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Abstract

Background: The computational prediction of transcription start sites is an important unsolved problem. Some
recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still
difficult to locate using current methods. These methods use different features and training sets, along with a
variety of machine learning techniques and result in different prediction sets.

Results: We demonstrate the heterogeneity of current prediction sets, and take advantage of this heterogeneity to
construct a two-level classifier (Profisi Ensemble’) using predictions from 7 programs, along with 2 other data
sources. Support vector machines using ‘full’ and ‘reduced’ data sets are combined in an either/or approach. We
achieve a 14% increase in performance over the current state-of-the-art, as benchmarked by a third-party tool.

Conclusions: Supervised learning methods are a useful way to combine predictions from diverse sources.

Background

The field of in-silico promoter prediction has developed
greatly in recent years. Machine learning techniques,
such as support vector machines and self-organising
maps, and new features, especially those associated with
structural properties of the DNA molecule, have led to
progressive improvements in accuracy. The realization
that the majority of the genome is transcribed [1-3], and
that most promoters have diffuse clusters of multiple
transcription start sites (TSS) [4], has led to a move
away from discrete predictions, and towards scores for
all base pairs of the genome. There is greater consensus
on the correct way to evaluate predictions, reducing the
biases inherent in the plethora of methods previously
used [5].

Despite these developments, there is considerable need
for improvement in promoter prediction performance.
A bimodal distribution of CpG content splits human pro-
moters into high and low-CpG content promoters [6].
Promoters with lower CpG content are associated with
tissue-specific regulation [7], and are considered more
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difficult to predict [8]. Figure 1 shows histograms of
scores for ARTS [9] and Profisi [10], two state-of-the-art
methods. Many valid promoters receive low scores, and
setting thresholds low enough to recover them will inevi-
tably return many false positives.

One obvious way of improving performance is to
combine several existing methods using an ensemble
learning approach. Ensembles combining results from
multiple programs have seen some use in promoter pre-
diction [11,12]. They have also been successfully used in
several other computational biology problem areas
[13-15]. High diversity in individual methods is consid-
ered predictive of good ensemble accuracy [16]. It can
be difficult, however, to improve on the performance of
the best individual method [17]. In this paper, our aim
was to explore whether the set of prediction methods
was indeed diverse, and to improve predictive perfor-
mance across the genome and at all thresholds.

Table 1 shows our chosen features. Most of the fea-
tures are programs which were drawn from the top per-
formers in a number of promoter prediction reviews
[5,18]. It includes our own Profisi method [10], which
we have previously shown to be very competitive. These
programs are diverse in both features used and in
machine learning methods. In addition, we included
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Figure 1 Promoter histogram scores. Histograms of scores from
(@) ARTS, and (b) Profisi on 519 dbTSS promoters and 2,595 non-
promoters drawn from the ENCODE regions. ARTS scores are the
output of an SVM, while Profisi scores are DNA melting
temperatures. Promoters are black and non-promoters are grey.
Specificity is high at high thresholds, but many promoters are given
low scores, and are obscured by non-promoters.

methylation profiles [19] and conservation scores from
phylogenetic comparisons. Profisi is based on the obser-
vation that promoters are associated with high DNA
melting temperature. DNA methylation both lowers
melting temperature [20] and blocks promoter activity
[21], but is not accounted for in the model used by Pro-
fisi. Hence, including methylation data could boost Pro-
fisi’s performance. High conservation scores are
considered predictive of functional areas of DNA [22].

As not all of our features are prediction scores, we did
not use an averaging or voting-based ensemble method.
Instead we used a support vector machine for aggrega-
tion. This also gave us the opportunity to use a non-lin-
ear kernel to increase separability of promoter and non-
promoter classes.

MetaProm [11] and EnsemPro [12] are both programs
that use ensemble methods for promoter prediction.
Although we were unable to obtain predictions for these
programs, we could evaluate Profisi Ensemble using the
evaluation rules described in the original papers in an
attempt to make some comparison with them. Meta-
Prom is based on an artificial neural network, and
makes predictions in an area covering around 30% of
the human genome, using a combination of dbTSS and
RefSeq as the reference set. Multiple methods are

Table 1 Description of features used
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discussed in the EnsemPro paper, but the most success-
ful is weighted majority voting. It restricts its predictions
to an area 1,150 base pairs either side of 400 TSS drawn
from the Eukaryotic Promoter Database (EPD). The
EPD is known to be strongly biased towards TATA
box-containing promoters, which only comprise a small
fraction of human promoters as a whole [23].

