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Abstract

Background: The addition of an acetyl group to protein N-termini is a widespread co-translational modification.
NatB is one of the main N-acetyltransferases that targets a subset of proteins possessing an N-terminal methionine,
but so far only a handful of substrates have been reported. Using a yeast nat3Δ strain, deficient for the catalytic
subunit of NatB, we employed a quantitative proteomics strategy to identify NatB substrates and to characterize
downstream effects in nat3Δ.

Results: Comparing by proteomics WT and nat3Δ strains, using metabolic 15N isotope labeling, we confidently
identified 59 NatB substrates, out of a total of 756 detected acetylated protein N-termini. We acquired in-depth
proteome wide measurements of expression levels of about 2580 proteins. Most remarkably, NatB deletion led to a
very significant change in protein phosphorylation.

Conclusions: Protein expression levels change only marginally in between WT and nat3Δ. A comparison of the
detected NatB substrates with their orthologous revealed remarkably little conservation throughout the
phylogenetic tree. We further present evidence of post-translational N-acetylation on protein variants at non-
annotated N-termini. Moreover, analysis of downstream effects in nat3Δ revealed elevated protein phosphorylation
levels whereby the kinase Snf1p is likely a key element in this process.

Background
Post translational modifications of proteins are impor-
tant events that influence protein function, interaction
and localization [1], making those key elements in cellu-
lar processes and systemic reactions of organisms. The
transfer of an acetyl group from acetyl-coenzyme A to
the a-amino group of an N-terminal amino acid residue
is a very common modification that occurs on a large
part of the proteome (i.e. about 50% of yeast proteins
and up to 90% in mammals) [2], [3]. This modification
can be carried out by one of five protein complexes
(NatA, NatB, NatC, NatD and NatE), whereby each con-
sists of a catalytic and a varying number of auxiliary
subunits [4]. The function of these complexes seems to
be highly conserved across species [5]. For yeast NatB,
which will be the target of this study, the complex

consists of Nat3p (catalytic subunit) and Mdm20p (aux-
iliary subunit) [6]. N-acetyltransferase complexes act
upon the N-terminus of polypeptide chains at the ribo-
some during their synthesis [7]. They work in conjunc-
tion with methionine amino peptidases that can cleave
the initial methionine dependent on the penultimate
amino acid residue [8], [9]. The substrate recognition of
the different N-acetyl transferases is primarily dependent
on the N-terminal amino acid sequence of target pro-
teins [10]. However, other (co-)factors may play a role.
For instance, the Huntingtin (Htt) interacting protein
HYPK, which associates with NatA in human cells, is
required for N-acetylation of certain NatA targets [11].
The best characterized N-acetyltransferases (NATs)

are NatA, NatB and NatC. NatA acetylates the largest
set of proteins, which have had their initial methionine
removed and possess predominantly a serine, alanine,
threonine, valine or glycine at their N-terminus [10].
The substrates of NatB and NatC still contain the
N-terminal methionine whereby the specificity of these
N-acetyltransferases is directly dependent on the

* Correspondence: a.j.r.heck@uu.nl
1Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute
for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research,
Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
Full list of author information is available at the end of the article

Helbig et al. BMC Genomics 2010, 11:685
http://www.biomedcentral.com/1471-2164/11/685

© 2010 Helbig et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:a.j.r.heck@uu.nl
http://creativecommons.org/licenses/by/2.0


penultimate amino acid. NatB targets proteins that dis-
play a glutamic acid, aspartic acid or glutamine in the
penultimate position while NatC seems to prefer isoleu-
cine, leucine, tryptophan and phenylalanine at the
penultimate position [4].
In a number of studies protein N-acetylation in yeast

has been charted [5], [12], [10], [13]. However, the overall
coverage and characterization of the yeast N-acetylated
proteome is still far from complete. For instance, for the
N-terminal acetyltransferase complex NatB, subject of
this study, only 14 substrates have been experimentally
verified so far. Mutants deficient for NatA, NatB or NatC
are viable but they generally display defects in aspects
such as growth, temperature sensitivity and sporulation.
Further, Polevoda et al. showed that the nat3Δ displays
temperature sensitivity and reduced growth on glycerol
and NaCl containing media [14]. Despite targeting a sig-
nificantly smaller subset of proteins, the phenotype of a
NatB (nat3Δ) knockout is much more apparent than the
phenotype for a NatA (nat1Δ) deficient strain. In the
case of NatB deficiency, the effects cover decreased resis-
tance to chemicals, abnormal budding, increased cell size
and a decreased growth rate [13]. Caesar et al. [13] pro-
posed that putative NatB targets are preferentially
involved in cell cycle progression and maintenance of the
nucleus. It has been shown, for instance, that the N-acet-
ylation of the NatB target tropomyosin is necessary for
its association with actin [15]. Here the N-acetylation is
thought to induce a conformational change that stabilizes
coiled-coil structures involved in tropomyosin-actin poly-
merization. Restoring the actin filaments did not sup-
press the NatB phenotype, indicating a complex interplay
of multiple NatB related effects on different proteins.
Another study demonstrated that N-acetylation of the
CPY inhibitor Tfs1 is necessary for its inhibitory function
[16]. Most recently, it was suggested that protein N-
acetylation can act as a degradation signal recognized by
the Doa10p ubiquitin ligase [17]. This implies that pro-
tein N-acetylation can also be involved in protein stabi-
lity. All this recent work indicates that the complex and
diverse role of protein N-terminal acetylation is slowly
more and more revealed.
Traditionally, N-acetylated proteins were identified by

