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Abstract

Background: Parasitic wasps constitute one of the largest group of venomous animals. Although some
physiological effects of their venoms are well documented, relatively little is known at the molecular level on the
protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp
Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs)
from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis
and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences.

Results: About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass
spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and
translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode
proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such
as hyaluronidase-like proteins and an Allergen-5 protein.

An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and
proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with
a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to
C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein
related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences.
In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase,

an imaginal disc growth factor-like protein and two putative mucin-like peritrophins.

Conclusions: The use of the combined approaches has allowed to discriminate between cellular and truly venom
proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-
specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might
contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.

Background

Hymenopteran venoms have been intensively studied in
social species such as bees, bumblebees, wasps, hornets
and ants [1-6]. Most of the major allergens have been
identified in species of medical importance through a
combination of transcriptomic, proteomic, peptidomic
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and glycomic techniques recently gathered under the
newly proposed term of venomic approaches [7]. In
comparison, little has been done on the venom compo-
sition of parasitoid Hymenoptera although they repre-
sent more than 75% of described hymenopteran species
and 10-20% of all insect species [8]. Fundamental bene-
fits expected from venomic approaches applied to para-
sitic wasp venoms would consist, for example, in the
discrimination between cellular transcripts present in
the venom glands and those encoding true venom pro-
teins, through the proteomic analysis of venom fluid.
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Moreover comprehensive analyses would allow a deeper
characterization of weakly expressed venom components
and a comparative work aiming at retracing the evolu-
tionary history of hymenopteran venoms. Parasitoid
venom proteins also constitute an underestimated
source of toxins that could be studied for a variety of
applied uses.

Parasitic wasps constitute by far the largest group of
parasitic insects with an estimated total number of spe-
cies of approximately 250 000 [9]. Some develop outside
(ectoparasitoids) and others inside (endoparasitoids) the
body of an insect or other arthropod host and, depend-
ing on the species, various stages of the host can be
parasitized (egg, egg-larval, larval, pupal and adult para-
sitoids). In ectoparasitoid species, venoms often induce
paralysis and/or regulate host development, metabolism
and immune responses [10-12]. Venom proteins from
endoparasitic wasps are predominately involved in regu-
lation of host physiology and immune responses alone
or in combination with other factors of maternal origin
such as polydnaviruses (PDVs) or virus-like particles
present in the venom itself or produced in the ovaries
and ovarian fluids [13-17]. For example, venoms can
synergize the effects of PDVs [18,19] and can interfere
with host’s humoral [20-22] and cellular immune com-
ponents [23-26].

To date, less than 50 proteins have been individually
identified and characterized from the venoms of a
restricted number of parasitoid wasps species [15,27].
Broader studies have also previously investigated the
composition of parasitoid venoms by the separate use of
proteomic or transcriptomic approaches combined with
bioinformatic analyses. A recent analysis of the venom
proteome of the pupal ectoparasitoid wasp Nasonia vitri-
pennis has been published, that benefited from the
sequencing and annotation of this wasp genome [28].
Twelve venom proteins from the endoparasitoid Ptero-
malus puparum were also identified recently using a pro-
teomic approach [29]. On the other hand, transcriptome
analyses allowed the identification of venom proteins in
the pupal endoparasitoid Pimpla hypochondriaca [30-32]
and in two adult endoparasitoid species of the genus
Microctonus [33]. Although these works are undoubtedly
of great interest, most of them did not provide absolute
evidence that all identified proteins were venom compo-
nents. Therefore, there is still a crucial need for extensive
analyses by combining various techniques of investigation
at the molecular level to allow comparisons between
species.

Chelonus inanitus (Hymenoptera: Braconidae) is origi-
nal among the parasitoid species currently studied in
being an egg-larval endoparasitoid species. Indeed it ovi-
posits into the eggs of its host, Spodoptera littoralis
(Lepidoptera: Noctuidae) and the parasitoid larva then
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develops inside the host embryo and early larval stages.
Due to its lifestyle, C. inanitus must thus face up to par-
ticular physiological constraints imposed by its imma-
ture hosts. The venom, along with PDVs produced in
the reproductive system of this wasp, are essential for
successful parasitism as they protect the parasitoid from
encapsulation by host’s immune cells [34], interfere with
the host’s nutritional physiology [35] and induce a
developmental arrest in the prepupal stage [18,36,37].
Venom of C. inanitus by itself alters the membrane per-
meability of host hemocytes, has a transient paralytic
effect [38] and synergizes the effect of the PDVs on host
development [18]. The data gathered on the functions
of its venom make C. inanitus a valuable model for
investigating the venom proteins. At least 25 proteins
were found [38] but their sequences were unknown.
The sequences of only two venom proteins from
another species of the subfamily Cheloninae, Chelonus
sp. near curvimaculatus, had been described to date
[39,40].

