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Abstract

Background: Gene expression profiling is an important approach for detecting diagnostic and prognostic
biomarkers, and predicting drug safety. The development of a wide range of technologies and platforms for
measuring mRNA expression makes the evaluation and standardization of transcriptomic data problematic due to
differences in protocols, data processing and analysis methods. Thus, universal RNA standards, such as those
developed by the External RNA Controls Consortium (ERCC), are proposed to aid validation of research findings
from diverse platforms such as microarrays and RT-qPCR, and play a role in quality control (QC) processes as
transcriptomic profiling becomes more commonplace in the clinical setting.

Results: Panels of ERCC RNA standards were constructed in order to test the utility of these reference materials
(RMs) for performance characterization of two selected gene expression platforms, and for discrimination of
biomarker profiles between groups. The linear range, limits of detection and reproducibility of microarray and RT-
qPCR measurements were evaluated using panels of RNA standards. Transcripts of low abundance (≤10 copies/ng
total RNA) showed more than double the technical variability compared to higher copy number transcripts on
both platforms. Microarray profiling of two simulated ‘normal’ and ‘disease’ panels, each consisting of eight
different RNA standards, yielded robust discrimination between the panels and between standards with varying
fold change ratios, showing no systematic effects due to different labelling and hybridization runs. Also,
comparison of microarray and RT-qPCR data for fold changes showed agreement for the two platforms.

Conclusions: ERCC RNA standards provide a generic means of evaluating different aspects of platform
performance, and can provide information on the technical variation associated with quantification of biomarkers
expressed at different levels of physiological abundance. Distinct panels of standards serve as an ideal quality
control tool kit for determining the accuracy of fold change cut-off threshold and the impact of experimentally-
derived noise on the discrimination of normal and disease profiles.

Background
Transcriptomic approaches such as gene expression
microarrays are being used routinely in diverse fields of
research, such as toxicology and cancer biology, in order
to characterize biological processes and find biomarkers
indicative of pathological states and processes [1-3].
Compared to traditional clinical outcome measurements
where a single biochemical measurement or histopatho-
logical score is interpreted, gene expression signatures
resulting from microarray experiments generate a

molecular fingerprint consisting of multiple biomarkers
which cannot otherwise be interpreted in isolation. This
approach has been applied successfully in the area of
breast cancer prognosis, where the first in vitro diagnos-
tic multi-variate index assay (IVDMIA) using gene
expression measurements, MammaPrint (a microarray-
based expression profile of 70 genes [5]), was approved
for use by the FDA in 2007 [4], while OncotypeDx, a
reverse-transcription quantitative PCR (RT-qPCR) -based
assay profiles 21 genes in proliferation and estrogen
receptor-related pathways [6].
In order to expedite the approval of new recognized
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discovery, regulatory bodies such as the FDA and EU
commission have highlighted the need to standardize
results from ‘omics’ platforms using reference materials
(RMs) in order to aid regulatory decisions (FDA Critical
Path Opportunities List) [7]. It has been reported that
better standardization during initial processes of biomar-
ker identification would also improve the interpretation
of meta-analyses where studies have been performed
using different experimental protocols, platforms and
designs [8,9]. Upon approval of multigene biomarker
tests for clinical applications, reference materials would
play an integral part in ongoing quality control (QC)
procedures and proficiency testing (PT) in clinical
laboratories [10].
At the moment standardized reference materials for

assessing results from different gene expression plat-
forms are lacking [9]. In the field of gene expression
microarrays, array manufacturers usually supply controls
which can provide information on platform performance
and ascertain the quality of sample labelling and hybri-
dization procedures. However, platform-specific do not
allow direct comparison of gene expression data from
different platforms, leading to calls for universal micro-
array reference materials [11,12]. Gene expression stu-
dies by RT-qPCR techniques often use reference gene
levels as a means for assessing sample processing and
normalising for the mRNA content of a sample [13].
However, reference gene expression is often influenced
by the experimental conditions under investigation,
requiring thorough validation of their stability [14,15].
In contrast, in vitro produced RNA spike-ins are inde-
pendent of the biological process and can act as controls
for both the RT and qPCR steps [13,16]. Artificial spike-
ins are also useful for assessing the presence of inhibi-
tors from the sample in the RT-qPCR reactions [17].
However, like microarray spike-ins, cross-platform RNA
standards are not widely available for RT-qPCR
applications.
Efforts to address these issues are in progress through

the ERCC initiative for developing a large set of publicly
available RNA standards [18]. A panel of 96 different
standards developed through the ERCC project consists
of artificial sequences or sequences from bacterial and
other genomes which lack homology to human
sequences [19]. These RNA standards have been pro-
duced by in vitro transcription (IVT) and contain syn-
thetic 3’ polyA sequences, which enable them to be
processed in the same way as mRNA transcripts, using
oligo(dT)-based priming strategies which are commonly
used in microarray sample labelling and RT-qPCR
protocols.
In this study we tested panels of selected RNA stan-