their change in electrophoretic mobility, for instance on
2 D gels. New experimental strategies like the diagonal
chromatography COFRADIC approach now allow for
the enrichment and quantitative characterization of pro-
tein N-acetylation at a much higher through-put [18],
[19]. COFRADIC sorting of N-acetylated peptides
enabled the large-scale charting of protein N-acetylation
in human cell lines[20], Drosophila melanogaster [21]
and even the prokaryotes Halobacterium salinarum and
Natronomonas pharaonis [22]. Another technique
amendable for the targeted analysis of protein N-termini

involves the coupling of free N-terminal amine groups
to CNBr activated sepharose [23] or dendritic polygly-
cerol aldehyde polymers [24]. This allows the subse-
quent removal of all “normal” peptides enriching the
N-terminally modified peptide subset. Recently, we
introduced a straightforward methodology, based solely
on strong cation exchange (SCX) that is able to achieve
near baseline separation of N-acetylated [25], phos-
phorylated and unmodified peptide populations [26],
[27], and applied this technique to characterize for
instance the N-acetylated proteome of HEK293 cells [9].
Here, we extend the use of this technology, in con-

junction with metabolic 15N stable isotope labeling [28],
to experimentally identify NatB substrates and to inves-
tigate the effects of NatB mediated protein N-acetylation
on the S. cerevisiae proteome. Employing a comprehen-
sive mass spectrometry based strategy that utilizes the
complementarity between trypsin and Lys-N proteases
we map differential protein abundances, protein phos-
phorylation and N-terminal acetylation in a WT and
nat3Δ yeast strain, in an effort to investigate in more
depth the role of protein N-terminal acetylation.

Methods
Cell culturing
Saccharomyces cerevisiae strains were purchased from
Euroscarf (University of Frankfurt, Germany). Yeast
wildtype (BY4742, MATa, his3Δ1, leu2Δ0, met15Δ0,
ura3Δ0) and NAA20 (Nat3) knockout (BY4742, MATa,
his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, YPR131C::kanMX4)
strains were cultured on YNB medium (medium base
1.72 g/l), which was supplied with a 20 amino acid mix
(1.4 g/l) and glucose (20 g/l). Ammoniumsulphate (5 g/l)
was used as a nitrogen source. Both yeast strains were
grown on “regular” and “heavy” medium, containing 15N
labeled ammoniumsulphate and 15N labeled amino acid
supplements (Sigma Isotech). After growth on selective
plates, both strains were cultured in shake flasks to a
similar optical density in the exponential growth phase
(OD between 1 and 2). Subsequently cells were har-
vested, washed twice with water and subjected to
lyophilization.

Sample preparation
Wildtype and mutant lyophilized material (a biological
replicate experiment was conducted with reversed isoto-
pic labels) was mixed 1:1 based on dry weight. A total
of 50 mg mixed biomass was resuspended in 200 μl of
lysis buffer containing 4% SDS, 25% glycerol, 138 mM
Tris-HCL pH 6.8 and 200 mM DTT. After the addition
of glass beads, the solution was kept on ice and subse-
quently vortexed 5 times for 2 min to solubilize pro-
teins. The supernatant was then centrifuged at 1000 g
for 5 min. Solubilized proteins were cast in a
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polyacrylamide gel matrix without electrophoresis. The
gel was cut into small pieces, fixed (30% methanol, 20%
acetic acid) and washed extensively with 50 mM ammo-
nium bicarbonate. Reduction and alkylation was carried
out as previously described for in gel digestion using
Lys-N and trypsin[29], [30]. After overnight digestion,
peptides were extracted from the gel by the addition of
100% acetonitrile, which was removed from the sample
by vacuum evaporation prior to strong cation exchange
chromatography of peptides.

Strong cation exchange
Approximately 1.5 mg of peptide material was loaded
onto 2 C18 Opti-Lynx cartridges, using an Agilent 1100
HPLC system, at a flow rate of 200 μl/min in 0.05% FA.
Elution from the trapping cartridges was achieved using
80% acetonitrile/0.05% FA and loaded onto a PolySUL-
FOETHYL A column 200 × 2.1 mm (PolyLC inc.) for
10 minutes at the same flow rate. The different peptide
populations were separated using a non-linear 65 min-
ute gradient at 200 μl/minute of solvent A (5 mM
KH2PO4, 30% Acetonitrile, 350 mM KCl, 0.05% FA) and
solvent B (5 mM KH2PO4, 30% Acetonitrile, 0.05% FA).
From 0 to 10 minutes isocratic flow of 100% solvent A
was performed, from 10 to 15 minutes a linear gradient
up to 26% solvent B, from 15 to 40 minutes a linear gra-
dient to 35% solvent B from 40 to 45 minutes a linear
gradient to 60% solvent reaching 100% solvent B at 49
minutes. The column was then washed for 6 minutes
with 100% solvent B and finally equilibrated with 100%
solvent A for 9 minutes. Fractions were collected at one
minute intervals for 40 minutes, dried and re-suspended
in 40 μl 10% formic acid. 20 μl of each fraction (5 μl for
the major +2 fractions) were used for further analysis.

