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Abstract

HNRNPAZ2B1 expression levels.

Background: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD)
plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to
NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate.

Results: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE
proteomics technology to examine the changes in protein expression induced in Hela cells by UPF1 knockdown.
QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide
treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted
NMD activating features, predominantly upstream open reading frames (UORFs). Strikingly, however, the majority of
transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide
treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1
knockdown, indicating that UPF1’s role in regulating mRNA and protein abundance is more complex than
previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within
the 3" UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in
endogenous hnRNP A2 and BT mRNA with a concurrent increase in the NMD sensitive isoforms.

Conclusions: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small
fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst
these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of

Background

Nonsense-mediated mRNA decay (NMD) is one of a
number of RNA surveillance pathways that help to
ensure the fidelity of gene expression by degrading
mRNAs that lack the proper arrangement of transla-
tional signals (reviewed in [1-4]). As the name suggests,
NMD is responsible for recognizing and degrading
mRNAs that contain premature termination codons
(PTCs). In mammals, a termination codon is generally
defined as premature by its spatial relationship to exon-
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exon junctions. The presence of one or more junctions
at a distance of > 50-55 nucleotides downstream of the
termination codon marks the mRNA for destruction
[2,4]. The biochemical basis of this effect is an interac-
tion between the exon junction complex (EJC), a large
multi-protein complex that is deposited on the mRNA
as a result of splicing, and the complex formed at the
stop codon by the terminating ribosome during the first
round of translation [1,2,4]. This interaction is mediated
by the essential NMD factors UPF1, UPF2 and UPF3
(UP-Frameshift suppressor, from their original identifica-
tion in Saccharomyces cerevisiae [5]). Furthermore, in a
number of metazoans, the phosphorylation state of
UPF1 is regulated by the factors SMG1 and SMG5-7
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(Supressor with Morphological defects on the Genitalia,
from their originally identification in Caenorhabditis ele-
gans [6]), which is required for NMD to take place [7].
Until recently the position of any downstream EJCs was
thought to be the primary determinant of a PTC in
mammals. Recent studies, however, have shown that the
distance from the PTC to various cues within the 3’
UTR (particularly the cytoplasmic poly-A binding pro-
tein PABP) can also play an important role in defining
termination events as aberrant [3,8-13]. This is in a
similar fashion to those organisms, such as S. cerevisiae,
C. elegans and Drosophila melanogaster, where the EJC
is absent or plays no role in NMD, and is thought to
reflect a primordial mechanism of PTC recognition
upon which, in mammals, the EJC has been superim-
posed [3,4,13].

Apart from its role in dealing with unintended errors
in gene expression, NMD has a well documented role in
regulating the abundance of many physiological tran-
scripts in all model organism examined to date [14-21].
Moreover, many NMD factors are now known to have
additional functions extending beyond NMD (reviewed
in [4]). The difference between species in those genes
regulated by NMD is thought to be the cause of the dif-
fering phenotypes of animals in which Upfl has been
removed [16,19,22]. Amongst these, Mus musculus lack-
ing Upf1 are embryonic lethal [23], indicating that Upfl,
and presumably NMD, plays an important role in mam-
malian physiology and development. NMD-regulated
transcripts can be divided into two broad categories.
First those mRNAs that “normally” possess a PTC.
These include transcripts that contain upstream open
reading frames (WORF) within their 5" UTR, or in which
a PTC is introduced as the result of a regulated alterna-
tive splicing event (AS-NMD), including those tran-
scripts with an intron more than 50-55 nt into the 3’
UTR such that the coding sequence (CDS) termination
codon appears premature [15,16,24-26]. Secondly, those
mRNAs where NMD is co-opted as a decay mechanism
through the interaction of UPF1 with a protein that
recognizes a specific set of mRNAs. Two examples are
staufen-1 (STAU1) mediated decay (SMD) and the
decay of certain replication-dependent histone mRNAs
at the end of S-phase of the mammalian cell cycle
[27-29]. In both cases a protein recognizes a specific cis-
element within the 3’ UTR and also interacts with UPF1
[27-29]. mRNA degradation is then triggered in a fash-
ion that is dependent on UPF1 and active translation,
but independent of the other UPF proteins [27-29].

Previous large-scale investigations into the role of
UPF1/NMD in regulating physiological gene expression
in metazoans have focused on changes in mRNA abun-
dance [15,20,21,29-34]. In this study we have sought to
deepen our understanding of the role of UPF1 in

Page 2 of 19

regulating physiological gene expression by examining
the changes in protein expression in response to siRNA
mediated depletion of UPF1 in HeLa cells, using the
expression proteomics technique 2D difference gel elec-
trophoresis (2D-DiGE). We observed a large number of
alterations in protein levels; both increases and
decreases. By analyzing the levels of the corresponding
mRNAs after treatment with either siRNAs against
UPF1 or the translation inhibitor cycloheximide we
were able to identify a small group of bona fide NMD
targets; indicating that UPF1’s role in regulated gene
expression may be more limited than previously
thought. However, the majority of these bona fide NMD
targets contained recognizable NMD-activating features,
such as splicing dependent PTCs, introns in the 3'UTR
and uORFs. From among these we identified a highly
conserved AS-NMD event with the 3" UTR of the
HNRNPA2BI gene, which appears to be involved in the
autoregulation of HNRNPA2BI mRNA levels.

Results

mRNA stabilized as a result of the inhibition of NMD is
translated to yield protein

Before embarking upon a proteomic analysis of the con-
sequences of UPF1 knockdown we carried out a proof
of principle experiment to demonstrate that mRNAs sta-
bilised by inhibition of NMD could be translated to
yield protein. To this end we constructed the pGFPint
reporter plasmid, containing an efficiently spliced artifi-
cial intron (based on a-tropomyosin exons 2 and 3 and
a 111nt intron from B-globin [35]) in the 3" UTR. Spli-
cing of the intron creates an exon-exon junction 105
nucleotides downstream of the GFP stop codon, making
it appear premature and hence the mRNA NMD sensi-
tive. A cell line stably expressing pGFPint was con-
structed and subjected to knockdown of NMD factors
UPF1, UPF2 and SMG1 or transfection with a control
siRNA, C2. Depletion of UPF1 and UPF2 protein was
achieved to levels less than 12.5% of control, as esti-
mated by western blot (Figure 1A). In the absence of an
antibody against SMG1 the reduction in SMGI mRNA
was measured by QPCR. A reduction to levels approxi-
mately 35% of control was achieved (Figure 1B). Both
GFP mRNA (Figure 1D, left) and protein (Figure 1C)
showed a large increase in response to UPF1 knock-
down, a much smaller increase in response to UPF2
knockdown and an intermediate response to SMG1
knockdown. Analysis of pGFPint mRNA by RT-PCR
indicated that the artificial intron was entirely spliced
(data not shown).