dards with potential application for biomarker validation
for the two most commonly used technologies for gene

expression quantification-DNA microarrays and RT-
qPCR. The study focussed mainly on the detection
properties of the standards using Agilent one-colour oli-
gonucleotide microarrays and Taqman® real-time PCR
methods. The standards were used to investigate some
of the performance characteristics on two representative
platforms, namely linear dynamic range, limit of detec-
tion (LOD) and technical reproducibility. We also devel-
oped two separate panels of these standards designed to
mimic ‘normal’ and ‘disease’ states, where some biomar-
kers are differentially expressed whilst others remain
unchanged in their expression. Finally, we have demon-
strated the use of such panels informed decision-making
regarding fold change cut-off thresholds and assessment
of the impact of technical factors on the discrimination
between control and treatment groups.

Results
Characterisation of gene expression platforms using
RNA standards
Our initial aim was to demonstrate the use of universal
RNA standards to characterize different methods for
gene expression quantification and provide technical
information which can be applied to mRNA biomarkers
of differing levels of abundance. In order to closely
mimic biological scenarios [20], RNA standards were
spiked into human total RNA prior to setting up micro-
array labelling or reverse transcription reactions. Eight
different standards, ranging in length from 481 to 1324
bases, and varying composition of GC bases were
selected to provide balanced differences in reaction effi-
ciencies due to transcript sizes and secondary structure
considerations (Additional File 1).
The detection of eight RNA standards was inve-

stigated using common microarray and RT-qPCR
approaches- Agilent one-colour 4 × 44 K microarrays
and Taqman®-based real-time PCR using ABI 7900HT
real-time PCR system, incorporating in- house designed
oligonucleotide probes and assays respectively (for
sequences, see Additional File 1). In the first of two
experiments, copy number for RNA standards was var-
ied across seven orders of magnitude between 1 and 106

copies per ng total RNA, in a background of Universal
Human Reference RNA (Stratagene) (Table 1). Copy
numbers were chosen to extend over the natural physio-
logical levels of transcript abundance, approximating to
a range of between 0.01 and 104 copies of an individual
mRNA transcript per mammalian cell with a total RNA
content of 26 pg [21]. A negative control with zero
copies of each standard was also included in each sam-
ple in order to measure background signals and check
the specificity of the assays. The composition of each
sample was balanced to contain the same total number
of transcript copies (Table 1) and the addition of
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spike-in materials did not increase the mRNA content
of the sample by more than 4% (assuming mRNA as 2%
of total RNA [21]).
The signal output of each platform at different levels

of copy number was measured in terms of microarray
raw signal intensity or qPCR Ct values (Figure 1) for all
eight RNA standards. Characterisation of the platform
signal output for each level of RNA standard abundance
may be a useful means of relating spike-in metrics to
endogenous genes, as, unlike the copy number of

in vitro produced RNA which can be ascertained by UV
spectroscopy, the absolute copy numbers of endogenous
transcripts are not normally known for microarray or
RT-qPCR experiments. Therefore if a gene of interest
falls within a given range of microarray signal intensity
or Ct value, the performance characteristics in terms of
the linearity, precision and accuracy of detection at that
level of abundance can be used to inform these metrics
for the candidate markers. Such platform-specific per-
formance characteristics are further investigated in the
following two sections.

Linear range and LOD of microarray
and RT-qPCR platforms
The detection range of RNA standards was modelled
across a range of copy numbers for each standard on
both microarray and RT-qPCR platforms in order to
define the linear dynamic range and LOD. Example
plots of normalized microarray and RT-qPCR signal in
correlation with the copy number are shown for ERCC-
13 in Figure 2, with results for the other seven RNA
standards presented in Additional File 2. Visual inspec-
tion of the results suggested that the linear region of the
range was between 10 and 105 copies/ng RNA for Agi-
lent microarrays and upwards of 10 copies/ng for the
RT-qPCR platform. In order to confirm that the linear
range of the instruments also corresponded to the

Table 1 Composition of pooled samples (numbers denote
copies/ng total RNA)

Sample pool no.

RNA standard 1 2 3 4 5 6 7 8

13 1 10 102 103 104 105 106 0

42 0 1 10 102 103 104 105 106

81 106 0 1 10 102 103 104 105

84 105 106 0 1 10 102 103 104

95 104 105 106 0 1 10 102 103

99 103 104 105 106 0 1 10 102

113 102 103 104 105 106 0 1 10

171 10 102 103 104 105 106 0 1

Eight different RNA standards were mixed in a background of Stratagene
Universal Reference RNA across a range of copy numbers between 0 and 106

copies/ng total RNA.