Mass spectrometry
The LC-MS/MS analysis was performed using a nano
LC-LTQ-Orbitrap (Thermo, San Jose, CA) and an Agi-
lent 1200 series LC system equipped with a 20 mm
Aqua C18 trapping column (packed in-house, i.d., 100
μm; resin, 5 μm) and a 400 mm ReproSil-Pur C18-AQ
analytical column (packed in-house, i.d., 50 μm; resin, 3
μm). Trapping was performed at 5 μL/min for 10 min
in solvent A (0.1 M acetic acid in water), and elution
was achieved with a linear gradient of 10-35% B (0.1 M
acetic acid in 80/20 acetonitrile/water) for 90 minutes
with a total analysis time of 120 minutes. The flow rate
was passively split to 100 nL/min during the gradient
analysis. Nanospray was achieved using a distally coated
fused silica emitter (New Objective, Cambridge, MA) (o.
d., 360 μm; i.d., 20 μm, tip i.d. 10 μm) biased to 1.7 kV.
A 33MΩ resistor was introduced between the high vol-
tage supply and the electrospray needle to reduce the
ion current. The LTQ-Orbitrap mass spectrometer was

operated in data-dependent mode, automatically switch-
ing between MS and MS/MS. Full scan MS spectra
(300-1500 m/z) were acquired with a resolution of
60,000 at 400 m/z and accumulation to a target value of
500,000. The five most intense peaks above a threshold
of 500 were selected for collision induced dissociation in
the linear ion trap at normalized collision energy of 35
after accumulation to a target value of 30,000.

Data processing
As described in reference 9, all MS and MS/MS spectra
were searched using the MASCOT search engine
(Matrix Science, London, UK, v.2.2.04) against the yeast
SGD database (http://www.yeastgenome.org, 2009) con-
taining 5779 entries. 15N metabolic labeling was selected
as quantitation mode in MASCOT. Trypsin and Lys-N
were chosen appropriately as proteolytic enzyme allow-
ing one missed cleavage. N-terminal acetylation was
chosen as a variable modification. Additionally, the data
was searched using semi-trypsin or semi-Lys-N as
enzyme and N-terminal acetylation as variable modifica-
tion. Calculation of false-discovery-rates (FDR) was per-
formed according to [27]. For phosphopeptide
identification, the data was searched using trypsin and
Lys-N as enzyme and phosphorylation on serine, threo-
nine and tyrosine residues was chosen as variable modi-
fications. A PTM score was assigned for each
phosphopeptide above with MSQUANT version 1.5a61
[31]. Relative quantification of 14N and 15N peptide MS1

intensities was performed using MSQUANT version
1.5a61. Ratios were subsequently 2log transformed and
averaged between the two experiments. Only regular
and N-acetylated peptides showing a MASCOT ion
score above 30 were kept in the datasets to ensure a
FDR below 1%. For phosphopeptides a minimum MAS-
COT score of 25 was chosen. To evaluate reproducibil-
ity, a 95% confidence interval was calculated for
peptides quantified in both biological replicates [32].
Network analysis was performed using STRING v8.2 on
high stringency setting [33] and the extraction of main
protein interaction clusters was performed using
MCODE v1.2 [34] and Cytoscape v2.6.3 [35]. Prediction
of kinases was performed using NetworKIN v2.0 [36]
and protein localization information was retrieved from
the SGD database. Amino acid frequency analysis of N-
terminal peptide sequences were calculated using
Weblogo http://weblogo.berkeley.edu. Corrected p-
values for overrepresented predicted kinases were calcu-
lated using the Pearson’s chi-square test.

N-terminal amino acid conservation
To determine the level of site conservation of the NatB
substrate recognition motifs, MD, ME and MN, the
orthologous sequences of 59 NatB substrates were
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retrieved from EGGNOG v2.0 [37]. Only eukaryotic spe-
cies (52 in total) were included for analysis. Per species
it was counted which percentage of the total sequences
started with MD, ME or MN to obtain the level of NatB
substrate conservation. Additionally this was also deter-
mined for every NatB substrate across species to deter-
mine if certain proteins are more evolutionary
conserved. The top five proteins that showed the highest
conservation were separately analyzed as above to deter-
mine if these proteins show higher cross-species
conservation.
All mass spectrometry data was loaded into Scaffold

v.2 (Proteome Software, Portland, USA) and the data
associated with this manuscript may be downloaded
from http://ProteomeCommons.org Tranche using the
following hash:
f9XjmbCVZwessddnJXDrKqDBiGTCEoLvFvr2v0zKnl5

+TpH29Un/pvJQscS4JCLh4IJEyr6f1yz/
32CpHeORp2UTTgMAAAAAAAAKXw==

Results
Yeast N-acetylome and primary nat3Δ effect
To investigate the primary and secondary effects of the
loss of NatB mediated protein N-acetylation, we con-
ducted a systemic quantitative proteome analysis using
differential 15N labeling of WT and nat3Δ strains. Tryp-
sin and Lys-N digestions were performed to increase
proteome coverage and a refined strong cation exchange
chromatographic separation was employed to separate
and enrich N-acetylated, phosphorylated and unmodified
peptides. Cumulatively, we identified 21375 unique pep-
tides (17261 unmodified, 989 N-acetylated and 3125
phosphorylated). These corresponded to 2747 proteins
and 756 unique N-acetylated protein N-termini (Addi-
tional file 1). Up to now 363 protein N-termini have
been reported to be fully or partially acetylated in yeast
(compiled by Arnesen et al. [20]). In our data we could
confirm 165 of these termini and additionally, we
expanded the known N-acetylated yeast proteome by
additional 591 N-termini providing the most compre-
hensive catalogue of yeast protein N-terminal acetyla-
tions to date.
Using 14N/15N peptide ion intensities from WT and

nat3Δ we obtained quantitative information on 2663
unmodified proteins (Additional file 2), 564 acetylated
protein N-termini and 2309 phosphorylated sites (Addi-
tional file 3) (Figure 1A, C, D). Quantification data from
the biological replicates showed very consistent and
reproducible results since only a low number of outliers
(4-7%) were observed outside a 95% confidence interval.
15N/14N ratios revealed that N-acetylated peptides with
a NatB specific N-terminal sequence (ac-MDX, ac-MEX,
ac-MNX) showed drastic down-regulation in the nat3Δ
strain, verified in the biological replicate (Figure 1A). In

