390  smp-30 -1.36 -1.69 + 0.16% 1.28 + 045 077 + 02

* Indicates a significant (p < 0.05) difference between the average relative expression level in control male heads and mated male heads. SEM = Standard error
of the mean.
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Table 4 Candidate genes are enriched in head tissue
other than the brain, including adult adipose tissue

Total no. of genes Head Brain Eye Fat body

Up regulated 25 18 4 9 16
Down regulated 22 20 2 1218

Data was compiled from FlyAtlas [53].

(Fig. 6) (Binary Logistic Regression, genotype p < 0.01,
trial p < 0.0001, interaction p < 0.0001) compared to
heterozygous controls. Since we ruled out a heterozy-
gous effect on CI values we did not test for heterozy-
gous effects on mating latency or mating success.
Females mated to Jke or clt mutant males laid equiva-
lent numbers of eggs regardless of the mating trial and
day of egg laying (ANOVA, genotype p > 0.05, trial p >
0.05, day p > 0.05), and neither Jke nor cl/t mutant
females had detectable fertility defects.

Conclusions

Changes in gene expression upon mating

The complex reproductive behaviors exhibited by Droso-
phila require the interaction between genetics and
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environment. Courtship is an innate and stereotypical
process under control of the somatic sex-determination
hierarchy and is influenced by social interactions. Court-
ship and mating elicit gene expression changes in
females [49,55-57], and courtship affects transcript pro-
files in males [12,22]. The female post-mating effects
occur rapidly (within minutes) or can be detected sev-
eral hours after mating [49,55-57]. Within 5 min of
courtship, whole-male gene expression profiles also
change rapidly [12,22]. In this study we expanded on
our earlier studies in whole males to show that court-
ship culminating in mating causes changes in gene
expression in the male head as well. Expression levels
likely change rapidly in response to sensory cues
received during courtship, while the physiological
changes from mating [58] may mediate long-term
expression level changes in the nervous system or else-
where in the fly that can feed back to the nervous
system.

The expression profile of a 5 min courting male differs
from that of a 2 hr post-mating male. This is not sur-
prising since we expected that the process of mating
would have major effects on male physiology that would
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Sense

Antisense

Abdominal fat

Sense

(1)) or Prx2540-2 (K.L).

Figure 2 Candidate genes are expressed in fat tissue. Antisense (A-D,|,KM-Q) or sense (E-H,J,L,R-V) RNA probes were designed to cDNA
clones for CG4825 (AEMR), CG8449 (BF|JN,S), bgm (CGO,T), Prx2540-2 (DHKLP,V), and CG13360 (QV). In situ hybridization to whole-mount
tissue showed candidate gene expression in male CS fat body tissue (arrows) present on head (A-H) and abdominal (M-V) cuticle. Purple
reactivity indicates presence of transcripts. Brains (I-L) showed light pink background staining but lacked detectable expression of either CG8449
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Figure 3 fit expression in the fat body is increased after courtship culminating in mating. /n situ hybridization was performed on
cryosectioned male heads and confirmed that fit transcript levels were up regulated in adipose tissue (arrows) of mated males (panel B)
compared to control males (panel A) as indicted by increased intensity of purple staining in mated male fat body. Insets in panels A and B show
magnified views of head fat. Qualitative assessment of signal intensity in both treatment groups indicates that fit expression increased in mated

male heads (panel Q).

be reflected in altered transcriptional profiles. Of the 47
genes with altered expression 2 hrs after mating (Tables
1 and 2), only 1 gene, fit, is also up regulated in males
after 5 min of courtship [12]. CG16772 is up regulated
2 hrs after mating but is down regulated during 5 min
of courtship [12]. CG16772 is one of several fat body-
expressed immune response genes down regulated dur-
ing courtship, possibly to allow energetic resources to
be directed toward offspring production rather than

immunity [12,22]. After mating, expression of CG16772
may increase because contact with a female increases
the likelihood of encountering a pathogen.