We report here the analysis of C. inanitus venom
gland products based on the sequencing of clones of a
c¢DNA library and on mass spectrometry analysis of
venom proteins. This is the first time that this combina-
tion of techniques was applied to identify venom pro-
teins from an endoparasitic wasp. The data obtained
might contribute to acquiring a more comprehensive
view on the origin and functional diversity of venom
proteins among Hymenoptera.

Results and Discussion

General overview of the cDNA library of C. inanitus
venom gland

The 2111 ESTs from the venom glands of C. inanitus
were clustered into 488 clusters (95 contigs and 393 sin-
gletons, Table 1). The number of ESTs in each contig
ranged from 2 to 534 and these clusters were considered
as putative unigenes. The deduced sequences from 250
clusters (56 contigs and 194 singletons, 56.85% of all
ESTs) shared significant similarities with protein
sequences deposited in non-redundant databases
(EMBL/Genbank), a proportion comparable to that
found by Crawford et al. [33] which have studied the
venom gland transcriptome of the parasitoid wasp
Microctonus hyperodae. Of these products, 164 (corre-
sponding to 36 contigs and 128 singletons, 21.5% of all
ESTs) shared significant similarity with proteins with
assigned molecular functions in the gene ontology data-
base. This relatively low percentage is explained in part
by the fact that the function of the most represented
sequence (534 ESTs) referred below as Ci-23a, is
unknown. At level 2 of the gene ontology system, clus-
ters were classified into 9 molecular functional cate-
gories (Figure 1), among which “binding” (GO:0005488)
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Table 1 Summary statistics of the analysis of the C. inanitus venom gland ESTs

No. of clusters No. of ESTs Percentage of total ESTs

Total no. of contigs (clusters with > 1 member) 95 1718 81.38
- coding for proteins identified by MS 26 1272 60.26
- coding for other proteins 69 446 21.13
Total no. of singletons (clusters with 1 member) 393 393 18.62
- coding for proteins identified by MS 7 7 033
- coding for other proteins 386 386 1829

TOTAL 488 2111 100

and “catalytic activity” (GO:0003824) categories were
over-represented (95 and 82 clusters respectively). Inter-
estingly, these categories were also the most common
functional categories assigned to the venom glands ESTs
from the saw-scaled viper, Echis ocellatus [41] and from
the solitary hunting wasp species, Orancistrocerus drew-
seni [42]. Catalytic activity and binding categories thus
constitute a hallmark of the venom gland transcriptomes
analysed to date. A “structural molecule activity” func-
tion (GO:0005198) has been assigned to 48 clusters (20
contigs, 28 singletons) that corresponded essentially to
genes coding for structural constituents of ribosomes
(17 contigs, 21 singletons). In addition, products of
genes functionally annotated as “translation regulator

activity” (GO:0045182) (8 singletons) and “transcription
regulator activity” (GO:0030528) (2 contigs, 15 single-
tons) were also identified, which encompassed transcrip-
tional regulators, DNA or RNA binding proteins and
translation elongation factors. All these proteins pre-
sumably reflect the metabolic effort invested by the
venom gland for the transcription and translation of
secreted products. The 2111 ESTs were used to produce
in silico a database of venom gland open reading frames
(vgORFs) which were matched to the peptide sequences
obtained by nano-LC-MS/MS analysis. An overall of
1279 ESTs (26 contigs and 7 singletons, 60.6% of all
ESTs) were then identified as coding for venom proteins
of C. inanitus.
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Figure 1 Functional characterization of assembled clusters from C. inanitus venom gland. Histograms show the distribution of sequence
clusters from C. inanitus venom gland transcriptome according to the 9 molecular functional categories at level 2 of the gene ontology system.
Values figuring at the top of bars indicate the respective number of ESTs classified into each functional category.
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Identification of the venom proteins of C. inanitus
Venoms of parasitic wasps are reputed to have a low
content in small proteins and peptides in comparison to
venoms of social Hymenoptera [27,43]. Upon separation
of C. inanitus venom proteins by SDS-PAGE, at least 25
proteins with apparent molecular masses ranging from
14 to 300 kDa had been observed while no bands were
seen below 14 kDa. This was also consistent with data
previously reported [38] from the analysis of SDS-PAGE
and two-dimension electrophoresis gels stained with Sil-
ver or Coomassie blue staining methods. For the nano-
LC-MS/MS analysis presented here, several gradient gels
(4-15%) were run at various conditions to allow excision
of all gel bands detectable upon Coomassie blue stain-
ing. Figure 2 shows that the analysed bands represent
the majority of the venom proteins of C. inanitus. How-
ever, the presence in this venom of small amounts of
additional proteins and peptides cannot be excluded.
For 25 proteins, named Ci-14a to Ci-300, peptide
sequences exactly matching sequences of the vgORF
database were obtained upon nano-LC-MS/MS analysis
(see additional file 1: Table of peptide identification).
Furthermore, peptides belonging to four additional pro-
teins were detected, namely Vem7, Vem11, Vem17 and
Vem37 (Vem being an abbreviation for Venom Mix).
These proteins were found in several gel bands, a situa-
tion usually found for very abundant proteins. There
was no evident correspondence between the relative
abundance of venom protein bands on the gel (Figure 2)
and the abundance of the corresponding ESTs in the
vgORFs database (Table 2). The detailed list of the iden-
tified venom proteins will be discussed in the following
sections.