total, 69 N-terminal peptides corresponding to 59
unique proteins (listed in Table 1) were detected with
very significant decreased levels in the nat3Δ strain
(Additional file 4) (Figure 1B). They all possessed the
NatB specific N-terminal sequence. Since only 14 NatB
substrates had been reported up to date, this is quite an
expansion of experimentally verified NatB substrates. Of
these 14 we could find 8 back in our study (Additional
file 4). Strikingly, at the protein expression level, the
detected NatB substrates were for the most part
unchanged in the nat3Δ (Figure 1C) suggesting that the
expression and/or degradation of these proteins is not
significantly affected by N-acetylation. This indicates
that NatB mediated N-acetylation does not act as a gen-
eral degradon signal as suggested by Hwang et al. [17].
An initial network and clustering analysis of these 59
NatB substrates indicated that they can be found indis-
criminately in different cellular localizations, e.g. the
nucleus (e.g. Nsp1p, Nup84p or Rnr4p), the endoplas-
matic reticulum/Golgi (e.g. Sec23p, Ypt1p or Bos1p) and
the cytoplasm (e.g. Glc7p, Bud27p or Rpt3p).
Notably, our targeted analysis also revealed extensive N-
acetylation of peptide N-termini, not originating from
the predicted ultimate or penultimate gene-starting posi-
tion (Additional file 5), as earlier reported to occur also
in human cells [25] and Drosophila [38]. Figure 2 dis-
plays “internally” N-acetylated peptides of Pma1p, a pro-
ton pump located in the plasma membrane and of
Ura2p a bifunctional enzyme that catalyzes the first two
steps of pyrimidine biosynthesis. The MS/MS CID spec-
tra of these peptides, which appear in the acetylated and
non N-acetylated form, show a similar fragmentation
behavior. Furthermore the 42 Da mass shift of the entire
b-ion series clearly indicates the location of the acetyl
group at the peptide N-terminus. Utilizing semi-tryptic
and semi-Lys-N database search strategies, we identified
250 of such peptides with a minimum MASCOT score
of 30 (Additional file 5). Such data provides information
to improve protein annotations in databases and offers
the ability to study protein processing events on a
systemic level. Further analysis of our data intriguingly
indicates that N-acetylation can also occur as a
genuine post-translational modification instead of
co-translational.
Amino acid frequency analysis of the acetylated residues
of these over 200 “internal” acetylated N-termini showed
that there was no clear consensus sequence, in sharp
contrast to proteins that are acetylated at position 1 or
2, i.e. specifically by the N-acetyltransferase complexes
NatA or NatB (Figure 3). This might infer the presence
of an alternative and more promiscuous N-acetylation
mechanism. Strikingly, several proteins such as Cdc19p,
Fba1p, Ura2p, and Pgk1p contain several of these “inter-
nal” N-acetylated termini. For instance, for Ura2p we
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detected 5 N-acetylated internal residues apparently at
position 602, 684, 1152, 1332 and 1403. Moreover, for
some of these proteins the same internal termini could
be detected in their non-acetylated form (e.g. Ura2p,
Pma1p, and Pgk1p). These findings point to that some
of these protein variants seem to be partially acetylated
on N-terminal residues like asparagine, proline, leucine,

aspartic acid, or isoleucine (Additional file 5), all not the
usual targets of the common N-acetyl transferases. Net-
work analysis of these internally cleaved and modified
protein variants revealed three main clusters with a pro-
minent representation of the proteasome, the chaperone
network of the HSP70 family and energy metabolism
(Figure 3). Obviously, many of these proteins are also

Figure 1 Differential quantitation of 2560 proteins in the yeast WT/nat3Δ proteome enables identification of NatB substrates and
reveals overall increased phosphorylation levels. Panel (A), (C) and (D) display peptide and protein 15N/14N ratios (2log transformed)
determined in both biological replicates. Data of the two biological replicates are plotted versus each other. In experiment 1 the ΔNat3 strain
was labeled with 14N while WT incorporated the heavy 15N label. In experiment 2 the isotope labels were reversed. The dashed lines represent a
95% confidence interval indicating high reproducibility of ratio data between biological replicates [32]. The circles indicate the chosen arbitrary
thresholds for diminished or elevated protein levels, which were set at a three-fold change. Panel (A) displays 15N/14N ratio data of N-acetylated
peptides, red colored spots mark N-acetylated peptides displaying the NatB target sequence while the lighter red indicates peptides located
outside the 95% confidence. Panel (B) displays 15N/14N ratio histograms. The upper histogram shows ratios for all detected N-acetylated
peptides not containing the expected NatB substrate sequence. The lower plot illustrates the ratio distribution of N-acetylated peptides
containing the expected NatB substrate sequence, namely a methionine at the ultimate and an aspartic acid, glutamic acid or an asparagine in
the penultimate position. Individual ratios from the biological replicates were averaged. The insets show frequency plots of the amino acids in
the first 5 positions of the N-terminus generated by Weblogo. Panel (C) displays protein ratios as determined from unmodified peptides, with in
red again the observed NatB substrate proteins. (D) displays phosphopeptide ratios, irrespective of being NatB substrate or not.
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highly abundant, which may also play a role in the expli-
cit observation of the internally cleaved, and N-acety-
lated, forms of these proteins. Interestingly, for 35 of
those protein variants we also could detect the regular
acetylated N-terminus at position 1 or 2. Examples for
this are Rpn2p, which is part of the proteasome and
Ssa3p, Ssb1p and Sti1p, which belong to the HSP70 cha-
perone family. It remains to be seen whether this cate-
gory of internally cleaved and N-acetylated protein
variants are generated co-translationally or are cleavage
products of proteases, but their appearance cannot be
discarded. Of these peptides 33 do either start or are
preceded by a methionine, which would indicate an
alternative translation start site (Additional file 5). It
should be noted that the isotopic ratios of most of these
internal termini between WT and nat3Δ did not change.
Four N-acetylated internal peptides from the proteins
Vma22p, Sti1p, Fum1p and Srn2p, however, displayed
down-regulation in the nat3Δ. Interestingly, those
peptides show the N-terminal NatB target sequence
(Table 1) indicating that the corresponding genes have
most likely alternative translation start codons as indi-
cated by the N-terminal methionine of these peptides.
Thus, such genes apparently produce protein variants
that are co-translationally modified by the NatB
complex.
Next, we shifted our attention to the impact of nat3Δ