The fact that few genes overlap between these data
sets is not surprising since we assayed different time
points (5 min or 2 hrs), different tissues (whole bodies
in previous studies versus heads in this study) and dif-
ferent behaviors (courtship alone versus courtship cul-
minating in mating). We also used different approaches

1.0
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0.6
o
4
<
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02 +
*%k%
*k%
0.0 - -
cltBG01317 cltBe01317 /4 CltBGO1317 /)y oBGO1917
(10) (9) (10)

Male genotype

*k%k

=

Jhee01858 Jhee01859 /4 +
(9) (10 (10)

Figure 4 Jhe and clt mutants reduce courtship toward females. Mutant males homozygous for P-element insertions in Jhe or clt showed
reduced courtship (***p < 0.001) under red light compared to sibling heterozygous and wild-type controls. Jhe’®*? +/+ cltf“O"*"” mutant males
showed significant reductions in courtship compared to either heterozygote or the wild-type control. (N) reflects sample size. Error bars are SEM.
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Figure 5 Mating latency is increased in Jhe and clt mutants. Under red light conditions, homozygous and transheterozygous mutant males
had significantly (ANOVA p < 0.01, Tukey's *p < 0.05) increased mating latencies toward CS virgin females regardless of the mating bout (1%,
2™ or 3%: therefore, overall average mating latencies are shown. (N) reflects sample size. Error bars are SEM.

for analyzing the data due to the differences in experi-
mental design for each test. The analysis strategies pro-
vide us a conservative estimate of the transcripts
affected by courtship and mating.

We predict that some mating-responsive genes facili-
tate an increased male mating efficiency for future
encounters. Little is known about how repeated matings
affect male mating latency, duration or fecundity. After
his first mating, the male may perceive and process
female stimuli more rapidly, may be more appealing to
the female, or may be physiologically primed for subse-
quent matings by replenishment of Acps, sperm or
other seminal proteins, resulting in decreased courtship
or mating latencies. Alterations in gene expression, such
as those described here and in our earlier work [12,22],
may contribute to these expected behavioral and physio-
logical changes.

Gene expression in adipose tissue

The fat body is a secretory tissue [reviewed in [59]]
whose effects on fly reproductive behavior have pre-
viously been described [[37,39,40,43]; reviewed in [52]].
The majority of mating-responsive genes are expressed
in adult adipose tissue (fat body) (Table 4), and we ana-
lyzed a subset of six up-regulated genes to show that
they are expressed in adipose tissue surrounding the
brain (Figs. 2 and 3). Furthermore, we observed
increased expression of fit in male adipose tissue after

courtship followed by mating (Fig. 3). fit also is
expressed in the head fat of females and originally was
named based upon its high expression in females under
the control of Sex-lethal [39], which is the initial regula-
tory gene in the somatic sex-determination hierarchy.

Other studies also indicated that several mating-
responsive genes identified in our study are expressed in
the fat body surrounding the brain. Larval serum protein
2 (Lsp2) is expressed in the head fat of both sexes [60].
Of the 25 genes up regulated by courtship and mating,
14 are detectable (signal strength greater than 20) in
brain and 21 genes are detectable in fat body based
upon a microarray analysis of adult mRNA expression
levels [53]. Of these 25 up regulated genes, 16 are
enriched in the fat body relative to other adult tissues
(Table 4).

Taken together, these results imply that the brain is
not the only tissue responding to or regulating post-
mating behavior, but that adipose tissue plays a role in
this process as well. In response to mating, a signaling
cascade initiated by neurosecretory cells may transmit
the signal to the surrounding fat body. The fat body
then could perpetuate the signal by secreting factors
that influence neuronal or non-neuronal tissues. We
hypothesize that expression level changes in the brain
alter neuronal signaling either directly or indirectly,
which impacts the processing of sensory cues and tar-
gets other reproductively important tissues.
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Figure 6 Mating success decreases in Jhe and clt mutants. Jhe/+ and c/t/+ control males successfully mated with 3 females in succession,
while experimental Jhe and clt mutant males significantly (Binary Logistic Regression, genotype p < 0.01, trial p < 0.0001, interaction p < 0.0001)
decreased their mating success with the 2" and 3" females. No. of successful matings/Total no. of pairings for 1 2"% 3" trials are shown.
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Juvenile hormone esterases and male reproductive
behavior