Results and Discussion

Table 2 shows the overlap between sets of predictions
from seven popular promoter prediction programs,
based on whole genome predictions for assembly hgl7
of the human genome. Both true and false positives
were counted, as variation in both will improve ensem-
ble performance. Predictions from only two pairs of pro-
grams overlapped by 50% or more. The highest overlap
was between ProSOM [24] and EP3 [25], which are by
the same authors and use the same features. FirstEF
[26], Eponine [27], and N-SCAN [28] also had reason-
able overlap between prediction sets. The average over-
lap between pairs of predictions was 31.6%. The low
average overlap suggested that an ensemble approach
was worth pursuing, as the ensemble would have good
diversity. We further analysed overlap by splitting pre-
dictions into true (Table 3) and false (Table 4) positives.
There was more overlap between true predictions than
between false predictions (54% versus 21%). In other
words, different programs differed more in the mistakes
they made than in their correct predictions.

Principal components analysis (PCA) of the training
set (519 promoters and 2,595 non-promoters) was used
to give a rough visual representation of the separability
of the promoter and non-promoter classes. The first
two principal components are plotted in Figure 2a. No
one feature was noticeably highly weighted in the first
two principal components. Non-promoters form a rea-
sonably tight cluster, while promoters are much more
diffuse. This is a consequence of using promoter-centric
features. Naively, it would be expected that the

Feature Information

Profisi DNA melting temperature, as calculated with Fixman & Freire’s method
ARTS Custom SVM kernel using both sequence and structural information
N-SCAN HMM gene predictor - start of 5" UTR defines TSS

FirstEF Decision tree using k-mers, GC and CpG content

Eponine RVM using mixture of Gaussian distributions of position weight matrices
ProSOM Self-organising map trained on base stacking energy

EP3 Base stacking energy

Methylation Experimentally determined CpG methylation profiles

Conservation

17-way vertebrate conservation scores

All except methylation and conservation are outputs from prediction programs. ARTS scores were split into + and - strands. Methylation scores were split into

stem cell and differentiated categories.
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Table 2 Overlap between whole genome predictions as
measured by n/u (1000 bp tolerance)

N-SCAN 1.000

FirstEF 0424 1.000

Eponine 0442 0440 1.000

ProSOM 0212 0284 0.256 1.000

EP3 0209 0317 0.244 0.575 1.000

ARTS 0308 0314 0319 0.161 0.162 1.000

Profisi 0319 0504 0.360 0255 0290 0247 1.000
N-SCAN FirstEF Eponine ProSOM EP3 ARTS Profisi

Where more than one prediction existed in a 2,000 bp range, only the
prediction with the highest score was counted. For ProSOM, EP3, ARTS, and
Profisi, predictions were thresholded to leave ~20,000 predictions per
program.

non-promoter class would be more diffuse, given the
many different types of DNA it comprises. The feature
weights from these principal components are plotted in
Figure 2b. Promoter features appear together, in two
groups, while conservation and methylation features are
both separate.

Evaluating the contribution of each feature in a sup-
port vector machine can be difficult and computation-
ally expensive. We therefore used information gain-
based feature ranking to predict the potential contribu-
tion of each feature. The predicted ranking is shown in
table 5. ARTS [9] was ranked top, which was not sur-
prising given its status as best performer in the last
comprehensive prediction review [5]. Surprisingly, the
ranking of methylation scores was comparable to many
supervised methods. This may be because we only had
nonzero scores for CpG islands, areas associated with
promoter activity in general. Conservation was the low-
est ranked feature by some distance. This implies that it
is only beneficial when combined with other features.

We trained SVMs using both the full set of 11 fea-
tures, and a reduced set of the 5 top features ranked by
information gain. Both were tested on human chromo-
some 22 only using pppBenchmark 1.3 [5]. The mapped
area of chromosome 22 corresponds to ~1% of the gen-
ome. Sensitivity-specificity curves for these tests are
shown in Figure 3. The reduced feature set is more

Table 3 Overlap between whole genome predictions as
measured by n/U (1000 bp tolerance), considering only
true positive predictions

N-SCAN 1.000

FirstEF 0.740  1.000

Eponine 0569 0624 1.000

ProSOM 0384 0432 0436 1.000

EP3 0413 0473 0457 0.704 1.000

ARTS 0626  0.688 0612 0401 0428 1.000

Profisi 0579 0661 0.580 0414 0445 0581  1.000
N-SCAN FirstEF Eponine ProSOM EP3 ARTS Profisi
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Table 4 Overlap between whole genome predictions as
measured by n/U (1000 bp tolerance), considering only
false positive predictions