on general protein and protein phosphorylation levels.
Protein levels (n = 2580) showed a quite narrow cen-
tered distribution with only 2.4% (63 proteins) of quan-
tified proteins displaying a more than 3-fold increase in
abundance while only 1.2% (32 proteins) showed down-
regulation (Figure 1C). In sharp contrast, protein phos-
phorylation levels were clearly and significantly
increased in the nat3Δ strain. 23% (489 phosphorylated
peptides) of all quantified phosphorylated peptides dis-
played a more than 3-fold up-regulation (Figure 1D),
whereas only 3.5% (78 phosphorylated peptides) dis-
played decreased levels. Notably, this increased

Table 1 Detected NatB substrates

accession name score sequence start average ratio

YLL026W HSP104 65 MNDQT 1 -8.7

YPL111W CAR1 66 METGP 1 -7.3

YDL029W ARP2 54 MDPHN 1 -6.5

YGR078C PAC10 47 MDTLF 1 -6.0

YJL136C RPS21B 88 MENDK 1 -5.6

YER133W GLC7 74 MDSQP 1 -4.7

YGR180C RNR4 44 MEAHN 1 -4.5

YPR181C SEC23 51 MDFET 1 -4.3

YLR078C BOS1 51 MNALY 1 -3.0

YOR045W TOM6 117 MDGMF 1 -2.4

YOR027W STI1 42 MDDIN 198 -0.7

YER055C HIS1 55 MDLVN 1 -6.9

YCL001W RER1 97 MDYDS 1 -5.5

YDL100C GET3 39 MDLTV 1 -4.8

YKR057W RPS21A 96 MENDK 1 -4.4

YDR394W RPT3 43 MEELG 1 -3.8

YBL082C ALG3 67 MEGEQ 1 -3.1

YDR470C UGO1 89 MNNNN 1 -2.7

YBR143C SUP45 40 MDNEV 1 -9.6

YNL189W SRP1 67 MDNGT 1 -8.0

YLR264W RPS28B 32 MDSKT 1 -8.0

YLR438C-A LSM3 40 METPL 1 -7.5

YHR028C DAP2 69 MEGGE 1 -7.4

YLR118C 48 MNGLR 1 -7.1

YMR074C 60 MDPEL 1 -6.9

YGR275W RTT102 30 MDPQT 1 -6.3

YFL038C YPT1 40 MNSEY 1 -6.2

YIL076W SEC28 33 MDYFN 1 -5.9

YNL313C 45 METLL 1 -5.8

YOL129W VPS68 58 MEADD 1 -5.3

YJL041W NSP1 42 MNFNT 1 -5.3

YOL086W-A 34 MNDDE 1 -5.1

YIL088C AVT7 46 MEATS 1 -4.6

YPL262W FUM1 41 MNSSF 24 -4.5

YLR178C TFS1 54 MNQAI 1 -4.3

YFL023W BUD27 67 MDLLA 1 -4.0

YHR060W VMA22 53 MDTTD 10 -3.7

YLR423C ATG17 30 MNEAD 1 -3.7

YGR231C PHB2 34 MNRSP 1 -3.6

YLR430W SEN1 54 MNSNN 1 -3.5

YLR119W SRN2 36 MDVVP 31 -3.5

YNL044W YIP3 51 MNQLG 1 -3.5

YPR021C AGC1 43 MEQIN 1 -3.4

YDL116W NUP84 48 MELSP 1 -3.0

YDR017C KCS1 39 MDTSH 1 -2.9

YJR089W BIR1 35 MDGQI 1 -2.9

YDL188C PPH22 34 MDMEI 1 -2.8

YCR002C CDC10 70 MDPLS 1 -2.6

YDR129C SAC6 32 MNIVK 1 -2.5

YDL128W VCX1 79 MDATT 1 -2.5

YNL092W 50 MDENE 1 -2.1

Table 1 Detected NatB substrates (Continued)

YGL242C 61 MNTEG 1 -1.9

YLR056W ERG3 66 MDLVL 1 -1.8

YER012W PRE1 44 MDIIL 1 -1.6

YEL056W HAT2 47 MENQE 1 -1.5

YDR320C-A DAD4 50 MENPH 1 -1.2

YDL141W BPL1 39 MNVLV 1 -1.1

YBR154C RPB5 32 MDQEN 1 -0.3

YDL122W UBP1 31 MDLFI 1 -0.2

Table listing identified N-acetylated peptides displaying the NatB consensus
sequence at the N-terminus (MD/ME/MN). Their 15N/14N ratios (log2) were
averaged across biological replicates and show significant down-regulation in
the nat3Δ strain compared to the WT.
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phosphorylation was clearly evident in both biological
replicates, including the isotope label swap.