Another mating-responsive gene, Jhe, is also expressed
in adipose tissue [61-64] and functions in reproductive
behavior (Figs. 4, 5, 6). Jhe and three closely related
esterase genes (clt, Jhedup, and CG7529) have juvenile
hormone esterase (JHE) activity in vitro. JHEs together
with juvenile hormone epoxide hydrolases hydrolyze
Juvenile hormone (JH) to regulate JH levels [65,66].
Since Jhe expression is positively regulated by JH [67],
the mating-induced increase in Jhe expression identified
in our study may be JH dependent.

Much of our understanding of physiological functions of
JH comes from studies investigating its function during
development [reviewed in [68]]. However, JH also has
important post-developmental functions such as promot-
ing accessory gland protein (Acp) synthesis [69]. During
mating Acps are transferred, along with sperm, to the
female [70], and the transfer of Acps triggers male synth-
esis of new Acps [58]. Males also transfer Sex-peptide to

the female during mating [71-73]. Sex-peptide increases
JH levels in females [74], which stimulates egg develop-
ment [75]. However, possible mating-induced changes in
male JH levels have not been evaluated. Since ejaculate
components must be replenished after mating, we
hypothesize that male JH levels increase after mating to
stimulate Acp synthesis. The increase in JH would up reg-
ulate Jhe expression which would, in turn, reduce JH levels
once the ejaculate components have been replenished.

JH also has a role in modulating behavior since males
with reduced JH court females less intensely [76], Our
data suggest that an increase in JH, caused by reduction
of Jhe or clt, may also disrupt courtship (Figs. 4, 5, 6).
Jhe and clt deficient males, which likely have increased
levels of JH, court less vigorously (Fig. 4), have increased
mating latencies (Fig. 5), and have reduced mating suc-
cess (Fig. 6). This situation exemplifies the complex reg-
ulation governing behavior and implies that JH levels
must be tightly regulated in order to ensure appropriate
behavioral and physiological responses.
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Gene expression in the brain

Although we are particularly interested in the large
number of fat-expressed genes that were identified in
this and earlier screens [12,22], we also note that several
of the identified transcripts are expressed in brains as
would be expected for genes that function in behavior.
Proper function of the nervous system relies on the
appropriate cellular architecture, connections and signal-
ing. Behavior requires the sensory systems to perceive
the information accurately and transmit such informa-
tion to the brain for processing. The brain can then
transmit the signal to the appropriate output pathways
which can modify signaling in tissues such as the fat
body or the brain itself. Therefore the establishment and
maintenance of the brain (and sensory systems) is vital
to the organism’s ability to respond to its environment
and experiences. It is possible that mating-responsive
genes act in the development or maintenance of a
mated male brain as opposed to a naive male brain.

Thirteen of the 21 fat-expressed genes up regulated in
mated males are also expressed in brains at detectable
levels [53]; a single transcript, CG4288 is detected in
brains but not fat [53]. None of these genes have known
function in behavior, but their reported mutant pheno-
types or molecular functions indicate that several of the
loci may have important neural maintenance functions.

For example, mutants for bgm, an enzyme involved in
fatty acid metabolism that is expressed in both the brain
and fat, have a neurodegeneration phenotype in
response to accumulation of long chain fatty acids [77].
Another gene that potentially functions in a neurode-
generation pathway is Phosphatidyl-serine synthase,
which responds to changes in polygluatmate (polyQ)
levels [78]. polyQ diseases, including Huntington’s Dis-
ease, are adult on-set progressive neural degeneration
diseases caused by the accumulation of glutamate
repeats [79].

Cellular homeostasis is important in the maintenance
and function of the Drosophila brain. One gene that
helps maintain this homeostasis is Iron regulatory pro-
tein 1B (Irp-1B) which encodes a protein that binds to
iron-responsive elements (IREs) to regulate iron metabo-
lism [80]. In addition to affecting cell survival and
homeostasis, neural morphology might also be regulated
by mating-responsive candidates. Mutants of Pabp2
show pathfinding and targeting defects in the larval neu-
romuscular junction [81].