N-SCAN 1.000

FirstEF 0218 1.000

Eponine 0294 0315 1.000

ProSOM 0.109 0210 0.164 1.000

EP3 0.103 0244 0.149 0.523 1.000

ARTS 0136 0163 0.174 0.082 0.080 1.000

Profisi 0.168 0416 0.241 0.195 0232 0.131  1.000
N-SCAN FirstEF Eponine ProSOM EP3 ARTS Profisi

accurate at high thresholds, while the full set is more
accurate at low thresholds. This held true even when we
tried a large range of different parameters for both C
(error penalty) and y (Gaussian width). It was decided to
combine results from both models for the whole
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Figure 2 Training set PCA plot. (a) First two principal components
of training set (519 dbTSS promoters and 2,595 non-promoters). (b)
plot of PCA feature weights for first two principal components.
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Table 5 Information gain-based ranking of features
based on analysis of the training set with Weka 3.6 using
default parameters

Score Feature

0.196 ARTS (+ strand)

0.195 ARTS (- strand)

0.182 Profisi

0.161 FirstEF

0.157 N-SCAN

0.153 Methylation (differentiated cells)
0.150 Methylation (stem cells)
0.113 Eponine

0.105 ProSOM

0.090 EP3

0.031 17-way conservation

The top 5 features in this ranking were used to train the ‘high specificity’
SVM.

genome test. We used the reduced model unless its
predicted probability fell below 0.94, in which case the
full model was used instead. This idea of “punting” -
switching classifiers when the score falls below a certain
threshold - has been successfully used in protein family
prediction [29]. To verify the soundness of the idea, we
reran pppBenchmark with the combined predictions.
The area under the resulting curve was the same as the
area under the union of the two previous results. Having
learned our threshold on 1% of the data, we then calcu-
lated predictions for the whole genome.

1 —
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0.9 4 —— Top 5 features
0.8 4
0.7 4
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S
£ 0.5 1
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? 0.4
0.3 4
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Figure 3 Program output. Tracks for Profisi Ensemble and its
constituent features in a 7,500 bp area around the VPS72 promoter,
as viewed in the UCSC Genome Browser. The output from Profisi
Ensemble accurately predicts the promoter location. Eponine, N-
SCAN, stem cell methylation, and differentiated cell methylation
scores have been omitted as they contain no values in this area.
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An example of one of the final predictions is given in
Figure 4. Shown is the area 3 kbp around the VPS72
promoter, a promoter not associated with a CpG island.
Plots of features with nonzero values in this area, as
well as GC content, are shown beneath the main predic-
tion. The peak in the Profisi Ensemble score coincides
well with both the RefSeq and CAGE annotations. In
addition, scores either side of the peak are very low,
indicating the reduction in noise achieved by the ensem-
ble approach, compared to individual predictors.

Whole genome predictions were evaluated using
pppBenchmark 1.3. pppBenchmark evaluates predic-
tions versus cap analysis of gene expression (CAGE)
and RefSeq annotations, using both binning and dis-
tance-based protocols, for an accurate overall view of
predictive power. The best performer in the original
benchmarking was ARTS.

Figure 5 shows sensitivity-specificity curves for a num-
ber of programs using pppBenchmark’s protocol 2A (con-
sidered the most important score by pppBenchmark’s
authors). Profisi Ensemble shows the best performance
over the vast majority of the curve. Curves for CpG and
non-CpG performance are given in Additional file 1.

Profisi Ensemble’s pppBenchmark performance was as
follows: 1A: 0.224 1B: 0.407 2A: 0.520 2B: 0.691. This is
an improvement over ARTS in all categories. The PPP
score is defined as the harmonic mean of the four scores
given above. Profisi Ensemble’s PPP score was 0.389, or
14% better than ARTS. Figure 6 shows these 2A and
PPP scores. In summary, Profisi Ensemble is currently
the most accurate predictor of human promoter activity.

We also performed comparisons with MetaProm and
EnsemPro. As we did not have access to predictions
from these programs, we evaluated Profisi Ensemble
using their evaluation rules.

MetaProm uses a combination of dbTSS and RefSeq
as its evaluation set, taking not only a single representa-
tive TSS from dbTSS, but also the most upstream and
downstream, to evaluate performance in the prediction
of alternative TSS. Predictions within 2 kbp of the TSS
were considered valid. The results of our evaluation are
shown in Figure 7a. MetaProm performed better at high
specificities, while Profisi Ensemble performed better at
high sensitivities.