Figure 1 Characterisation of platform signal output using RNA standards. Signal output data for all eight standards across a tested range
between 0 and 106 copies/ng total RNA are shown as box-whisker diagrams for microarray (white bars) and RT-qPCR (grey bars) applications.
Median signal output (central line), interquartile range and minimum and maximum values are shown for each level of transcript abundance.
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dynamic range of signal output, the 10-fold differences in
copy number between samples were compared with signal
output to check for proportionality. Log2-transformations
of the copy numbers for the standards were plotted against
normalised signal outputs (microarray) or ΔCt values
(RT-qPCR) and linear regression was performed across
the linear range marked in Figure 2. The resulting slope
and R2 values from this analysis are displayed in Table 2.
These results show that the expected slopes for all eight
standards are close to the ideal value of 1.0 and the R2

values indicate good correlation of data across the defined
linear ranges (R2 > 0.96, microarray; R2 > 0.99, RT-qPCR).
The LOD of both platforms was also compared using
data generated from all eight standards. For micro-
arrays, the LOD was defined as the upper 95% confi-
dence interval of the signal intensity of the baseline for
the blank sample and the percentage of data points
with signal output above the LOD for each copy num-
ber level calculated (Figure 3). For RT-qPCR, since the
zero copy sample results in an ‘undetermined’ call, it is
not possible to model a baseline signal level. Therefore
the percentages of positive reactions were calculated
for each level of abundance as the percentage above
the LOD (Figure 3). At 1 copy/ng (equating to 1 RNA
copy per qPCR reaction), it is evident that the stan-
dards could not be detected effectively on either

microarray or RT-qPCR platforms as only 25% of
microarray data exceeded the LOD, and 22% of PCR
reactions resulted in a positive Ct value. When the
copy number was increased to 10 copies/ng, 75% of
microarray data exceed the LOD and 94% of qPCR
reactions resulted in a Ct value. Therefore the LOD at
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Figure 2 Linear range of detection on microarray and RT-qPCR platforms. Example plots of modelling the linear range of each gene
expression platform are displayed. Normalised signal intensities (microarrays) (symbol: black diamond) or ΔCt values (RT-qPCR) (symbol: grey
triangle) are plotted against the standard (copy number/ng). Individual data points for ERCC-13 from three independent experiments are plotted.
Correlation analysis was performed over the linear portion of the detection range (Microarrays: 10-105 copies/ng; RT-qPCR 10 - 106 copies/ng)
and Pearson correlation coefficient (R2) values are displayed (microarray value in bold).

Table 2 Accuracy and precision of platforms across
linear range

Platform

Standards Microarray RT-qPCR

Slope R2 Slope R2

13 1.0566 0.9991 1.0004 0.9988

42 1.0047 0.9675 1.0205 0.9988

81 1.0389 0.9671 0.9946 0.9994

84 0.9772 0.9639 0.9693 0.9989

95 0.957 0.9712 1.0022 0.9993

99 1.0095 0.9626 1.0052 0.9994

113 1.0248 0.9993 1.0200 0.9970

171 1.0696 0.9993 0.9714 0.9988

The accuracy and precision of the platforms across the linear range
(Microarray: 10-105 copies/ng; RT-qPCR: 10-106 copies/ng) were assessed by
the slope (ideal slope = 1.000) and Pearson correlation coefficient (R2) values
respectively, based on linear regression of transcript copies/ng vs. normalised
signal intensity (microarray) or ΔCt values (RT-qPCR). RT-qPCR values were
adjusted for the PCR efficiency of the assay.
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which both platforms could discriminate between the
presence and absence of the standards was estimated
as 10 copies/ng. Similarly, at 100 copies/ng, the LOD
was exceeded, with 100% of both microarray data and
qPCR reactions yielding positive results based on the
above criteria (data not shown).

Technical reproducibility and precision of microarray
and RT-qPCR platforms
Technical reproducibility and precision are another two
important aspects of platform performance as knowl-
edge of the technical ‘noise’ associated with the biomar-
ker measurements is useful for informing the confidence
with which results are interpreted, and assigning mea-
surement uncertainty values for standardized assays.
The standards were used to characterize the technical
variation associated with each platform, both in terms of
technical reproducibility (variation between experimental
runs performed on different days) and precision (varia-
tion between replicate measurements performed within
the same run).

The reproducibility of measurements from both gene
expression platforms was calculated across a range of
concentrations mimicking different transcript abundance
levels (Figure 4). The variation in microarray measure-
ments between different arrays performed on three
separate occasions is displayed as raw or normalized sig-
nal intensities (Figure 4A and 4B respectively). It can be
observed that technical reproducibility is poorer (median
10-20%) for low transcript abundance levels (1-10
copies/ng) which also happen to be at or below the
LOD (see above section). The effect of normalization
increases the spread of variation for the 1 copy/ng level,
possibly due to calculation of expression values relative
to the 75th percentile (Figure 4B). However, above 100
copies/ng, the percentage variation of raw data is below
10%, and drops to 5% or less as a result of data normali-
sation (Figures 4A and 4B).
The technical reproducibility of microarray experi-