Mating-responsive genes and the sex-determination
hierarchy

This genome-wide analysis identified known sex-
determination hierarchy target genes such as fit. Three
other mating-responsive genes (CG16772, Prx2540-2,
and CG16898) (Tables 1 and 2) are also regulated by
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the sex-determination hierarchy [41]. Transcriptional
profiling of mutants for a variety of sex-determination
hierarchy genes indicates that Prx2540-2 and CG16898
are regulated by fruitless (fru), while fit is downstream
of transformer (tra). CG16772 may also function down-
stream of tra [41].

The splicing factor squid (sqd) is up regulated in
mated male heads (Table 1). Interestingly, primary tran-
scripts of the sqd locus are sex-specifically spliced in the
head as well as the germline, although it is not known if
sqd splicing is regulated by the sex-determination hier-
archy [82]. It is possible that sqd and other mating-
responsive loci function as downstream targets of the
sex-determination hierarchy to regulate morphological
and behavioral differences between male and female
Drosophila. Alternatively, there may be other pathways
(such as those that regulate alternative splicing) that
function together with the sex-determination hierarchy
to regulate reproductive behavior.

We predict that mating-responsive genes also function
in other aspects of reproduction and behavior; therefore,
we propose this genome-wide approach as a powerful
tool for determining the genetic pathways and intracel-
lular processes regulating reproduction, both at the
behavioral and physiological levels.

Methods

Microarray Analysis

The wild-type Canton-S (CS) strain was isogenized to
reduce genetic variation and the isoline was kept at
25°C on a 12-hr light/dark cycle. Twenty or fewer virgin
CS males were aged collectively for 3 days at 25°C. On
day 4, individual males were aspirated into vials. Virgin
females were collected and aged in groups of 20 or
fewer flies for 4 days at 25°C.

On day 5, males were equally divided into two treat-
ment groups. One group (referred to as “mated males”)
consisted of individual males that were placed with a
female for courtship and mating, while the second
group of males (referred to as “control males”) was
mock exposed to a female. We tested both groups at
the same time to allow for paired microarray and
Cyber-T analyses (see below). For the mated male
group, a single, aged virgin female was aspirated into
each male’s vial. The control males were treated identi-
cally except that no female was transmitted during the
aspiration process.

Upon completion of mating, females were removed
from the vials. Males from both treatment groups were
quick frozen 2 hrs later and stored at -80°C for future
RNA extraction; only pairs for which the mated male
had a mating latency less than 30 min and mating dura-
tion of 18-30 min were collected for RNA extraction.
Seventy-four percent of mated males tested met this
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requirement. All procedures were conducted at the
same time each day to control for circadian effects.

Head tissue was separated from the remaining body by
vortexing quick-frozen flies. Male heads were assigned
to one of 20 groups (30 heads in each group; 10 mated
and 10 control RNA preparations) so that control and
mated samples collected together could be analyzed by
paired statistical comparisons. Following standard proto-
cols, total RNA from head tissue was extracted in Trizol
(Invitrogen, Carlsbad, CA, USA). Total head RNA pre-
parations from 10 groups (5 control groups and their
corresponding mated groups) were sent to the Univer-
sity of Kentucky MicroArray Core Facility for labeling
and hybridization to Affymetrix Drosophila 2.0 Genome
Arrays following standard Affymetrix (Santa Clara, CA,
USA) protocols.