EnsemPro uses the EPD as its reference set. As men-
tioned above, the EPD is not considered a representative
set of human promoters. Only an area 1.5 kbp in size
around the TSS was examined. Predictions within
200 bp (upstream) or 100 bp (downstream) were
counted as true positives. The results of the evaluation
are shown in Figure 7b. Profisi Ensemble shows roughly
equivalent performance to EnsemPro in this evaluation,
although results may not be exact due to variations in
the dataset (see Methods).
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Figure 4 Full versus reduced training sets. Sensitivity-specificity curves for full feature set versus top five features selected via information
gain, tested on chromosome 22 with protocol 2A (CAGE). The final classifier uses the top 5 features by default, but switches to all 11 features
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Conclusions

Profisi Ensemble uses a two layer approach to predic-
tion. Two SVMs are trained using scores from existing
prediction programs as features. The predictions from
these SVMs are then combined in an either/or
manner.

In this work, we have demonstrated the substantial
heterogeneity of promoter predictions from current
methods. We showed that this heterogeneity enables
performance improvements via an ensemble approach.
Finally, we have shown that high-sensitivity and high-
specificity classifiers may be combined using a “punting”
approach to guarantee higher performance across a
range of thresholds.

In many fields, diverse predictors for the same task
exist, often of broadly similar performance. If these

predictors are sufficiently heterogenous, there is merit in
exploring an ensemble-based approach. If high specifi-
city/precision is required, consideration should be given
to using feature ranking to ensure that only useful fea-
tures are included.

The same technique we have used for human predic-
tions could be extended to any other genome, as long as
sufficiently diverse predictions are available for it.
Detailed instructions on applying our method to other
organisms are included in Additional file 2. Many pre-
diction programs are able to output predictions for mul-
tiple genomes. EP3, for example contains models for ten
model organisms [25]. As we have used a supervised
approach, a high quality training set (preferably based
on experimental data, like the dbTSS) is essential,
however.
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Figure 5 Performance comparison (sensitivity-specificity
scores). Sensitivity-specificity curves for various promoter prediction
programs, tested on human genome build hg18 with protocol 2A

(CAGE).

5 bp resolution probability scores for genome builds
hgl7 and hgl8 are available from http://mlg.ucd.ie/
profisiensemble. 1 bp resolution scores are available on
request. Source code is available in Additional file 3.

Methods

To assess the overlap between predictions from different
programs, whole genome predictions were downloaded
from the UCSC Genome Browser [30] and from the web-
sites associated with the programs. Where multiple
predictions existed around a single locus (2000 base pairs),
only the prediction with the highest score was kept.
Programs giving discrete predictions (N-SCAN [28],
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Figure 6 Overall performance as evaluated by pppBenchmark.
Protocol 2A represents distance-based performance on CAGE tags,
while PPP is the harmonic mean of four separate measurements
using both CAGE and gene annotation, and represents overall
predictive power. Scores for ARTS, ProSOM, and EP3 were taken

from the original pppBenchmark evaluation.

—— MetaProm
— — Profisi Ensemble

0.9
0.8
0.7
0.6

0.5

specificity

0.4 1

0.2 4

0.1

0 T T T T
0 01 02 03 04

05 06 07 08 09 1
sensitivity

100 m EnsemPro

+ Profisi Ensemble
90 -
80 - M
70 A o o
60 ey
50 .

40 4 ‘%

TSS-based accuracy

30 124
20 4 .

10 A

0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

sample-based accuracy

Figure 7 Comparison with other ensemble methods. (a)
Evaluation of Profisi Ensemble and MetaProm, using 42,536 TSS
drawn from dbTSS and refSeq, in the areas covered by the dbTSS
annotation, with a tolerance of 2,000 bp. (b) Evaluation of Profisi
Ensemble and EnsemPro (weighted average voting), in random 1.5
kbp areas around Eukaryotic Promoter Database start sites, with a
tolerance of 200 bp upstream and 100 bp downstream. EnsemPro
scores represent the average of multiple runs.

FirstEF [26], and Eponine [27]) had roughly 20,000 predic-
tions each. The remaining programs gave continuous
scores for the whole genome. These scores were thre-
sholded to also leave ~20,000 predictions per program.
Overlap between sets was measured by dividing set inter-
section by set union for each pair of programs. Overlap
was measured for (a) all predictions, (b) true positive
predictions only, and (c) false positive predictions only.
Predictions within 1,000 bp of the 5" end of a RefSeq first
exon were counted as true positives.