ments across all probes (~44K) on the array, as opposed
to the RNA standards only was also compared to deter-
mine if technical reproducibility of the standards
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Figure 3 LOD of ERCC standards on microarray and RT-qPCR platforms. Percentage of assays exceeding the LOD for microarray (MA) and
RT-qPCR platforms are displayed for each RNA standard for 1 copy/ng and 10 copies/ng total RNA abundance levels (Table 1), based on three
replicate assays (microarrays) or nine replicate PCR assays (RT-qPCR). LOD is defined as the upper limit of the 95% confidence interval of 0 copies
(microarrays) or positive Ct values (RT-qPCR).
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correlated with the observed reproducibility for endo-
genous gene expression values. The results show that
pair-wise correlation of replicate arrays of the same
sample exhibited a high degree of correlation for the
platform (R2 > 0.985) (Additional File 3).
For RT-qPCR experiments, the data was compared

between three different experimental runs (Figure 4C)
based on the mean Ct value for each run. Due to the
high number of failed reactions at 1 copy/ng (Figure 3),
technical variation between runs was only calculated for
greater than 10 copies/ng. Similar to microarray data,

technical reproducibility was reduced at the low end of
the linear detection range (Figure 2) reflecting a greater
spread in Ct values. Above 100 copies/ng, technical var-
iation between runs equated to 10%. Ordinarily, Ct
values are not compared between runs since relative
expression measurements are compared to a standard
curve or reference sample incorporated on the same
plate. Therefore Ct values were also expressed relative
to the mean Ct value for the highest copy number (106

copies/ng) within each run in order to normalize for the
effect of run-to-run variation. Transformation of RT-

Figure 4 Technical reproducibility of microarray and RT-qPCR platforms. Technical reproducibility of microarray and RT-qPCR data was
calculated based on the technical variation of each standard across three independent experiments using the same labelled sample
(microarrays) or cDNA sample (RT-qPCR). Box-whisker plots show the median signal output (central line), interquartile range and 10th and 90th

percentile values for each level of transcript abundance. Distribution of technical variation across all tested standards are displayed as percentage
CV of microarray raw signal (SD/mean)(A), percentage variation associated with normalized signal intensity (log2) based on SD of normalized
values (B), percentage variation in expression quantities (based on SD of Ct values, corrected for PCR efficiency of each assay)(C) and percentage
variation in expression quantities, expressed relative to the mean Ct value for 106 copies/ng within each run (D).
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qPCR data to relative expression levels reduced the
technical variation between runs to below the 5% level
for copy numbers of 1000 or more (Figure 4D).
The technical precision of each platform, within the

same hybridization experiment or qPCR plate, was also
calculated for different copy number levels based on
data from duplicate arrays or triplicate qPCR reactions
(Figure 5). Results for within-run variation show that
deviation in signal output was higher for both microar-
ray and RT-qPCR platforms at the lower end of tested
range (10 copies/ng). Within-run variation for microar-
rays was 10-20% above 100 copies/ng for all levels of
abundance (Figure 5A), whereas higher technical repro-
ducibility for RT-qPCR data correlated with increasing
copy numbers (Figure 5B).

Construction of ‘normal’ and ‘disease’ panels
Further to investigation of the applicability of RNA stan-
dards for provision of technical information on biomar-
ker measurements, their usefulness for validating
expression analyses of biomarkers between different
conditions, e.g. normal vs. disease states was evaluated.
Often the first stages of biomarker screening involves
selecting the genes showing the largest and/or most sig-
nificant fold changes in expression between different
experimental groups, and studying the differences in
global expression profiles using multifactorial analysis
methods such as Principal Component Analysis (PCA)
and ANOVA. For testing the utility of RNA standards
in providing information on the success of discriminat-
ing different groups in the context of a trial or experi-
ment, we constructed two panels (A and B) consisting
of eight standards each, simulating normal and disease
states (Table 3).
In order to mimic candidate biomarkers showing dif-

ferential or unchanged expression in different experi-
mental groupings, four of the standards exhibited an
altered expression profile between the two panels, with
ratios of 1.5, 2.0, 5.0 and 10.0 between groups, whilst
the other four had a fold change of 1.0, with equal copy
numbers in both panels (Table 3). A range of transcript
abundance levels were included in the design of the
panels, with the aim of mimicking, for example, tran-
scripts with low abundance in the ‘normal’ state with a
large increase in expression in the ‘disease’ states (e.g.
ERCC-171) or transcripts of average abundance with
a moderate fold change in the disease-state (e.g.
ERCC-99) (Table 3). Three independent microarray
experiments were set up for investigating the effect of
variability due to labelling (duplicate reactions) and
hybridisation (duplicate hybridisations per labelling
reaction) on the discrimination of two panels.