Expression values were generated similarly to previous
experiments [12,22] using five algorithms (PM, PM-
MM, MAS 5.0, GCRMA, and GeneSpring). Multiple
expression value algorithms were used to control for
variation among the algorithms and to generate a statis-
tically stronger candidate gene set. We used dChip’s PM
(perfect match between the probe and target sequence)
and PM-MM (one nucleotide between the probe and
target sequence is mismatched) algorithms [83], as well
as those implemented by GCOS (MAS 5.0, Affymetrix),
R (GCRMA) [84], and GeneSpring (Agilent, Santa Clara,
CA, USA). For the dChip algorithms, expression values
were only considered if greater than 50; for the other 3
methods, expression values were required to be greater
than 100. To test for significance, we used Cyber-T’s
Bayesian ¢-test analysis [85]. Candidate mating-
responsive genes included those whose expression dif-
fered significantly (p < 0.001) between control male
heads and mated male heads in at least 3 expression
value data sets and had a false discovery rate less than
0.05 [86]. With such stringent criteria, we did not spe-
cify a particular fold change cut-off value.

qPCR

To confirm the microarray results, qPCR was performed
on 10 independent samples (5 mated and 5 control
RNA preparations) that were collected as described
above but were not used in the microarray analysis.
polyA™ RNA was isolated from each of the 10 samples
using the Oligotex mRNA mini kit (Qiagen, Nether-
lands). cDNA was synthesized using the SuperScript
First-Strand Synthesis System (Invitrogen, Carlsbad, CA,
USA). We designed primers to amplify 10 up-regulated
and 3 down-regulated genes, choosing genes that are
predicted to be enriched in brain, fat body or both tis-
sues based upon FlyAtlas expression data [53]. When
possible, primer pairs were designed across introns to
control for amplification specificity. Genes that are
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expressed at low levels in the head [[53]; L. L. Ellis and
G. E. Carney, unpublished results] were not tested.

Using the SYBR Green PCR Mastermix (Applied Bio-
systems, Foster City, CA, USA), 2 uL of a 1:4 dilution of
each template was run in triplicate in the ABI7500
(Applied Biosystems, Foster City, CA, USA) using
default parameters. Control reactions lacking template
and controls with template but without Reverse Tran-
scriptase were used. Primer-specific amplification was
determined by analyzing dissociation curves for each
primer pair.

mRNA levels were determined by the Relative Stan-
dard Curve Method (Applied Biosystems, Foster City,
CA, USA), and candidate gene transcript levels were
normalized to rp49 transcript levels. Normalizing the
mated male transcript levels to the control male tran-
script levels generated a relative fold change. We also
analyzed trends in the average relative transcript levels
of each treatment (control and mated) using the two-
tailed t-test. Secondary qPCR analysis confirmed
increased expression of CG6188 and decreased expres-
sion of alpha Esterase-2.

Regression of mean expression microarray analysis
fold changes compared to independent qPCR fold
changes indicated a highly significant positive correla-
tion between results obtained by the two methods (r =
0.51, N = 10, p = 0.021).

In situ hybridization

Digoxigenin (DIG)-labeled sense and antisense RNA
probes were made from cDNA clones for six candidate
genes with predicted fat body expression following the
manufacturer’s standard protocol (Roche, Nutley, NJ,
USA). The genes and their corresponding cDNA clones
were CG4825 (LD10327), CG8449 (GH10459), CG13360
(LP09811), bubblegum (bgm) (GM14009), fit (RH40291)
and Prx2540-2 (RH69586). Expression of fit is regulated
by tra while expression of Prx2540-2 is regulated by
fruitless (fru) [41]; tra and fru are regulatory compo-
nents of the sex-determination hierarchy. Antisense and
sense probes were hydrolyzed into 200 bp fragments
and in situ hybridization to male brains, head carcass
and abdominal cuticle was performed as described in
[33]. Antisense probes detected expressed transcripts in
each case, while sense probes served as negative controls
for expression.

To verify the increased expression of fit in male head
tissue after courtship followed by mating, virgin CS
males were collected 2 hrs after mating and compared
to virgin CS control males that did not mate with a
female. After treatment, males were cryosectioned in
OCT compound and in situ hybridization was per-
formed on the sections as described previously [37].
Control and mated tissues were placed on the same
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slide to control for histochemical reaction time. We
qualitatively assessed fit expression in adipose tissue
lining the brain from non-existent (-) to highly
expressed (+++).