Ci-23a and Ci-45, two proteins with similarities with
venom proteins from C. sp. near curvimaculatus

The Ci-23a venom protein was encoded by a contig cor-
responding to the highest number of ESTs in the library
(534). It displays 50% of sequence identity (BlastP, E-
value = 7e-21) with a 32.5 kDa protein referred as
“venom protein from C. sp. near curvimaculatus* [Gen-
Bank:ACI70208.1], another chelonine wasp. This latter
protein was historically the first to be isolated and
sequenced from the venom of a parasitoid Hymenoptera
[39]. Although it was found to be necessary for the sur-
vival of the parasitoid in the lepidopteran host, Tricho-
plusia ni [44], it is still not related to any other known
protein and its function remains unknown to date. A
potential cleavage site for both N-arginine dibasic con-
vertase (pattern: .RK|RR[*KR]) and subtilisin-like pro-
protein convertase (pattern: [KR]R.) was detected at
positions 51 to 53 (RRA) of the Ci-23a sequence. How-
ever, sequences coding for such convertases were not
found in our vgORFs database. Remarkably, Ci-23a was
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Figure 2 SDS-PAGE of venom proteins from C. inanitus. Venom
proteins collected from two venom reservoirs were separated on a
4-15% gradient SDS-PAGE gel and stained with Coomassie Brilliant
Blue R-250. From such gels (run at varying conditions) bands were
excised and submitted to nano-LC-MS/MS analysis. Numbers on the
right indicate the approximate molecular mass of individual venom
proteins for which amino acid sequences were obtained; only for
65, marked with an asterisks, no exploitable sequences were
obtained. Molecular mass marker is shown on the left. This figure
was modified from [38], with kind permission from Elsevier.

devoid of the 12 tandem repeats of 14 residues that
characterized the C-terminal part of the venom protein
of C. sp. near curvimaculatus (see additional file 2:
Amino acid sequence alignment of Ci-23a and the
venom protein from C. sp near curvimaculatus) [39].
These repeat sequences form several a-helices with
strong amphipathic structures supposed to run at the
surface of the protein [39] and we found that they con-
tain an unusualy high number of potential glycosamino-
glycan attachment sites (14 serine motifs involved in the
motif pattern: [ED]{0,3}.(S) [GA]). Thus Ci-23a, which is
much shorter than its homologue, is potentially pro-
cessed by non-venomous convertases and is likely to
have a substrate or target site specificity different from
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Table 2 List of venom proteins of C. inanitus identified by nano-LC-MS/MS analysis.
Name Identification EMBL Acc. Significant matches with Pfam No. of corresponding Seq. length
No entries ESTs (amino acids)
Ci-23a Similar to venom protein from C. sp. near FN908672 - 534 114
curvimaculatus
Ci-45  Chitinase FN908682 PF00704 64 387
Ci-48b IDGF-like protein FN908684 PF00704 118 440
Ci-23c  Mucin-like peritrophin FN908674 PFO1607 (x2) 22 177
Ci-220 Mucin-like peritrophin FN908692 PFO1607 (x2) 3 229
Vem7 Yellow-e3-like protein FN908694 PF0O3022 15 432
Ci-50  Esterase/lipase-like FN908685 PFO0151 215°
Ci-300  Metalloprotease-like FN908693 - 8 230°
Ci-95  ACE-like protein FN908689 PFO1401 19 145P
Ci-80a  C1A protease FN908687 PFO0112 1 165P
Ci-40a Trypsin-like serine protease FN908678 PFO0089 2 144P
Ci-180  Lectin-like protein FN908691 PF00059 2 218
Ci-14a CSP-like protein FN908669 PF03392 1 104P
Ci-23b  Protein related to PBP/OBP FN908673 PFO1395 29 144
Ci-48a Similar to lethal (1) G0193 isoforms FN908683 - 5 383
Vem17  Similar to lethal (1) G0193 isoforms FN908696 - 3 220P
Ci-80b Similar to lethal (1) G0193 isoforms FN908688 - 1 229°
Ci-14b  Unknown protein FN908670 - 286 141
Ci-15  Unknown protein FN908671 - 4 123
Ci-27  Unknown protein FN908675 - 59 210
Ci-28  Unknown protein FN908676 - 13 182
Ci-35a  Unknown protein FN908677 - 5 188°
Ci-35b  Unknown protein FN908678 - 5 266
Ci-40c  Unknown protein FN908681 - 64 263
Ci-60 Unknown protein FN908686 - 2 205
Vem11 Unknown protein FN908695 - 3 217
Vem37 Unknown protein FN908697 - 4 246
Ci-40b  Acidic ribosomal protein PO FN908680 PFO0466 PF00428 3 316°
Ci-120  alpha-N-acetyl glucosaminidase FN908690 PF05089 2 165