To further examine the differing response of pGFPint
to the knockdown of different NMD factors, the levels
of the NMD sensitive isoforms of SC35 (SFRS2) were
examined by QPCR (1.6 and 1.7 kb [36], Figure 1D,
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Figure 1 Knockdown of UPF1, UPF2 and SMGT1 results in the production of GFP protein by cells stably expressing pGFPint. A Upper
panel: western blot of 10ug total cell protein for UPF1 and actin as a loading control. Lower panel: western blot of 30 ug total cell protein for
UPF2 and actin as a loading control. In each case the C2 treated sample was diluted 1:2, 1:4 and 1:8 in RIPA buffer in order to better estimate
the degree of knockdown in the knockdown sample. Representative samples of three biological repeats are shown. B. Histogram comparing the
fold change in SMG1 mRNA levels in response to treatment with C2 (black bar) or SMG1_A (light grey bar) siRNAs, as measured by QPCR on
parallel RNA samples. The height of each bar represents the mean of three biological repeats, while error bars represent the standard error of
the mean (SEM). C. Western blot of 10 ug total cell protein for GFP and actin as a loading control. Representative samples of three biological
repeats for each siRNA are shown. D. Histogram comparing the fold change in mRNA levels for GFP and the NMD sensitive isoforms of SC35 (1.6
kb and 1.7 kb, [36]) in response to treatment with each siRNA, as measured by QPCR on parallel RNA samples. The height of each bar represents
the mean of three biological repeats, while error bars represent SEM. The colour scheme is indicated in the side panel. E. Schematic of AS-NMD
events within the 3" UTR of SC35 (SFRS2). Dark boxes represent exons, and white boxes introns. Dashed lines denote alternative splicing patterns

and arrows denote the QPCR primers used in D.
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right. Schematics of events in Figure 1E). Interestingly,
the pattern of changes in the SC35 isoforms mirrored
that of pGFPint mRNA: UPF1 knockdown provoked
the largest fold change followed by SMG1 and then
UPF2. Given the high degree of knockdown achieved
for all the factors examined, it appears that NMD of
pGFPint and SC35 1.6 and 1.7 kb mRNA is differen-
tially sensitive to the knockdown of UPF1, UPF2 or
SMG1. This phenomenon has been described pre-
viously and is thought to reflect distinct branches of
the NMD pathway with differential requirements for
UPF2 [37]. Since the inception of this work two
further reports of similar NMD reporter systems
support our conclusion that mRNAs stabilized as a
result of NMD inhibition are active substrates for
translation [38,39]. Indeed, this idea is also borne out
by published data from more physiological circum-
stances [40-42].

A multi-gel 2D-DiGE study of UPF1 knockdown in Hela
cells reveals numerous changes in protein expression

To identify global changes in protein expression in
response to UPF1 knockdown we performed a multi-gel
2D-DiGE study of HeLa cells in which UPF1 had been
depleted by RNA interference (RNAi). Samples were
harvested 48 h after the second siRNA hit on the basis
that this provided sufficient time to observe the primary
consequences of UPF1 knockdown, while minimizing
any secondary indirect effects. The basic principle of
2D-DiGE is that protein extracts from two different bio-
logical situations (in this case HeLa cells treated with a
control or targeted siRNA) are differentially labelled
with fluorescent dyes before being mixed and fractio-
nated by 2D gel electrophoresis [43,44]. The fluorescent
image of the gel is then examined to identify protein
spots where one fluorescent dye predominates indicating
the change in expression of one or more of the constitu-
ent proteins between the two biological situations
[43,44]. The protein spot is then excised from the gel
and its composition determined by mass spectrometry
[43,44].

In order to identify changes that were specific to UPF1
knockdown, we examined the response of HeLa cells to
treatment with two different siRNAs against UPF1,
Upfl_A and Upfl_B, compared to a control siRNA, C2
(N = 6 for each condition). The efficacy of UPF1 knock-
down, as assessed by western blot, was > 75% for both
siRNAs (Figure 2A). Effective depletion of UPF1 was
further confirmed in parallel RNA samples by RT-PCR
for an AS-NMD event within U2AF3® [45] (Figure 2B).
The proportion of the NMD sensitive upper isoform,
U2AF?°c, was clearly enriched upon treatment with
Upfl_A or Upfl_B, confirming functional impairment of
the NMD pathway.
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The 2D-DiGE multi-gel study resulted in identification
of a large number of both upward and downward
changes in protein expression (p < 0.01, Student’s t-test,
two tails). As expected, many but not all changes were
common to both siRNAs (Figure 2C). Of the 3081 spots
detected in the analysis, 47 spots increased in expression
in response to Upfl_A treatment while 194 spots
increased in expression in response to Upfl_B treat-
ment. Of the upward changes, 35 were common to both
siRNAs. Furthermore, Upfl_A treatment resulted in 97
spots decreasing in abundance while 297 spots
decreased in abundance in response to Upfl_B treat-
ment. Of the downward changes, 80 were common to
both siRNAs.

Multivariate statistical analysis provides an alterna-
tive method to Student’s t-test for identifying patterns
in large multivariate datasets such as that generated by
the 2D-DiGE multi-gel study [46]. Abundance data
from all spots (3081) for all samples was subject to
principle component analysis (PCA) to examine how
the experimental samples clustered on the basis of all
spot changes. The scores scatter plot for the first two
principal components revealed a separation between
C2 and the two UPF1 knockdown conditions along
PC, (Figure 2D). Interestingly, there is no apparent
separation between Upfl_A and Upfl_B treated sam-
ples. This was also the case when other PCs were
examined (data not shown). This suggests that despite
the appearance that some spots change with one
siRNA but not the other, most spots undergo corre-
lated changes in response to both siRNAs, although
one change or the other may not achieve significance
in the univariate sense.