Accuracy of fold change estimation by microarray and
RT-qPCR platforms
Initially the simulated ‘normal’ and ‘disease’ panels were
used to assess the accuracy of fold change measurements
using microarrays. Since 100 replicate probes specific for
each of the RNA standards were present on the microar-
rays, they were treated as individual entities in order to
model the distribution of fold change measurements for
an individual feature, as is the case for most genes repre-
sented on whole genome microarrays. The accuracy of
fold change estimation for each feature was assessed
based on six pair-wise comparisons between the two
panels, spanning the three independent experiments (Fig-
ure 6A). Overall the observed fold change measurements
correlated closely to the expected values. The standards
represented at medium to high abundance (103 copies/ng
or above; ERCC-13, -42, -95 and -99) showed the closest
agreement between observed and expected fold change
values with over 75% of entities within 10% of the
expected values. However, low abundance transcripts
(102 copies/ng or equivalent to 1 copy/cell) in the panels
(ERCC-81 and -84), resulted in just over 60% entities fall-
ing within the same threshold, whilst trace abundance
transcripts (101 copies/ng; ERCC-113 and -171), exhib-
ited significantly impaired accuracy with less than 25% of
entities falling within 10% of the expected values. As real-
time PCR is the main strategy used for validation of
microarray fold change measurements [22], the microar-
ray fold change data (averaged over probe replicates) was
compared with RT-qPCR measurements of the panels.
Similarly, replicate independent RT and qPCR experi-
ments were performed in order to encapsulate full run-
to-run variation for the technique. Good agreement
between the two platforms was shown by correlation
analysis of the fold change measurements for microarray
and RT-qPCR platforms (R = 0.96) (Figure 6B).

Classification of differentially expressed genes
Fold change cut-offs and statistical analysis are the most
commonly used approaches for generating gene lists
which are further interrogated in terms of biological sig-
nificance by gene ontology and pathway analysis [23].
We investigated whether individual features (each array
contained 100 replicates for each standard) were classi-
fied correctly using a ‘Volcano plot’ approach with fold
change cut-off thresholds of 3.0, 2.0, 1.5 and 1.1 with a
p-value cut-off of 0.05. Figure 7 shows that using the
higher fold change cut-off thresholds of 3.0 and 2.0,
almost 100% of features are classified correctly as differ-
entially (ERCC-42, -84 and -171) or non-differentially
expressed (ERCC-13, -81, -95, -99 and -113). However
using a fold change cut-off threshold of 1.5, only 2% of
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ERCC-99 features are correctly classified as differentially
expressed despite being spiked at a 1.5-fold ratio in the
two panels. Using the low stringency 1.1-fold cut-off,
some features are misclassified as exhibiting differential
expression despite their presence at the same level in

both panels. Of the 65 incorrectly classified ‘false posi-
tive’ features, 48 were probes detecting ERCC-113 and
17 were those detecting ERCC-81, the two standards
with the lowest abundance of the four unchanged stan-
dards between the panels.
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Figure 5 Technical precision of replicate assays. Precision of replicate measurements made within the same experimental run are plotted
against copy number of the standards. Mean variation in raw signal intensities or Ct values across three independent runs are shown for
microarray (A) and RT-qPCR (B), based on duplicate arrays or triplicate qPCR reactions within each run.
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Discrimination between ‘normal’ vs. ‘disease’ panels
Further to the application of the panels to fold change
analysis, their usefulness for assessing the robustness of
discriminating between normal and diseased states,
using multigene expression profiles, was also investi-
gated. The impact of technical factors such as target
labelling and microarray hybridization on the discrimi-
nation between the two simulated ‘normal’ and ‘disease’
panels was investigated by PCA of the microarray data
and the results are presented in Figure 8A. The two
panels, A and B, are separated clearly by the first princi-
pal component, which accounts for the majority (60%)
of the variation in expression profiles. The second prin-
cipal component accounts for a further 27% of the var-
iation in the data which may be surmised to be due to
technical ‘noise’ in the experimental system (since panel
and experimental run were the only variables in the
experiment). Experimental run does not appear to have
a systematic effect on the expression profile of the RNA
standards, as individual runs do not cluster together on
the PCA (Figure 8A). The discrimination of the micro-
array data based on entities (genes) with a similar
expression profile was also investigated using PCA
(Figure 8B). The analysis indicates clear discrimination
between RNA standards with different ratios between
the panels, with over 90% of the variation in expression
profile being due to this factor. Standards, whose
expression is ‘up-regulated’ in panel B compared to
panel A, are clearly separated from those with no fold
difference between panels or down-regulated in panel B.
ERCC-99, which exhibited only a 1.5-fold difference
between panels, clustered close to the four standards
with unchanged expression levels between panels
(Figure 8B). The second principal component, which
could be attributable to technical variation, accounts for
only 5% in the variation (in expression of individual
standards) and shows highest spread for ERCC-171
which has a ratio of 10.0 between panels A and B. As

noted for accuracy of fold change estimation for differ-
ent standards, the expression of ERCC-171 may be
more variable due to a higher level of technical noise in
the region of lower transcript abundance (Figure 6A).