Effect of nat3Δ on protein levels
The phenotype of the nat3Δ strain is quite complex and
the consequences on growth rate suggest that changes
in overall protein levels could be expected. To investi-
gate nat3Δ downstream effects on the cell we were able
to quantify 2580 proteins (excluding quantified proteins
outside the 95% confidence interval) and subjected pro-
teins displaying a more that 3-fold change (i.e. less than
100 proteins) to a network and cluster analysis. In con-
trast to proteins with decreased abundance levels, pro-
teins with increased levels showed interesting
associations and localization. Amongst the higher
expressed proteins in the nat3Δ strain we detected a
cluster of nuclear proteins involved in ribosome biogen-
esis (Nob1p, Cic1p, YNL110C, Nop4p, Nop12p). Inter-
estingly, even though the biogenesis of the ribosome
seems to be affected, ribosomal proteins themselves did
not display a change in abundance (average 2log ratio of
ribosomal subunits was 0.02 ± 0.1).
Other proteins with increased expression in the nat3Δ

strain are involved in cytokinesis and budding such as
the kinase Hsl1p, which is involved in septin assembly
and linkage of morphogenesis to mitotic entry [39].
Another protein, Chs1p is responsible for the synthesis
of the chitin ring involved in bud emergence and

cytokinesis [40]. This is particularly intriguing since it is
known that the phenotype of the nat3Δ strain shows
abnormal budding behavior such as multiple buds [13]
and coincides with finding up-regulation of proteins like
the glucanases Sun4p and Scw10p or the endochitinase
Cts1p, which are associated with cell wall separation
and therefore morphogenetic events such as budding.

Effect of nat3Δ on protein phosphorylation
The nat3Δ strain displays a very clear increase in phos-
phorylation levels. A localization analysis of proteins
that display this increase in phosphorylation levels
showed that the main effects seem to take place mainly
in the cellular bud (p-value = 0.01) but also in the
nucleus (p-value = 0.3) and the mitochondria (p-value
of 0.14), while the cytoplasmic compartment is underre-
presented (p-value = 0.01) (Figure 4A). To dissect the
underlying kinase networks, we used several tools to
predict the kinases responsible for the sites displaying
increased phosphorylation levels. The results of these
predictions are listed in the Additional file 3. To pin-
point the prominence of particular kinases we calculated
the contribution (in %) of each predicted kinase to ele-
vated phosphorylation sites. This percentage was then
normalized by the contributions of the respective
kinases to the unchanged nuclear phosphorylation sites.
These analyses point out that the serine/threonine
kinase Snf1p is most prominently involved in the
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Figure 2 N-acetylation of protein variants. Tandem mass spectra of N-acetylated protein variants from Pma1p and Ura2p are displayed. These
proteins were found to be N-acetylated on the amino acids N and D as suggested by the 42 Da mass shifts of the b-ion series compared to the
same peptides in their non-acetylated forms, which are displayed in the top row. Fragment ions of the y and b series found in the MS/MS
spectra are indicated in black in the tables next to the spectra. Missing ions are marked in grey. For each spectrum the start position of the
respective peptide is indicated together with the peptide sequence, protein name, accession and MASCOT score.

Helbig et al. BMC Genomics 2010, 11:685
http://www.biomedcentral.com/1471-2164/11/685

Page 8 of 15



observed elevated nuclear phosphorylation levels
(p-value = 0.004) (Figure 4B). A similar trend for Snf1p
could be observed when looking not only at the nuclear
subset of elevated phosphorylation sites but at the com-
plete dataset (data not shown) indicating a general
increased activity of Snf1p, which can be localized in
various cellular compartments [41]. Snf1p influences a
large protein network and is, amongst other things,
responsible for energy regulation and glucose derepres-
sion by transcriptional activation [42], [43].

In agreement, network analysis illustrated that the
effects of the Nat3 deletion affects a large phosphoryla-
tion network, stretching to various cellular locations and
functions (Figure 5). Alongside structural and scaffold
elements such as proteins involved in transport e.g.
Hxt3p and Tom6p or protein folding e.g. Ssc1p, elevated
phosphorylation levels are also observed for proteins
involved in cell cycle control, for example Slt2p, Ms1p
or Cdc28p. The main protein clusters extracted from
this network analysis consisted of nuclear proteins
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Figure 3 Profiling N-acetylation in yeast. A Venn diagram representation of the overlap between identified N-acetylated proteins carrying the
N-acetylation on position 1 or 2, and protein variants detected to display N-acetylation on amino acid position 3 or higher. Sequence logos
were calculated for peptides acetylated at position 1 and 2 from the predicted gene-start. For position 1, sequences were devided into peptides
that matched the NatB consensus sequence and the rest which is most likely acetylated by other N-acetyltransferases such as NatC. Acetylation
in position 2 was found to follow the consensus sequence of NatA. Frequency logos are displayed at the top in the blue frames. The frequency
logo for proteins N-acetylated on a amino acid higher than 2 (from the predicted gene-start) are indicated below in the grey panel, revealing no
particular consensus sequence for this latter category. Network analysis was performed on these latter protein variants and the three main
protein clusters are indicated below the frequency logo. These protein variants were found to be preferentially involved in the proteasome,
chaperone network and energy metabolism. Proteins detected to be N-acetylated either in position 1 or 2 and additionally at a position higher
than 2 are indicated in blue in the protein clusters. All detected protein variants are given in Additional file 5.
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involved in RNA processing such as the proteins Pno1p,
Cbf5p, Sik1p Rrp12p and Utp14p. Other proteins
belonging to this cluster play important roles in the bio-
genesis of ribosomal proteins. Other relevant elevated
phosphoprotein clusters were found to be involved in
the structural elements of the nucleus such as the
nuclear pore complex (e.g. Nsp1, Nup60, Nup84p and
Nup85p), and proteins involved in DNA metabolism
(e.g. Rad27p, Rfa2p, Dna2p, Pol2p and Pol12p), cell
cycle progression (Cdc28p, Cdc54p) and transcriptional
regulation (e.g. Spt7p, Spt8p and Snf1p). These results
suggest possibly a primarily nuclear localized effect of
nat3Δ on protein complexes and networks involved in
RNA processing (Figure 5).