In order to identify which proteins were responsible
for the observed increases in expression, and hence are
candidate UPF1 targets, 85 of the protein spots that had
increased in expression were excised for identification
by mass spectrometry (Additional file 1 1). Spots were
picked first from those that had changed significantly in
response to both Upfl_A and Upfl_B. Then, on the
basis of the PCA, others were picked that had changed
significantly in response to either siRNA, starting with
those that had narrowly escaped significance with the
second siRNA. 17 down-regulated spots were also
picked, from those that had decreased significantly in
response to both siRNAs (Additional file 1). Of the 85
up-regulated spots, 58 yielded sufficient material to
allow protein identification, whereas of the 17 down-
regulated spots, 13 yielded sufficient material. For each
spot, potential protein constituents were identified from
liquid chromatography-tandem mass spectrometry of
trypic peptides produced by in-gel digestion, using the
MASCOT search engine [47]. As a result, 128 unique
proteins were identified from up-regulated spots and 21
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Figure 2 Changes in protein spot expression in response to UPF1 knockdown. A. Representative western blot of 10 ug total cell protein
for UPF1 and actin as a loading control for each sample. C2 treated sample was diluted 1:2, 1:4 and 1:8 in ASB14 buffer in order to estimate the
degree of knockdown. B. Representative U2AF>® RT-PCR assay on parallel RNA samples. The adjoining cartoon illustrates the identity of each
band. The lower band results from alternative inclusion of one of a pair of normally mutually exclusive exons of equal size, termed E3 (yielding
isoform U2AF*a) and EADb (yielding isoform U2AF*°b) [45]. The upper band represents inclusion of both exons, which results in a frameshift that
creates a PTC - making isoform U2AF*>c NMD sensitive [45]. M: 1 kb plus marker (GE healthcare). RT-: addition of RT performed without reverse
transcriptase. PCR-: PCR performed without template. Underlying numbers indicate the percentage of the signal from both bands represented by
he upper, double-included NMD-sensitive, band for each siRNA treatment (mean of 6 biological replicates + SEM). C. Proportional Venn diagrams
representing the number of protein spot changes unique and common to each siRNA against UPF1. The upper, red coloured, diagram details
upward changes whereas the lower, blue coloured diagram details downward changes. B. Principal component analysis (PCA) scores plot
illustrating the similarity of the multi-gel study samples to each other by their relationships with the first two principal components (PCs)
describing the whole multi-gel study dataset. Blue squares - C2 treated samples; red circles - Upf1_A treated samples, green triangles - Upf1_B
treated samples. t[1] - score relating to PC;; t[2] - score relating to PC,.
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from down-regulated spots. Some proteins were identi-
fied in more than one spot, including 6 that were found
in both up- and down-regulated spots. This could be
due to post-translational modification of the proteins, or
the existence of isoforms that are different in size or pl,
but are indistinguishable by their tryptic peptide pattern.
Information on the identified proteins and peptide
sequences, along with the change observed for each spot
is detailed in Additional file 2.

Validation of NMD targeted mRNAs

In order to determine which of the identified proteins
represented bona fide NMD targets, two rounds of
QPCR validation were employed. In the first round we
tested whether levels of the mRNAs corresponding to
the identified proteins were affected by UPF1 knock-
down mediated by Upfl_A siRNA. Since NMD and the
other UPF1-dependent mRNA decay pathways (SMD
and histone mRNA decay) are dependent on active
translation [27,28,48], we next measured changes in
mRNA levels following treatment of cells with the trans-
lation inhibitor cycloheximide. For each gene of interest
QPCR primers were designed to mRNA regions not
known to undergo alternative splicing, and eight repli-
cate samples were used in order to achieve the same
statistical power as the 2D-DiGE multi-gel study [49,50].
Only genes that showed statistically significant increases
(p < 0.05, Student’s t-test, one-tail) in response to both
treatments were deemed to be genuine targets of NMD/
UPF1-dependent mRNA decay.

The results of the QPCR validation are detailed in
Additional file 2 and summarised in Figure 3. Of the
128 mRNAs corresponding to proteins from up-regu-
lated spots, 47 (37%) increased in response to UPF1
knockdown, as expected of UPF1/NMD targets. A
further 62 (48%) showed no significant change in
expression, 12 decreased (9%), while 8 (6%) failed to
produce an intelligible signal. Strikingly, from the 17
down-regulated protein spots none of the 21 corre-
sponding mRNAs was down-regulated upon UPF1
knockdown. Eleven did not change significantly in
expression, 4 failed to show an intelligible signal, while
the remaining 6 actually increased in expression (Addi-
tional file 2). While 3 of these 6 proteins were among
those also found in up-regulated spots, it is striking that
not a single one of the genes corresponding to the pro-
tein constituents of down-regulated spots showed an
accompanying decrease in mRNA expression. This sug-
gests that UPF1 knockdown has a negative role in the
translational efficiency of at least some of these
proteins.

The 47 validated UPF1 target genes from up-regulated
spots were then subjected to the second round of valida-
tion by cycloheximide treatment. Of the 47 UPF1
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targets, 17 (34%) increased in expression, as expected of
authentic NMD targets IMMT, GOLGA4, IDI2, THIL,
PLG, KIAA1529, CCTS8, TUBAS, SFRS7, MAGEAI,
CDC6, SERPINBI1, NAPA, HNRNPA2B1, VAPB, RABIA,
RAB35). Of the remainder, one (CANX) failed to give an
intelligible signal, 10 (21%) showed no significant change
in expression, while 19 (40%) actually decreased in
expression. The 30 genes that did not increase in
expression in response to cycloheximide treatment may
represent secondary effects of UPF1 knockdown or tar-
gets of UPF1 in processes other than NMD.

With reference to the original 2D DiGE analysis, of
the 58 upregulated spots that yielded protein identifica-
tions, 34 (59%) contained at least one protein whose
corresponding mRNA was validated as being upregu-
lated by knockdown of UPF1, and in 26 cases (45%) the
upregulated mRNA corresponded to the major protein
component of the spot, as indicated by MASCOT scores
(see Additional file 2). Of the 34 spots, 18 (i.e. 31% of
the total) contained proteins that were also upregulated
by cycloheximide treatment. In five cases (CCTS, SER-
PINB1, NAPA, HNRNPA2B1, RABIA) the doubly vali-
dated NMD target corresponded to the major protein
constituent of the protein spot, as judged by MASCOT
scores, and so provides a clear explanation for the
observed upregulation. A number of the other NMD
targets were among the more abundant components of
the spots in which they were identified (e.g. IMMT,
VAPB, TUBAS8, RAB35). In the remaining cases (e.g.
GOLGA4, IDI2, THIL, PLG, SFRS7, MAGEA1, CDCe,
KIAA1529), the doubly validated NMD targets repre-
sented relatively minor constituents of their resident
spots. In four of these cases the spot also contained a
more abundant validated UPF1 target that was not
cycloheximide upregulated.

The remaining 24 spots (41% of the total) contained
no protein whose mRNA was upregulated by UPF1
knockdown. This suggests that relatively few of the
changes in protein expression upon UPF1 knockdown
can be attributed directly to UPF1’s role in mRNA
decay. This result is in broad agreement with the more
extensively validated studies of UPF1’s role in physiolo-
gical gene expression [20,21,34,51]. (discussed below)

Identification of NMD activating features

We next sought to identify possible NMD activating fea-
tures within the doubly validated genes. To this end,
maximum transcript alignments [52] of corresponding
Unigene clusters [53] were generated using SPA [54]
and examined for instances of: i) introns more than 50
nt downstream of the termination codon of the largest
ORF within a transcript, as an indication of AS-NMD.
ii) The presence of ORFs upstream of the largest ORF
within a maximum transcript, as an indication of the
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presence of uORFs within the 5" UTR. Potential NMD
sensitive maximum transcripts were then scored accord-
ing to the number of peptides identified by mass spec-
trometry that were present within the protein sequence
encoded by the largest ORF of the maximum transcript.
Only transcripts encoding all of the identified peptides
were considered as being potentially responsible for the
observed upregulation of protein spots. For some genes,
this step eliminated many potential NMD substrates.