Discussion
The complexity and multivariate nature of gene expres-
sion profiling techniques, measuring thousands of differ-
ent transcripts has raised issues over the last decade
regarding suitable approaches for standardized data
comparison. In addition to the different techniques
available (microarray, RT-qPCR, next generation
sequencing etc), factors such as platform, laboratory,
experimental run, experimental design and methodologi-
cal parameters such as labelling approach for microarray
studies or choice of RT priming strategy RT-qPCR
experiments can all impact on the results [24-26].
Furthermore, processing and normalization of the
results set can also influence both microarray and RT-
qPCR data [27,28]. Significant progress, in improving
the confidence in the extent to which technical variabil-
ity influences results from different microarray plat-
forms, has been made through the application of
reference RNA sample titrations by the MAQC [29].
However, as microarray and other transcriptomic
approaches move from being predominantly research
tools into clinical and regulatory applications, reference
materials are required in order to ensure high levels of
quality control and traceable results [30]. The develop-
ment of generic RNA standards by the ERCC are
expected to fulfil such function as reference materials
[19]. In this study we have sought to demonstrate how
carefully constructed panels of RNA standards can be
used to characterize platform-associated technical
factors and provide information relevant to biomarker
discovery and validation.
For this study, technical aspects of platforms perfor-

mance were investigated using eight different RNA
standards, mimicking transcripts covering a wide physio-
logical range of abundance levels. By varying each stan-
dard across the full range of copy numbers, some of the
confounding influence caused by individual microarray
probe specificity, which is present when a single spike-
in is used at a set concentration, is negated [20]. Like-
wise, variations due to Taqman assay efficiency are likely
to be minimised by performing RT-qPCR reactions for a
panel of multiple standards.
The linear range of both microarray and RT-qPCR

platforms was assessed by the slope of signal output vs.
spike-in concentration and by characterizing the lower
LOD using the standards. The dynamic range of detec-
tion using the Agilent one-colour platform encompassed
four orders of magnitude over which the observed
changes in signal intensity closely matched the expected

Table 3 Composition of ‘normal’ and ‘disease’ panels

RNA standards
Copies/ng total RNA

Fold change
(B/A)Panel A Panel B

13 1 × 105 1 × 105 1.0

42 1 × 104 5 × 103 0.5

81 1 × 102 1 × 102 1.0

84 1 × 102 5 × 102 5.0

95 1 × 103 1 × 103 1.0

99 8 × 103 1.2 × 104 1.5

113 1 × 101 1 × 101 1.0

171 1 × 101 1 × 102 10.0

To mimic the composition of ‘normal’ and ‘disease’ states which contain both
differentially expressed genes (DEGs) and non-DEGs, two panels were
produced using the eight standards at defined ratios and copy numbers.
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Figure 6 Accuracy of fold change estimation. The fold change in expression levels between panels A and B was calculated based on six pair-
wise comparisons across three experimental runs. (A) The distribution of fold change measurements are displayed for each ERCC standard based
on 100 individual microarray features for each standard. Box-whisker plots reflect median, interquartile range, 10th and 90th percentile fold
change values with dots indicating individual outliers. Expected values for fold changes are indicated by gridlines. (B) Microarray observed fold
change values averaged across all 100 probe replicates are plotted against fold change measurements from RT-qPCR data as individual data
points (n = 6 for each ERCC standard). Trendline indicates correlation analysis with calculated slope and Pearson’s correlation coefficient (R).
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values (Figure 2A). This result conforms with product
literature for the platform, reporting a five order of
magnitude detection range (Agilent Multiplex Gene
Expression Microarrays product information, Part No.
5989-5432EN). At concentrations of transcripts 10-fold
below the LOD range, the signal intensities were gener-
ally indistinguishable from non-specific background
hybridisation data (Figure 3). Results of RT-qPCR analy-
sis of the same panels displayed linearity over the same
range of copy numbers as the microarray results.
However no plateau was observed at the maximum copy
number tested (106 copies per ng) (Figure 2B), in keep-
ing with the dynamic range of seven to eight orders of
magnitude reported for real-time PCR [31]. The LOD
for RT-qPCR was in the region of 10 copies (Figure 3),
which is close to the reported sensitivity of RT-qPCR
for single copy detection [32] in view of the fact that the
reverse transcription step is normally significantly less
than 100% efficient [33]. Concentration response curves
using RNA standards have previously been shown to be
a useful tool for comparing the linearity of the response
of different microarray platforms in terms of signal
compression and precision [12]. It is proposed that
panels of universally applicable standards, such as those
used here, will provide directly comparable information

on the performance of different platforms in terms of
dynamic range and LOD.
The panels also yielded useful information on the

reproducibility of the two gene expression technologies
investigated. For transcript copy numbers of at least 100
copies per ng total RNA (approximately 1 copy per cell),
technical reproducibility of microarray data (Figure 4A)
was within the 5-15% CV values for the Agilent one-
colour platform reported by the MAQC [29]. For lower
abundance transcripts, reproducibility between experi-
mental runs was poorer with variation of up to 30-35%
observed for raw and normalized microarray data (Fig-
ure 4). For genes expressed at such low levels, stringent
filtering of the data based on present/absent calls or raw
expression levels has been shown to improve concor-
dance between replicate arrays [34,35]. Likewise, for RT-
qPCR, increased inter-run and intra-run variation was
observed for low abundance transcripts (Figures 4 and 5)
due to stochastic variation in both RT and qPCR stages
when only a small number of molecules is present in
each reaction [17]. The RNA standards can therefore
provide an indication of the measurement uncertainty
associated with biomarkers of varying abundance and
could be used to develop guidelines, e.g. for trace biomar-
ker measurements and for calculating the number of