Discussion
The yeast N-acetylome and NatB substrates
Using a comprehensive quantitative proteomics
approach enabled us to characterize protein level
changes in a nat3Δ yeast strain leading to the experi-
mental observation of 756 acetylated protein N-termini,
of which 59 (8%) substrates of the NatB complex,
expanding the list of NatB substrates significantly. Our
data confirmed that NatB has a very high specificity in
yeast and exclusively N-acetylates protein sequences
starting with MD, ME and MN. Analysis of the yeast
genome revealed that 4012 N-terminal protein termini
should theoretically be detected using our proteomics

approach (our technique is more or less able to measure
N-terminal peptides from 5 to 45 amino acids in
length). 636 (16%) of the theoretically observable pro-
teins display an N-terminal NatB target sequence (Addi-
tional file 6). The discrepancy between the theoretically
possible and experimentally detected protein N-termini
and NatB targets can be attributed to several sources.
First of all, we primarily only enrich N-acetylated pro-
tein termini and it has been shown that in yeast only
60-70% of the protein termini are modified in this way.
Thus it is very likely that not all proteins that possess
the N-terminal NatB target sequence are actually N-
acetylated in-vivo. Moreover, proteins of very low abun-
dance (copy numbers) may not be detected, even by our
targeted approach.
The different known N-acetyltransferases have con-

served specificities across species and act on a largely
identical subset solely determined by the first 1 or 2 N-
terminal amino acids [44]. We assessed the conservation
in this ultimate N-terminal region of the here detected
NatB substrates across several species. Therefore, we
extracted orthologous protein sequences from various
species and aligned and compared their N-terminal
sequences. Surprisingly, the targets of NatB do not show
a particular conservation across the phylogenetic tree
and only a few highly conserved proteins (Arp2p, Bos1p,
Erg3p, Rpb5p, Rps28ap) are apparently showing a con-
sistent N-terminal NatB substrate consensus sequence
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Figure 4 Localization of up-regulated phosphoproteins and kinases predicted to be responsible for elevated phosphorylation levels.
Panel (A) Bar chart indicating localization of proteins displaying significantly increased phosphorylation levels. The % of proteins being localized
in the respective categories was calculated for up-regulated proteins and normalized to the localization distribution determined for all detected
proteins. The yellow color highlights proteins of the nucleus and nucleolus. Panel (B) Bar chart indicating kinases predicted to be responsible for
the observed elevated phosphorylation sites. The % of phospho-sites being targeted by the respective kinases was calculated for up regulated
sites and normalized to the background of detected unchanged phospho-sites, revealing the predominant role of SNF1 in the observed
increased phosphorylation in the nat3Δ strain.

Helbig et al. BMC Genomics 2010, 11:685
http://www.biomedcentral.com/1471-2164/11/685

Page 10 of 15



(Figure 6A), indicating that the N-terminal protection by
an acetyl group may not be very tightly associated with
a specific N-acetyltransferase. For instance, an alignment
of orthologous sequences of the phosphatase Glc7p,
which was found to be a NatB target, shows that the
protein is in general very well conserved; however, the
N- and C-terminal regions display a much lower degree
of conservation (Figure 6B), making Glc7p not a NatB
substrate in even closely related species. This analysis
indicates that caution should be taken when translating
phenotypic results from an N-acetyltransferase deletion
strain from S. cerevisiae to other organisms.

nat3Δ downstream effects
One of the main reasons for performing this work origi-
nates from the fact that the complex phenotype of the
nat3Δ strain in S. cerevisiae cannot be easily explained
by just the previously described NatB substrates. In our
analysis, we identified several “new” NatB substrates

involved in processes impaired in the nat3Δ strain. The
NatB target Bud27p, for example, is involved in bud site
selection and its KO leads to a random budding pattern
similar to the budding behavior in the nat3Δ [45].
The kinase Hsl1p, which is involved in septin ring for-
mation during cell division [46] was found with elevated
levels in the nat3Δ and could also be involved in the
impaired budding phenotype. However, since the under-
lying mechanism of Bud27p function is not well charac-
terized, also the impact of its (lack off) N-acetylation
status remains elusive.
The reported inability of the nat3Δ strain to form

functional actin cables is likely due to the loss of the N-
acetyl group in actin, but we also found two other NatB
substrate proteins functionally associated with actin
(Arp1p [47] and Sac6p [48]), that could further contri-
bute to the loss of function. The observed increase in
temperature sensibility [49] of the nat3Δ strain could be
related to the heat shock protein Hsp104p, a NatB
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Figure 6 Conservation of NatB substrates across species. Panel A displays a bar chart indicating the conservation of NatB targets across
species. This analysis was performed using either all 59 identified NatB substrates (black bars) or only the 5 most conserved proteins Arp2p,
Bos1p, Erg3p, Rpb5p and Rps28ap (gray bars). NatB substrates are only sporadically conserved in the tree of life with the exception of a few,
highly conserved, proteins. The phylogenetic relationship between the species included in this survey is indicated on the left. Panel B shows an
alignment of Glc7p with orthologous protein sequences from different species of the fungal kingdom indicating general high conservation at
the full-length protein level. The termini, however, are much less conserved including the part that determines N-acetyltransferase substrate
specificity.
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target and involved in thermo tolerance and stress
response [50]. Further, the defect in mitochondrial
inheritance observed when disrupting the NatB complex
[51] could be attributed to the loss of the N-acetyl
group of Ugo1p, a protein which is located in the mito-
chondrial outer membrane where it is required for mito-
chondrial fusion [52].
One of the most intriguing findings in this work is that