For example, the SFRS7 gene encodes the SR splicing
regulatory protein 9G8, which has a well characterized
AS-NMD event involving a “poison” cassette exon [55].
In this study however, the 9G8 peptides identified by
mass spectrometry are not encoded by the alternatively
spliced PTC-containing isoform. In contrast, many of
the SFRS7 maximum transcripts contain one or two
additional short uORFs upstream of the main protein
coding ORF.
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Of the 17 doubly validated genes, we found evidence
of at least one NMD feature in 12 cases. Notably, all
five doubly validated genes that constituted the major
components of their resident spots (CCT8, SERPINBI,
NAPA, HNRNPA2BI1, RABIA) had at least one NMD
feature that was consistent with the peptide data. The
most common features, found in 11 cases, were uORFs.
In addition, there were three genes (THIL, NAPA and
HNRNPA2BI) with one or more alternative splicing
events at a sufficient distance downstream of the main
OREF to activate NMD.

AS-NMD events in TH1L and NAPA

We next tested each of the AS-NMD predictions by
RT-PCR or QPCR. THI1L was a relatively minor consti-
tuent of spot 831, which was up-regulated 1.39 fold in
response to UPF1 knockdown (Additional file 2). THIL
mRNA was up-regulated approximately 1.4 fold in
response to UPF1 knockdown and to a similar extent
by cycloheximide (Figure 4A). THIL is predicted to
contain three AS-NMD events: first, a 101 nt intron
within its 3’ UTR, which when spliced causes the nor-
mal stop codon to appear premature (Figure 4B upper
panel). Secondly, retention of the intron between exons
13 and 14. Thirdly, the use of an alternative 5’ splice
site within exon 13, resulting in a frameshift that creates
a PTC (Figure 4C upper panel). The first two events are
consistent with the peptide data, while one of the pep-
tides lay downstream of the PTC introduced by use of
the internal 5’ splice site on exon 13, thus ruling out
the latter event as a contributor to the upregulation of
protein spot 831. RT-PCR was performed with primers
flanking each AS-NMD event to determine whether the
PTC containing isoform was stabilised as a result of
UPF1 knockdown (Figure 4B and 4C, lower panel). The
3'UTR splicing event and the exon 13 alternative 5’
splice site event both showed a significant 2-3 fold
increase in the proportion of the NMD sensitive iso-
form in response to UPF1 knockdown, to a level of
approximately 11% (Figure 4B and 4C, lower panel). In
contrast, no effect of UPF1 knockdown was seen upon
the intron 13 retention event (data not shown). Taken
together, the peptide and RT-PCR data therefore sug-
gest that the 3'UTR intron is the NMD feature respon-
sible for the observed upregulation of THIL protein,
but that both events contributed to upregulation of its
mRNA upon UPF1 knockdown.

NAPA was the major component of spot 1997,
which was upregulated ~1.3 fold by UPF1 knockdown
(Additional file 2). Likewise, NAPA mRNA was upre-
gulated 1.35 - 1.4 fold by UPF1 knockdown and
cycloheximide (Figure 5A). NAPA has two predicted
NMD features that are consistent with the 9 peptides
that identified it. An alternatively spliced intron 53 nt
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into its 3'UTR is at the threshold distance for indu-
cing NMD (Figure 5). In addition, the 5'UTR of a
maximum transcript has overlapping 9 and 3 codon
uORFs. QPCR was carried out to analyze levels of the
isoforms in which the 3'UTR intron was retained or
spliced. Levels of NAPA mRNA with the intron
spliced out (denoted junction b) were elevated by
~2.5 fold after UPF1 knockdown, whereas transcripts
with the intron retained were not significantly
affected (Figure 5B), suggesting that the 3'UTR intron
is the feature responsible for the observed upregula-
tion of the NAPA containing spot.

AS-NMD mediated autoregulation of HNRNPA2B1

HNRNPA2B1 was the most abundant protein in spot
2105, which was upregulated 1.3 - 1.7 fold by the two
UPF1 siRNAs (Additional file 2). HNRNPA2BI mRNA
showed an approximate two-fold increase upon UPF1
knockdown and a small but significant increase upon
cycloheximide treatment (Figure 6A and Additional file
2). Bioinformatic analysis indicated that HNRNPA2BI
contains extensive alternative splicing within its 3’ UTR
that would cause the normal stop codon to appear
premature (Figure 6B). As an NMD feature this would
be consistent with the 5 peptides that identified
HNRNPA2BI. The predicted UTR structure is, however,
in conflict with the Refseq annotation. In order to con-
firm the existence of the predicted NMD sensitive iso-
forms of the 3' UTR, we performed 3’ RACE (Rapid
Amplification of ¢cDNA Ends) for HNRNPA2B1 on
mRNA taken from the UPF1 knockdown RNA samples
used for validation. The resulting sequences were
aligned to the genome using BLAT [56]. The RACE tags
clearly support the 3’ UTR structure predicted from the
unigene cluster; comprising three additional exons after
that in which the HNRNPA2B1 CDS ends (Figure 6B,
Additional file 3). Splicing of the final intron or inclu-
sion of the first additional exon would create an exon-
exon junction at sufficient distance downstream to make
the normal stop codon appear premature. Splicing of
the final intron was examined by exon-junction specific
QPCR and found to be up-regulated by 3.5-fold upon
UPF1 knockdown (junction b, Figure 6B and 6C),
whereas a junction in the Refseq mRNA expected not
be NMD sensitive (denoted junction a, Figure 6B) was
not upregulated (Figure 6C). The whole area of the 3’
UTR is very highly conserved (Figure 6B), suggesting
that AS-NMD might be important in the regulation of
HNRNPA2BI levels. Indeed full-length mRNAs and
ESTs representing similar UTR structures can also be
observed in the orangutan (Pongo pygmaeus abelii),
other mammals (M. musculus and Bos taurus) and even
the chicken (Gallus gallus). While 3’ UTRs have many
roles in regulating gene expression, any of which may
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b L Em