Figure 7 Classification of DEGs. The expected and observed number of ERCC microarray features classified as DEGs are compared using fold
change cut-offs of 3.0, 2.0, 1.5 and 1.1. A statistical cut-off of p < 0.05 was applied. Analysis was based on averaged data for ‘normal’ and
‘disease’ panels A and B (n = 6) with 100 microarray features present for each ERCC standard.
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Figure 8 Discrimination between expression profiles of ERCC microarray data. The discrimination between ERCC ‘normal’ and ‘disease’
panels A and B across three independent microarray experiments (Runs 1, 2, 3) was assessed in the following ways: (A) PCA was performed
using expression data for all eight ERCC standards containing 100 replicates of each probe based on conditions (panel and experimental run).
(B) Discrimination of microarray measurements between DEGs and non-DEGs was assessed by PCA based on entities. Dots represent individual
microarray features (100 per standard).
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replicate measurements required to ensure sufficient sta-
tistical power in a particular experiment or assay.
In addition to their utility for cross-platform compari-

son and measurement uncertainty considerations, we
sought to demonstrate that RNA standards can also
facilitate internal quality control of biomarker measure-
ments in terms of differential expression analysis and
multigene expression profiling techniques. It is envi-
saged that such panels could be spiked into experimen-
tal samples in order to gauge the accuracy with which
‘normal’ and ‘disease’ states or control and treatment
conditions are assigned.
By using the RNA standards as surrogate biomarkers,

the panels were tested to gauge the confidence of
assigning differential or non-differential expression of a
biomarker at particular levels of transcript abundance or
magnitude of fold change (Figure 6). The observed fold
changes highlighted the variable extent to which techni-
cal noise arising from microarray labelling and hybridi-
sation may impact on biomarker regulation. Transcripts
of lower abundance showed wider variation in fold
change measurements for both unchanged and differen-
tial ratios between the two panels. The distribution of
fold change ratios between the panels modelled on the
100 probe replicates on each array (Figure 6A) indicate
that erroneous fold change results are more likely to
arise in the region corresponding to lower signal inten-
sity. Comparison of microarray and RT-qPCR results
revealed good consistency between the two technologies
for fold change detection (Figure 6B) and also confirmed
that the Agilent platform does not cause compression of
fold change measurements [29]. The panels of standards
provide further opportunities for QC of gene expression
results when applying different analytical methods, such
as fold change cut-off thresholds and statistical testing.
For example, our results highlighted that biomarkers,
with a 1.5-fold change between experimental groups, are
less easily discriminated than at higher fold changes (≥
2.0-fold) (Figures 7 and 8B).
The discrimination between the ‘normal’ and ‘disease’

panels using global profiling methods such as PCA (Fig-
ure 8) was also shown to be a potentially useful QC tool
for investigating technical noise within an experiment
and could be employed for identifying anomalous
microarrays within a dataset. Such analyses of the panels
also indicate whether run-to-run variation has greater
impact on the dataset compared to true differences in
conditions (e.g. normal vs. disease) or between entities,
i.e. Differentially Expressed Genes (DEG) and non-DEG.
For the Agilent microarray platform used in this study,
experimental runs did not have a systematic effect on
the profile of the eight RNA standards. Also, individual
sample labelling using a one-colour approach did not
seem to cause any observable bias in the resultant

expression profiling (Figure 8). However, it has been
reported that two-colour sample labelling had a signifi-
cant effect on the gene expression profile, especially
between different laboratories [36].

Conclusions
RNA standards provide a means of internal quality con-
trol for all stages of the gene expression experiment,
namely sample processing, assay methodology, data pro-
cessing and analysis. In this study, we have demon-
strated that panels of generic RNA standards can be
used to assess inter-platform variations in terms of
dynamic range, LOD and precision of different technol-
ogies. We found that Agilent one-colour microarray
hybridisation data and RT-qPCR measurements both
provided accurate and reproducible measurement of the
standards, although transcript abundance has a signifi-
cant influence on these parameters. Furthermore, simu-
lated ‘normal’ and ‘disease’ panels proved to be
informative for the analysis of fold change accuracy and
the discrimination of transcriptomic measurements. We
conclude that such prototype reference panels could be
useful QC materials for the standardization of gene
expression measurements between laboratories and plat-
forms, and in aiding interpretation of biomarker profil-
ing data in regulatory settings.