Courtship assays

All flies were kept on a 12-hr light/dark cycle at 25°C.
P-element insertion mutations in Jhe and cricklet (clt)
were obtained from the Bloomington Drosophila Stock
Center (clt?°1317) and the Exelixis Collection at Har-
vard Medical School (Jhe¢®*®>®). These insertions are
likely hypomorphs since they are located in proximal
promoter regions. Each P-element was backcrossed into
the CS background to generate a genetically similar con-
trol that had one wild-type copy of Jke or clt. To test for
a genetic interaction between Jke and clt, the two inser-
tion strains, Jhe??%>° and clt?%1317 were crossed to
generate transheterozygous flies containing a single P-
element insertion in each gene (Jhe®?18%2 4/ clfBe01317),
Virgin P-insertion or control males were collected and
stored individually for 4 to 5 days; virgin CS females
were aged collectively for 3 to 5 days.

Behavioral assays were conducted at 22°C under red
light conditions to diminish the effect of eye color on
vision and courtship. We video recorded the interactions
with a digital camcorder so that subsequent analyses
could be performed. To analyze courtship behavior, a
male was aspirated into a mating chamber (diameter =
1 ¢m) and a virgin CS female was introduced 2 min
later. The pair was video recorded for 10 min. The
courtship index (CI; percentage of time the male spent
performing courtship during the initial 10 min of obser-
vation) and courtship latency (time until courtship
occurs) were calculated. CI values were arcsine trans-
formed for statistical analysis. Two-tailed ¢-test compari-
sons between homozygous mutants and controls were
calculated to determine significance (p < 0.05). Jhet01859
+/+ clt?°1317 males were compared to both control
genotypes (two-tailed ¢-test).

Fertility Assays

The ability of a male to mate with multiple CS females
and the fecundity of these matings was also assessed.
Jhe and clt mutants and heterozygous controls, as well
as CS virgin females, were collected and aged as
described for the courtship assay. Under red light, a
male was aspirated into a mating chamber, followed by
a CS virgin female. The male was given 2 hrs to mate
with the female. If mating occurred, the female was
placed in a vial with food to measure fecundity (number
of eggs laid and number of adult offspring) and the
male was placed in a new mating chamber. A second
CS virgin female was aspirated into the new chamber

Page 12 of 14

and the pair was given 2 hrs to mate. If the second mat-
ing occurred, the female was placed in a vial for later
progeny counts, and the male was moved to another
chamber for mating with a third and final female. The
third mated female was also kept for further analysis.
For the first mating bout, all 10 c/t?*“°**7 males mated,
while only three of the ten males mated with the second
female and none of the 3 males mated with the third
female. Eight out of 13 c/t?9?/3”/+ males mated with
the first female, five of those eight males mated with the
second female and four of the remaining five males
mated with the third female. /e?**%>° males only mated
with the first female (six out of nine males). However,
nine of ten Jhe®®?%%°/+ males mated with the first female,
seven of those nine males mated with the second female
and four of the seven males mated with the third
female. For the transheterozygous clt?“317/[pe018%9
males, seven of 12 mated with the first female, four of
seven males mated with the second female and two of
the four males mated with the third female.

The mating latencies and durations for each of the three
possible matings were measured and significance was
determined by Univariate ANOVA analysis using geno-
type and mating trial as fixed variables with Tukey’s post-
hoc analysis (SPSS). Males that did not mate within the 2
hr window were scored as being unsuccessful. Using linear
regression, we assessed the significance (p < 0.05) of geno-
type and mating bout on mating success.

For 6 days following the assay, the female was trans-
ferred to a new vial and the number of eggs laid in
each vial was determined. Vials were maintained at 25°
C for 18 days to allow for a count of the total number
of adult progeny. Significant effects of genotype and
trial on mating latency or duration were measured by
the Univariate ANOVA and Tukey’s post-hoc analysis.
We also measured the significance of genotype, mating
bout and day of egg laying on the male’s fecundity
(Univariate ANOVA and Tukey’s post-hoc analysis).
Fecundity was measured by the total number of eggs
laid and by the arcsine transformed ratio of adult off-
spring to eggs laid.
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