result in the observed conservation [57], many other
genes of the hnRNP and SR protein families have been
identified as containing such highly conserved AS-NMD
events [32,33,55,58-60]. Indeed, murine Hnrupa2bl was
also identified as containing AS-NMD by Ni et al. [32],
although the event was not the same as reported here
(M. Ares, personal communication). Many such
conserved AS-NMD events have been show to be sub-
ject to autoregulation by their own protein levels
[32,36,58,60-66]. We examined whether this is also the
case for HNRNPA2B1. FLAG tagged HNRNPA2 isoform
or an empty expression vector was transfected into
HelLa cells in combination with a GFP expressing plas-
mid. GFP expressing cells were then isolated by flow

cytometry in order to enrich for cells possessing the co-
transfected plasmid. Expression of FLAG-HNRNPA?2 in
the sorted cells was confirmed by western blot (Figure
6D). The expression and splicing of HNRNPA2BI was
examined in parallel RNA samples, using primers speci-
fic for the endogenous transcripts. Overexpression of
FLAG-HNRNPA2 reduced HNRNPA2 and HNRNPBI1
mRNA levels to 75-80% of control (Figure 6E), demon-
strating that HNRNPA2 protein can regulate
HNRNPA2B1 mRNA levels. Examining the effect of
overexpression on UTR junctions ¢ and b indicated that
non-NMD sensitive junction a was decreased in expres-
sion to approximately 60% of control, while NMD sensi-
tive junction b was increasing in expression by 20% over
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control levels (Figure 6F). These results are consistent
with HNRNPA2BI regulating the abundance of its own
mRNA by altering splicing of the 3" UTR to promote
the production of isoforms degraded by NMD.

Discussion

The role of UPF1-dependent mRNA decay in regulating
physiological gene expression

We have demonstrated that the knockdown of UPF1 in
HeLa cells results in a large number of changes in pro-
tein expression but that only a minority of these can
be attributed to UPF1’s characterized roles in NMD
and other translation dependent mRNA decay path-
ways. This result is in broad agreement with the more
extensively validated studies of UPF1’s role in physiolo-
gical gene expression [20,21,34,51], suggesting that
NMD plays a more restricted role in regulating gene
expression than previously claimed [67,68]. For exam-
ple, in order to measure the efficiency of NMD in cell
lines expressing different amounts of RNPS1, Viegas
and colleagues sought to identify genuine NMD target
genes from genes identified by microarray as upregu-
lated upon UPF1 knockdown [51]. They examined
both the abundance of the fully processed mRNA and
pre-mRNA, finding that in the majority of cases (14/
16) both were upregulated. This indicates that the
increase in mRNA levels was likely to be a transcrip-
tional effect rather than due to the direct action of
NMD [51].

The majority of the 17 confirmed NMD targets
(defined as UPF1 and translation-dependent) have not
been previously identified by microarray studies of UPF1
dependent gene expression in mammals [15,29-32,51,69],
indicating the complementarity of proteomic and tran-
scriptomic analyses. However, given the bias of 2D-DiGE
towards higher abundance proteins, it may be that this
mechanism is more pertinent for genes with lower abso-
lute expression levels. Recent findings have indicated that
the distance between the stop codon and poly(A) tail can
also be an important determinant of NMD (reviewed in
[3]). However, we were unable to find an over-represen-
tation of greater 3' UTR lengths within our set of doubly
validated genes (data not shown). We believe that it is
relevant that all of the identified NMD activating features
within the 17 doubly validated NMD targets were either
uOREFs or introns positioned in the 3'UTR or towards the
3" end of the transcript. As a result the detected proteins
would all represent regular full-length isoforms, and
would be expected to be stable. The protein products
produced from other stabilized AS-NMD substrate
mRNAs might be inherently unstable due to their trun-
cated nature. This would argue against the functional
roles often proposed for these products [70,71]. In
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support of this, we observed that the potential truncated
PTB isoform, encoded by the AS-NMD targeted mRNA
in which exon 11 is skipped [58], is not detectably
expressed from cDNA expression vectors (in which there
is no NMD activating feature) unless proteasome activity
is inhibited by the proteasomal inhibitor MG132 (NJM
and CWJS, unpublished observation). This suggests that
the inherent instability of some protein products might
preclude their identification as NMD targets by proteo-
mic approaches. Nevertheless, a pilot DiGE experiment
did not reveal a noticeable increase in upregulated spots
when UPF1 knockdown was analyzed under conditions
of proteasome inhibition by MG-132 (NJM and CW]S,
unpublished observation), suggesting that our current
investigation has not suffered substantially from this
potentially confounding effect.

In addition to identifying genuine NMD targets, our
validation strategy also highlighted a number of other
interesting groups. First, those proteins whose mRNA
was not up-regulated by UPF1 knockdown may repre-
sent targets of nonsense mediated translational repres-
sion (NMTR), wherein PTC containing mRNAs
apparently escape NMD but do not produce detectable
levels of protein [72,73]. Secondly, those genes that were
upregulated by UPF1 knockdown but not upregulated
by cycloheximide treatment. An interesting feature of
these 19 unusual UPF1 targets is an enrichment of heat
shock proteins of the hsp90, hsp70 and hsp60 classes
(HSP90AAI, HSP90ABI, HSPA1A, HSPDI1, AHSAI). In
S. cerevisiae a specialized mRNA decay pathway, termed
initiation dependent decay, operates under conditions
where translation initiation is down-regulated but not
abolished [74,75]. Of particular interest, initiation
dependent decay targets a variety of heat shock proteins,
including hsp70 and 90, and is dependent upon UPF1
and UPF2. While our experiments were not carried out
under conditions where translation initiation is expected
to be impaired, they suggest that initiation dependent
decay may be relevant to mammalian systems. However,
this observation could also be the result of a shared
transcriptional activator of these heat-shock proteins
being NMD sensitive, but generally translationally
down-regulated by cyclohexamide. Thirdly, analysis of
the spots that were down-regulated upon UPF1 knock-
down indicate yet another potentialiy interesting group
of UPF1 targets. None of the mRNAs corresponding
to the protein constituents of these spots were down-
regulated by UPF1 knockdown; indeed some were actu-
ally upregulated. This suggests that UPF1 may play a
role in the synthesis or degradation of these proteins.
Given UPF1’s known roles, it seems more likely that it
acts at the translational level and that for these proteins
UPF1 has a positive influence on their translation.



McGlincy et al. BMC Genomics 2010, 11:565
http://www.biomedcentral.com/1471-2164/11/565

uORFs as NMD features

The most prevalent NMD activating feature predicted
for the doubly validated NMD targets was the presence
of uORFs. Indeed, two of our confirmed cases that can
be explained by uORFs have previously been identified
as AS-NMD targets. SFRS7 (also known as 9G8) is
already a well-characterised example of AS-NMD
[55,62,76], our finding that some isoforms may also pos-
sess a UORF indicate that SFRS7’s post-transcriptional
regulation may be more complex than previously appre-
ciated, as recently described for SFRSI (SF2/ASF) [66].
Furthermore, a CCT8 alternative isoform was reported
to be sensitive to the translation inhibitor emetine by
AS-sensitive microarray [32].