N-SCAN, FirstEF, and Eponine predictions were
downloaded from the UCSC Genome Browser. These
point predictions were converted to continuous scores
using a 1000 base pair window, with the central 200
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base pairs getting the full score, linearly falling to 0 at
the edges, giving a trapezoid-type distribution. These
parameters were determined using small-scale tests on
the ENCODE regions. The remaining features had
scores for all base pairs. ProSOM and EP3 predictions
were obtained using the Java executables available
online. ARTS predictions were download from the
ARTS website. Profisi melting temperatures were down-
loaded from the human genome melting map. Methyla-
tion scores were obtained from a whole-genome
methylation map of 15 cell lines [19] (Island methylation
scores from Supplementary Table 1b). Cell lines were
split into pluripotent and differentiated categories, and
averaged. Scores for the two sperm cell lines were
ignored due to the large differences in DNA packing
and methylation in these lines. PhastCons 17-way verte-
brate conservation scores were downloaded from the
UCSC Genome Browser.

Training examples were drawn from the 44 ENCODE
regions which together comprise about 1% of the
human genome. Positive examples were taken from the
dbTSS [31], an experimentally verified database which is
already used as the training set for [9] and [24]. There
were 519 TSS from the database in the ENCODE
regions. Five times as many negative examples were
selected, to account for the greater variety of negative
examples (intergenic, exons, introns, non-promoter reg-
ulation such as enhancers, insulators, etc.). These nega-
tive examples were all at least 1000 base pairs from the
nearest TSS.

Principal components analysis was performed in Weka
3.6 [32] using the default parameters, giving five princi-
pal components. Information gain-based feature selec-
tion was also performed in Weka using the default
parameters.

LibSVM 2.9 [33] was used to train the models and
generate predictions, due to its speed, stability, and
availability for multiple platforms. It is not multi-
threaded, but was easily parallelizable as each chromo-
some was a separate test file. The default kernel - the
radial basis function (RBF) was used. Weights were used
to compensate for the uneven class sizes. Features were
normalized in the range 0-1 to maximize sparsity.
LibSVM was set to output a probability rather than a
margin score. The error penalty (C) and the tightness
parameter (y) were chosen using the supplied grid.py.

Figure 3 shows performance on the mapped portions
of human chromosome 22 (~1% of the genome). The
reduced set outperforms the full set above a certain
crossover point. The probability from the reduced set at
this crossover was 0.94. To ensure that this was not due
to the SVM parameters resulting in optimization of dif-
ferent areas of the curve, a wide range of values of C
and y were tried. In all cases, the area under the curve
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was reduced, but the shape of the curve stayed the
same. Based on this, we decided to combine predictions
from both with an either/or approach. Reduced model
predictions below 0.94 were discarded and replaced with
predictions from the full set, which were scaled so that
the highest value remaining was 0.94.

As the evaluations for both MetaProm and EnsemPro
are based on the older system of point predictions, the
continuous scores from Profisi Ensemble had to also be
converted to point predictions. We did this using a
combination of thresholding and clustering. Threshold-
ing meant throwing away all predictions below a certain
level. Clustering meant finding the location with the
highest score, and discarding all locations within n base
pairs of it, then finding the location with the next high-
est score and doing the same, etc., until the last location
was reached. For both the MetaProm and EnsemPro
evaluations, we performed a grid search on the thresh-
olding and clustering parameters, and kept the best per-
forming ones. Cluster sizes were 50-2000 for EnsemPro
and 500 for MetaProm. Thresholds were 0-1 for both.
Predictions in areas not examined by MetaProm and
EnsemPro were discarded.

42,536 TSS in 14,566 sequences were obtained from
the MetaProm authors, along with sensitivity-specificity
curves. MetaProm CpG and non-CpG scores were
combined.

The EnsemPro evaluation describes discarding EPD
TSS where there missing bases within 1,150 bp of the
TSS, leaving 400 TSS from 1871. As we were unable to
find any missing bases, we used all TSS. EnsemPro fig-
ures were obtained from Table 2 of the EnsemPro
paper. Weighted majority voting figures were used, as
this was the best performing method.

Predictions were made for genome build hgl7, and
reduced to 5 base pair resolution and converted to build
hg18 for testing with pppBenchmark.

Additional material

Additional file 1: pppBenchmark CAGE evaluation. Evaluation of
Profisi Ensemble versus ARTS, EP3, and ProSOM using pppBenchmark
protocol 2A, for all predictions, CpG predictions, and non-CpG
predictions.

Additional file 2: Instructions for other organisms. Instructions for
implementing the Profisi Ensemble method for organisms other than
human

Additional file 3: Profisi Ensemble source. Java source code for
routines used to preprocess data and process results
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