we detected Glc7p, a serine/threonine phosphatase [53],
as a NatB target. This protein is an important regulator
and involved in many processes including energy meta-
bolism and G2/M cell cycle progression [54], [55] and
interestingly regulates SNF1-mediated phosphorylation,
which was observed to be increased significantly in the
nat3Δ. Considering the slow growth rate displayed by the
nat3Δ mutant, our data, as well as data from Caesar et al.
2006 [13], suggests that defects are not simply caused by
the loss of functional actin cables. Instead the interplay of
a variety of NatB substrates and further downstream
effects may have even larger effects on for instance cell
cycle control, cell metabolism and morphology. Espe-
cially changes in phosphorylation networks may mediate
signals and control cellular functions such as the cell
cycle [56], [57]. There is no obvious direct link between
the identified NatB substrates and the observed drastic
effect of the Nat3 deletion on protein and phosphoryla-
tion levels. Analysis of phosphorylation levels in the WT
and nat3Δ revealed a clear increase of phosphorylation
levels in the nat3Δ strain. Evaluation of protein networks
derived from elevated phosphorylation sites in the nat3Δ
strain showed that the main affected phosphoprotein
clusters could be found in the nucleus of the cell.
Furthermore, kinase prediction indicates that the Snf1p
kinase is significantly (p-value = 0.004) involved in phos-
phorylating elevated nuclear (and cytosolic) sites. Our
data, however, also shows that protein levels of Snf1p do
not change significantly in nat3Δ. Snf1p becomes acti-
vated during glucose deprivation [58], [59] and gets then
localized to the nucleus, where it is involved in control-
ling transcriptional activators, repressors and RNA poly-
merase II. As such Snf1p has a strong influence on the
regulation of the cellular metabolism [41], leading to the
derepression of glucose related genes, inducing adapta-
tion to a nutrient poor environment by e.g. increased gly-
cogen accumulation [60]. As a consequence, proteins
such as Hxt7p, which belongs to the hexose transporter
family and is normally repressed at high glucose levels
[61], will be derepressed. Strikingly, we found Hxt7p to
be around 3-fold up regulated in the nat3Δ strain. Reg1p,
a known regulator of the Glc7p phosphatase, is known to
be phosphorylated by Snf1p during glucose limitation
and becomes de-phosphorylated by Glc7p after glucose
addition.

Snf1p mutations result in the inability of yeast to
accumulate glycogen as energy storage, when grown on
rich media [60]. In our context, however, we see a
hyperactivity of Snf1p which in turn could lead to an
activation of glucose repressed genes. The resulting
increase in glycogen accumulation is indeed one of the
phenotypic characteristics of the nat3Δ strain [62]. A
likely explanation for this nat3Δ effect could be a dis-
ruption of the regulatory interaction network between
the phosphatase Glc7p, Reg1p and the kinase Snf1p. We
clearly show that Glc7p is a NatB substrate, its N-
terminus being acetylated in the WT strain. We suggest
that the loss of N-acetylation could impair the proper
function of this phosphatase in the nat3Δ strain. We
observe hyper-phosphorylation of Reg1p (Additional file
3) indicating that the interaction and subsequent de-
phosphorylation by Glc7p is impaired. This is known to
affect the phosphorylation status of the Snf1 kinase [63].
In agreement, we found increased phosphorylation of
Snf1 at sites S443 and S487. Both of these residues are
localized in the Snf4-interacting domain of Snf1p [64]
suggesting that phosphorylation at these residues regu-
lates interaction with Snf4p and hence Snf4p-mediated
release of auto-inhibition of the Snf1 kinase [65]. As a
result, various targets of the Snf1p kinase could display
elevated phosphorylation levels in the nat3Δ strain, as
observed in our data. Alternatively, there is the possibi-
lity that Glc7p acts directly on Snf1p substrates. An
impaired Glc7p function in the nat3Δ strain could then
also have a more direct effect on the phosphorylation
levels.

Conclusions
We applied a system-wide proteomics strategy to identify
substrates of the N-terminal acetyltransferase NatB in
Saccharomyces cerevisiae uncovering 59 proteins lacking
N-acetylation in a nat3Δ strain. A bioinformatics survey
of protein orthologous of these identified substrates in
various species showed that the conservation of NatB
mediated N-acetylation is infrequent throughout the phy-
logenetic tree. Further, we present evidence of protein
variants with non-annotated N-termini that are also
N-acetylated; however their N-terminal sequence doesn’t
seem to contain conserved motifs in contrast to regular
N-termini and may be results of none-co-translational N-
acetylation. In addition, we investigated the downstream
effects of Nat3 deletion on protein and protein phosphor-
ylation levels to gain insights into the biological role(s) of
N-acetylation. We revealed a clear elevation of phosphor-
ylation levels in the nat3Δ strain showing, for the first
time, an influence of N-acetylation on phosphorylation
networks. The kinase Snf1p is apparently a key element
responsible for this effect.
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Additional material

Additional file 1: Table S1. N-acetylation. displays an inventory of
acetylated protein N-termini in S. cerevisiae.

Additional file 2: Table S2. Protein levels. displays 15N/14N isotopic
ratios of protein levels comparing WT and nat3Δ.

Additional file 3: Table S3. Posphorylated peptides. displays
quantified phosphorylated peptides from the WT and nat3Δ.

Additional file 4: Table S4. NatB substrates. displays an inventory of
detected NatB substrates.

Additional file 5: Table S5. Protein variants. displays an inventory of
detected protein variants.

Additional file 6: Table S6. In-silico digestion. shows detectable N-
terminal peptides after in-silico digestion using trypsin or Lys-N.
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