A priori it might be expected that all uORF containing
mRNAs would be NMD sensitive. The termination
codon of the uORF(s) would be premature with regard
to the exon-exon junctions within the CDS, and would
likely be at great distance from signals in the 3' UTR
determining proper translation termination. This, how-
ever, does not appear to be the case as uORFs often
mediate translational repression of the protein coding
ORF without an accompanying decrease in mRNA
abundance [26,77]. Moreover, inhibition of NMD in C.
elegans results in the upregulation of only some tran-
scripts bearing uORFs [21]. So what characteristics
make a uORF baring transcript NMD sensitive? uORF
length has been shown to be important; short open
reading frames or those that have been translated more
quickly favour translation reinitiation downstream
[11,78,79], possibly by the remaining association of
translation inititiation factors with the ribosome [80,81].
Reinitiation then inhibits NMD [11,78,79]. So NMD
sensitive uORFs might be expected to be longer than
average, or composed of sequence that results in slow
translation. Ramani et al. (2009) found a weak correla-
tion between the Kozak consensus at the start codon of
the protein coding ORF and the extent to which the
uORF containing transcript was up-regulated in NMD
deficient C. elegans [21]. Calvo and colleagues examined
the effect of various uORF characteristics on reduction
in protein expression. They found that uORF containing
5" UTRs, when examined in a heterologous system, gen-
erally exerted a greater effect on protein abundance
(average 58% decrease) than mRNA abundance (average
5% decrease). Similar trends were observed in published
datasets they examined. The decreasing protein expres-
sion correlated with stronger context at the uAUG, a
greater cap-uORF distance (both in the case of a single
uORF) and, to a lesser extent, an increasing number of
uORFs. In the case of a single uORF, uORF length and
uORF-CDS distance did not correlate with the extent of
protein repression. The absolute amplitude of changes
in mRNA abundance are similar to those observed for
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our predicted uORF carrying genes. Unfortunately the
relationship of these variables with decreasing mRNA
abundance, which we might presume to be due to
NMD, was not examined [82].

We have been unable to find any characteristics that
distinguish the uORFs in our doubly validated NMD
targets from others (data not shown). However, uORF
mediated regulation is often complex, involving not only
the uORFs themselves but also interactions with other
conserved sequences and trans-acting factors [26,83,84].
Indeed, the relatively small fold changes in mRNA level
observed during validation indicate that in each case
only a proportion of the mRNA is NMD-sensitive, sug-
gesting that some sort of probabilistic event is responsi-
ble. Thus, it is not clear that identification of a uORF is
currently a powerful predictor of NMD sensitivity. A
larger dataset and broader scope of analysis may prove
more fruitful in finding some association between speci-
fic uORF characteristics, or groups thereof, and NMD-
sensitivity.

Autoregulation of HNRNPA2B1 via AS-NMD

We have identified a highly conserved example of auto-
regulatory AS-NMD within the HNRNPA2BI gene. The
hnRNP family of proteins plays many roles in RNA
metabolism [85,86]. HNRNPA2BI1 itself has been shown
to regulate both alternative splicing [87] and mRNA sta-
bility [88]. Our data is consistent with HNRNPA2B1
activating splicing within it’s own UTR to produce
NMD sensitive forms that account for the decrease in
total gene expression: over-expression of the HNRNPA?2
isoform resulted in down-regulation of A2 and Bl iso-
form expression and the up-regulation of one of
the NMD-sensitive exon junctions within the 3" UTR
(Figure 6). For simplicity we measured two UTR exon-
exon junctions that would always be expected to be
NMD (in)sensitive, but the splicing patterns involved
are almost certainly more complex.

While hnRNP A/B proteins were initially characterised
as splicing repressors [86,89,90], it has recently been
shown that intronic binding of hnRNP A1/A2 proteins
can activate splicing, particularly of elongated introns
[87,91]. This is thought to proceed by homophilic inter-
actions between A2/A1 proteins bound at separate sites
(or indeed heterophilic interactions between A1/A2 pro-
teins and hnRNP F/H proteins) causing the looping out
of portions of intron, which in turn results in promoting
the splicing of said intron [87,92]. We have not exam-
ined whether HNRNPA2BI1 directly binds to its own
UTR, but motifs thought to represent bindings sites for
HNRNPA1 and HNRNPA2BI1 (taken from [91]) are
clearly present in the HNRNPA2B1 3’ UTR introns we
identified (Additional file 3). This also raises the possibi-
lity that HNRNPA1 may also regulate these splicing
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events. Indeed increased expression of HNRNPA1 has
been observed to correlate with decreased HNRNPA2/
B1 in some cancer cell lines [93].

AS-NMD within hnRNP and SR protein genes has
been shown to mediate quantitative regulation by
repressing protein expression at inappropriate times
[63,94-96] or providing homeostatic regulation of pro-
tein levels through autoregulatory negative feedback
[32,36,58,60-66]. Our data is consistent with the later
case. However, these two modes of regulation are not
mutually exclusive, and it will be interesting to see
whether biological circumstances can be identified
where this AS-NMD event is used to repress expression
of HNRNPA2B1. Indeed, up-regulation of HNRNPA2B1
levels has pathological associations. Increased
HNRNPA2 expression has also been observed in pan-
creas and breast cancer [97,98], and in the foetal brain
of Down’s syndrome patients [99]. Underscoring the
functional relevance of these increases, increased expres-
sion of HNRNPA2B1 and PTBP1 has been shown to be
responsible for the predominance of the PKM2 isoform
that is the hallmark of many types of cancer, promoting
the aerobic glycolysis that is important for cell growth
[100,101]. Furthermore, HNRNPA2 was recently shown
to be responsible for splicing events that promote inva-
sive migration of cancer cells in three-dimensional
matrices [102]

Conclusions

Despite the large number of changes in protein expres-
sion upon UPF1 knockdown, our two-stage validation
shows that a relatively small fraction of them can be
directly attributed to the action of NMD on the corre-
sponding mRNA. This indicates that the role of NMD in
directly regulating gene expression may be less promi-
nent than previously suggested. The majority of the dou-
bly-validated mRNAs contain computationally predicted
uOREFs, confirming this feature as an indicator of NMD
sensitivity. We have also identified three examples of AS-
NMD, including a highly conserved AS-NMD event that
appears to mediate autoregulation of HNRNPA2BI
expression levels. This extends the observation that many
RNA binding proteins auto-regulate their own expression
through highly conserved elements. Consideration of this
autoregulation will be important when examining biolo-
gical situations, such as several types of cancer, where
HNRNPAZ2B1 levels are deregulated.