Methods
Preparation of in vitro transcribed RNA and samples
In vitro transcribed RNA standards were produced from
original ERCC plasmid DNA (donated by Dr. Marc
Salit, NIST, USA). Plasmid DNA from ERCC standards
13, 42, 81, 84, 95, 99, 113 and 171 (for sequence infor-
mation, see Additional File 1) were cleaved into a single
linear strand using BamHI restriction endonuclease
enzyme (New England Biolabs, Hitchin, UK). In vitro
transcription was performed using Ambion MEGA-
script® T7 Kit (Applied Biosystems, Warrington, U.K.)
followed by DNase treatment and clean-up using
RNeasy columns (Qiagen, Hilden, Germany). RNA
concentration and length were measured using Nano-
drop 1000 spectrophotometer (Thermo Scientific, Wil-
mington, DE) and 2100 Bioanalyzer system (Agilent
Technologies, Waldbronn, Germany) respectively. RNA
stocks were diluted in nuclease free-water and spiked
into Universal Human Reference RNA (Stratagene, U.K.)
at varying concentrations and ratios (Tables 1 and 3).

Microarray labelling and hybridization
RNA labelling and hybridization were performed
according to the Agilent One-Colour Microarray-Based
Gene Expression Analysis (Quick Amp Labelling) proto-
col (v5.7 March 2008). 500 ng of total RNA was labelled
with cyanine-3 and assessed for yield and dye
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incorporation using the Nanodrop spectrophotometer.
Purified cRNA samples were hybridized to custom-made
Agilent 4 × 44 K oligo microarray. The array design
incorporated 100 replicate probes for each RNA stan-
dard (Additional File 1) in the background of human
genome reference sequences. Microarray slides were
scanned at 5 μM resolution using an extended dynamic
range (XDR) scan at 10% and 100% PMT gain on Agi-
lent G2505B scanner. Feature extraction was performed
using Agilent Feature Extraction software v9.5.1.1.

Microarray data processing and analysis
Microarray data analysis was performed using Gene-
Spring GX 11.0 software (Agilent Technologies). Green
processed signal (gProcessed Signal) was selected as
background corrected signal and normalized to the 75th
percentile for each feature and baselined to median of
all samples. Data for linear range, LOD, technical repro-
ducibility and precision assessments were calculated
using the median value of 100 replicate features for each
RNA standard within each microarray. Median-averaged
values for each microarray were further analysed in
Microsoft Excel (2003). PCA was performed using an
entity list comprising of features for the eight standards
only (100 features for each). Fold change analysis was
carried out with normalized data for each individual fea-
ture averaged across two replicate microarrays using ‘R’
software [37]. Fold changes between the two panels
were calculated based on six pairwise comparisons
between labelled samples for panels ‘A’ and ‘B’ within
each microarray run. PCA was performed in GeneSpring
GX 11.0 using four principal components and was
mean-centred and scaled.

RT-qPCR analysis
RT-qPCR was performed using a two-step protocol.
RNA samples were reverse-transcribed using the
Taqman Reverse Transcription Reagents Kit (Applied
Biosystems, Foster City, CA) in 40 μl reactions contain-
ing 400 ng total RNA with oligo(dT) primers according
to the manufacturer’s instructions. cDNA samples were
diluted to a concentration of 0.5 ng/μl (total RNA equiva-
lent) with nuclease-free water. 20 μl qPCRs containing
1 ng RNA equivalent were performed in optical 96-well
plates using an ABI PRISM® 7900HT Sequence Detection
System (Applied Biosystems, Warrington, U.K.). Custom-
designed primers and Taqman FAM-TAMRA probes
(Additional File 1) were supplied by Applied Biosystems.
PCR efficiencies for each assay were calculated based on
a separate experiment with a serial dilution of pure
ERCC cDNA (in the absence of background RNA). PCRs
were prepared using TaqMan® Universal PCR Master
Mix with a final primer concentration of 900 nM and
probe concentration of 250 nM. The following reaction

conditions were used: 50°C for 2 minutes, 95°C for
10 minutes, followed by 45 cycles of 95°C for 15 seconds
and 60°C for 60 seconds. Triplicate reactions were set up
for each sample. Baseline fluorescence was set automati-
cally and the quantification threshold (Ct) was set manu-
ally to the same level for all runs within an experiment.
Data was analysed in Microsoft Excel (2003). For Experi-
ment 1, ΔCt values were calculated relative to the mean
value for the 106 copies/ng of the RNA standard within
each run (plate). For Experiment 2 (’normal’ and ‘disease’
panels), ΔCt values were calculated by pairwise compari-
son of the mean Ct value for a panel A sample vs. that of
a panel B sample.

Additional material

Additional file 1: Information about RNA sequences and RT-qPCR
assays. This Microsoft Word file gives details of ERCC RNA sequences,
microarray probes and Taqman® assays.

Additional file 2: Linear range of detection on microarray and RT-
qPCR platforms. This Microsoft Powerpoint file presents data related to
correlation of transcript copy number with normalized microarray signal
output and RT-qPCR ΔCt values for all standards investigated.

Additional file 3: Results of correlation analysis of whole array data.
Microsoft Word file displays data from pairwise correlation of microarray
data (all entities) from three replicate microarrays.
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