Methods

Cloning

Construction of pEGFPint: an efficient artificial intron
with associated exonic sequence was amplified from
plasmid pY7 [35] using primers PY7INTF (TCTCAG-
CAAAGCGGCCGCTGCTGCGGGC) and PY7INTR2
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(CTCTAGAGTCCAATTGCCTGCAGGCA) and pfu
high fidelity polymerase. The pY7 intron is based on a
B-globin intron while the exons are exons 2 and 3 from
o-tropomyosin [35]. The resulting PCR product was
cloned into pGEM T-easy (Invitrogen) and its identity
confirmed by sequencing with T7 and SP6 primers.
pEGFP-N1 (Promega) contains unique Notl and Mfel
sites between the GFP stop codon and the SV40 polyA
signals. The insert was liberated from pGEM T-easy by
sequential digestion of the Notl and Mfel sites within
PY7INTF and PY7INTR?2 respectively and ligated with
the corresponding fragment of pEGFP-N1. Cloning of
FLAG-hnRNPA2: hnRNPA2 sequence was amplified
from HeLa cell ¢cDNA using primers hnRNPA2_F
TACAGAATTCATGGAGAGAGAAAAGGAAC and
hnRNPA2B1_R TCAGGTCGACGTATCGGCTCCTCC-
CACC. PCR was performed using 1.25 U Stratagene
Native Pfu DNA Polymerase, 200 uM dNTPs and 400
uM primers. Cycling parameters: 95°C 2 min, [95°C 30
sec, 48°C 30 sec, 72°C 2 min]jss, 72°C 5 min. The result-
ing PCR product was digested with EcoRI and Sall and
ligated into pCI-NLS-FLAG [103], which allows expres-
sion of hnRNPA2 protein with N-terminal Flag tag and
NLS, and 13 amino acid C-terminal tag. This cloning
was confirmed by sequencing with T7 primer.

Cell culture and transfections

HeLa cells were cultured under standard conditions in
DMEM medium with glutamax (Invitrogen) and 10%
fetal bovine serum. HeLa cells stably expressing pGFPint
were generated by lipofectAMINE (Invitrogen) transfec-
tion of approximately 6 pg of pGFPint linearised at the
Apa LI site. Transformant cell lines were then selected
through growth in medium supplemented with 1 mg/
mL G418 (Sigma) and isolated through ring cloning.
Cell lines were then constantly maintained in growth
medium containing G418 with the exception of when
they were being used in an experiment. siRNA transfec-
tion of HelLa cells was performed using lipofect AMINE
2000 (Invitrogen) according to the “two-hit” protocol
previously described [58]. The 19-mer sense target
sequence and associated details of each siRNA are: con-
trol C2, 5'-GGUCCGGCUCCCCCAAAUG-3', 120
pmol/transfection or pGFPint experiments, 2.5 pmol/
transfection 2D-DiGE expreiments [104]; Upfl_A,
5'-GAUGCAGUUCCGCUCCAUU-3', 120 pmol/trans-
fection or pGFPint experiments, 2.5 pmol/transfection
2D-DiGE expreiments [105]; Upfl_B, 5'-GCUCCUAC-
CUGGUGCAGUA-3’, 2.5 pmol/transfection; Upf2,
5'-GGCUUUUGUCCCAGCCAUC-3', 120 pmol/trans-
fection; SMG1_A, 5-GUGAAGAUGUUCCCUAUGA-3/,
120 pmol/transfection, Dharmacon siGENOME duplex
D-005033-01-0050. Unless otherwise noted siRNA were
designed and purchased from Dharmacon Inc. Samples
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were harvested for analysis 48 hours after the second
transfection. In each case prior analysis had confirmed a
high degree of knockdown at this time-point. This time-
point also represented a suitable trade-off between the
need to allow sufficient accumulation of proteomic
alterations directly resulting from UPF1 knockdown,
while minimizing secondary effects. Such secondary
effects might include false positives, which could arise if
primary targets included, for example, transcription or
translation factors, as well as false negatives due to com-
pensatory mechanisms. Inhibition of NMD by cyclohexi-
mide was achieved by dosing HeLa cells to a final
concentration of 10 ug/mL, or with an equivalent
volume of DMSO, for 8 hours, as described [55].

Analysis of protein expression by western blot

Extracts of total protein were obtained from tissue cul-
ture cells using RIPA buffer or ASB14 buffer. The con-
centration of these extracts was determined by Bradford
assay [106]. Protein extracts were separated on 15%
SDS-PAGE gels, transferred to PVDF membrane and
then detected by a standard immunoblotting procedure
followed by enhanced chemiluminescence detection. Pri-
mary antibodies used: rabbit anti-UPF1 [105], goat anti-
UPF2 (Santa Cruz Biotechnology inc.), rabbit anti-GFP
(Molecular Probes), rabbit anti-actin (Sigma), rabbit
anti-ERK1 (invitrogen) Primary antibodies were detected
by donkey anti-rabbit and donkey anti-goat antibodies
conjugated to horseradish peroxidase.

Analysis of mRNA expression by RT-PCR and QPCR

Total cellular RNA was harvested using TRI reagent
(Sigma) according to the manufacturers instructions. 1
pg total RNA was treated with DNase I (Ambion) before
oligo-dT reverse transcription using 200 U Superscript II
(Invitrogen). PCR for the AS-NMD event within U2AF?®
was performed on 1/20™ of the RT reaction using the
primers U2AF35_F: 5'-GCACAATAAACCGACGTT-
TAGCCAG-3', and U2AF35_R: 5-TGGATCGGCTGTC-
CATTAAACCAAC-3' for 30 cycles with an annealing
temperature of 59°C. AS-NMD events within the THIL
gene were examined using primers: Hs.517148_1_F 5'-
GGGAGGAGGTGGATGACTTC-3' and Hs.517148_1_R
5'-GGTCAGCTTGGAAAGGAGTT-3’ (intron retention,
Figure 4B) for 38 cycles at 60°C annealing;
Hs.517148_2_F 5'-ACTGCTGGACAGGATGGTTC-3'
and Hs.517148_2_R 5'-TACCTGCGATGCTGTCATTC-
3’ for 40 cycles at 60°C annealing (alternative 5’ splice
site, Figure 4C). Electronic images of gels were captured
using a MultiDoc-It Imaging System (UVP) and band
intensities were analysed using the associated Doc-It(r)
LS Image Analysis Software (UVP). Quantitative PCR
(QPCR) was performed on a Rotor-GeneTM 6000 (QIA-
GEN) using a SYBR green master mix (Applied
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Biosystems). QPCR data was analysed using the compara-
tive concentration module of the Rotor-Gene software,
which is based on the second derivative maximum
method described by Tichopad et al. [107]. Signal for the
gene of interest (GOI) was normalized to GAPDH or
HPRT levels then fold change in mRNA levels was calcu-
lated relative to the control sample. Gene specific QPCR
primers were generally obtained from Primerbank [108]
or designed using Primer3 plus [109], for sequences see
Additional file 4. For each primer pair the formation of a
single product was confirmed by melt curve analysis
[110].

Proteomics 2D-DiGE multi-gel study

Proteomics work was performed at the Cambridge Cen-
tre for Proteomics, Cambridge Systems Biology Centre,
University of Cambridge. Extracts of total protein for
analysis by 2D-DiGE were obtained from tissue culture
cells using ASB14 lysis buffer and their concentrations
quantified by DC Bradford protein assay (Biorad). For
each sample 100 pg total protein was used for analysis.
Protein separation was performed using a pl range of
pH3-10 (non-linear strip) and a 12.5% SDS-PAGE gel.
CyDye labeling, 2D protein separation, gel imaging, and
analysis were performed as described previously using
systems and software primarily obtained from GE
healthcare [46,49,63,111]. PCA was performed using the
software package SIMCA (Umetrics). Spots present in <
75% of the experimental samples (1061) were excluded,
leaving 2021 for analysis. The first eight principal com-
ponents (PCs) describing the data were calculated and
the first two, PC; and PC,, identified as significant. PC;
and PC, result in a model with R* = 0.55 (goodness of
fit) and Q* = 0.34 (goodness of prediction). Protein
spots were excised both manually from gels stained with
colloidal Coomassie, and automatically from fluores-
cently labelled gels using a CyProt-Picker robotics sys-
tem (GE Healthcare). The protein constituents of the
spots were then identified by LC-MS/MS sequencing of
the tryptic peptides produced by in-gel digestion of the
spots with trypsin. MS/MS fragmentation data were
used to search the NCBI primary sequence database
using MASCOT search engine [47].

Bioinformatics

Computational prediction of AS-NMD was performed
using a computational pipeline based on that described
previously [112,113]. To begin with the Unigene cluster
(s) [53] corresponding to each gene of interest was
aligned to the genome sequence using SPA [54]. The
resulting clusters of alignments were then processed by
PASA [52]. PASA acts to subsume equivalent align-
ments to form a number of maximal transcript assem-
blies (termed maximum transcripts) that represent
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alternative mRNA isoforms consistent with the data
from the alignment cluster. For each maximum tran-
script the largest ORF was defined and tested to deter-
mine whether the stop codon lay greater than 50
nucleotides upstream of an exon-exon junction. If this
was the case for one or more of the maximum tran-
scripts corresponding to a particular gene, then the gene
was designated as possessing AS-NMD.

uORF prediction was performed on all the RefSeq
transcripts and Ensembl annotated 5 UTRs corre-
sponding to the genes of interest. In the case of the
Refseq transcripts the largest ORF was defined and
then the region directly upstream of this taken to be
the 5" UTR. Then, for both sets of UTRs, ORFs begin-
ning with ATG were sought for in the forward three
reading frames.

Finally, potential NMD sensitive maximum transcripts
were then scored according to the number of peptides
identified by mass spectrometry that were present within
the protein sequence encoded by the largest ORF of the
maximum transcript. Only transcripts encoding all of
the identified peptides were considered as being poten-
tially responsible for the observed upregulation of pro-
tein spots.

3’ Race

1 pg of DNAase I treated total RNA from HeLa cells hav-
ing undergone UPF1 knockdown was subject to reverse
transcription by superscript II (Invitrogen) using an oligo-
dT primer with the 5" adaptor sequence: 5'-GGACGCG-
TAAGCTTGTCGAC-3'". PCR was then performed using a
primer with the adaptor sequence and primers within
both the terminal coding exon of hnRNPA2/B1 (A2B15'1:
TTTGGTGGTAGCAGGAACAT, A2B15'2: TGGAG-
GAAACTATGGTCCAG) and within predicted portions
of the 3' UTR (A2B15'3: TTGGTTCCTTCAGTGGTGTT,
A2B15'4: TGCTGCCACAAAGACTGTAA). Sequences
from these reactions were cloned into pGEM T-easy (Invi-
trogen) and sequenced.

Sorting of cells by flow cytometry

2 x 10° HeLa cells/well of a 6 well plate were co-trans-
fected with 1 pg pCI-NLS-FLAG hnRNPA2 (or the empty
pCI-NLS-FLAG vector) and an equivalent molar amount
of pEGFP-N1 (927.94 ng) using Lipofectamine 2000 (Invi-
trogen). 48 hours later cells were harvested for flow cyto-
metry by trypsination. Cells from four wells were pooled
for each replicate and resuspended in 1 mL DMEM + 2%
ECS. For each replicate 1 x 10° GEP positive cells were
collected using a MoFlo high-speed cell sorter (Beckman
Coulter). GFP flourescence was detected using a 530/30
filter and live/dead cells discriminated with To-Pro-3
staining, detected using a 670/30 filter. Cells were gated
based on forward and side scatter to eliminate debris and
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then doublet discrimination was carried out to ensure only
single cells were sorted (Additional file 5).

Additional material

<
Additional file 1: Protein spots of interest excised for identification
by mass spectrometry. Cy2 image of one gel from the 2D-DiGE multi-
gel study. The 85 up-regulated spots excised for identification by mass
spectrometry are circled in red and the 17 down-regulated spots excised
are circled in blue. Each spot is labelled with its number from Additional
file 2.

Additional file 2: XLS file containing the collated data from the 2D-
DiGE multi-gel study, peptide sequence data and protein IDs
produced by mass spectrometry, computational prediction of NMD
activating features and QPCR based validation of changes in mRNA
expression.

Additional file 3: A. Novel 3’ UTR sequence of HNRNPA2B1
constructed from RACE tags. Exon sequence is capitalised. HNRNPA1
and A2/B1 motifs from [91] are emboldened and underlined. The small
UTR intron present in the Refseq UTR is outlined in black. B. Sequences
of the 3' RACE tags illustrated in Figure 6.

Additional file 4: List of all the QPCR primer used in this study,
including sequence and design source.

Additional file 5: Sorting of GFP positive cells by flow cytometry.
Representative plots of the cell sorting used in Figure 6. Cell events are
denoted by dots. Increasingly “hot” colours represent increasing density
of cell events. In each panel, the cells selected for further sorting are
outlined by a polygon (termed a gate), and the inlaid number indicates
the percentage of cells at that stage within the gate. A. Cells were gated
based on forward and side scatter to eliminate debris. B. Doublet
discrimination was carried out to ensure only single cells were sorted. C.
Live/dead cells were discriminated with To-Pro-3 staining, detected using
a 670730 filter. D. GFP fluorescence was detected using a 530/30 filter.
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