Protein names for which a signal peptide has been predicted are shown in bold; p, partial sequence.

that of the 32.5 kDa venom protein of C. sp. near curvi-
maculatus. Interestingly, the latter is a very abundant
venom protein [44] while Ci-23a protein is of low abun-
dance (Figure 2).

The Ci-45 venom protein, which gives a strong band
upon Coomassie staining (Figure 2), shows high similar-
ity (BlastP, 79% identity, E-value = 2e-141) to a 52 kDa
chitinase from venom of C. sp. near curvimaculatus
[GenBank:AAA61639.1] [40]. Both proteins possess a
predicted signal peptide and a glycosyl hydrolase family
18 domain (Pfam: PF00704) with four highly conserved
regions present in all known insect chitinases [45-47]
(see additional file 3: Amino acid sequence alignment of
representative chitinases from different insect species).
Members of glycosyl hydrolases 18 family show an
eight-stranded o./p barrel catalytic core structure [48].

The 17 residues featuring this functional domain were
all found in the Ci-45 sequence, notably those of the
second conserved region implicated in catalysis, as
shown by previous site-directed mutagenesis studies
(consensus sequence: (F/L)DG(L/I)DLD(W/I)EYP))
[47,49]. Four cysteine residues involved in two disulfide
bonds are conserved in the two Cheloninae enzymes
and the secondary structures of both proteins were pre-
dicted to be highly similar in the placement of a-helix,
B-strand and coil structure (data not shown). Ci-45 dif-
fers from its homologue by the absence of a C-terminal
chitin-binding Peritrophin-A domain (CBM_14, Pfam:
PF01607), but this domain does not appear to be essen-
tial for the chitinolytic activity of chitinases in Arthro-
pods [46,50-52]. The Ci-45 contig is thus most likely
coding for an active venom chitinase and might be
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responsible for the chitinase activity previously detected
in the venom of C. inanitus [38]. According to the clas-
sification proposed by Zhu et al. [47], it belongs to a
group of conserved insect chitinases containing a single
catalytic domain (group IV). Our phylogenetic analysis
(Figure 3) grouped the chitinases from venom glands of
C. inanitus and C. sp. near curvimaculatus in a mono-
phyletic clade with that from teratocytes of T. nigriceps
[GenBank:AAX69085.1]. Teratocytes are parasitoid wasp
secretory cells that circulate into the parasitized host
haemolymph, and represent a different way for the wasp
to deliver virulence factors into the host. The teratocyte
released chitinase from T. nigriceps is hypothesized to
contribute to the avoidance of microbial contamination
of the host’s haemocoel or to facilitate the emergence of
parasitoid larvae through the host’s cuticle [53]. Other
examples of chitinases produced by venom glands were
previously reported from spiders [54,55] and from the
parasitoid wasps M. hyperodae [33] and N. vitripennis
[28]. More recently, a chitinase produced by the poster-
ior salivary glands of the cephalopod Octopus kaurna
has also been described [56]. Venom and salivary glands
chitinases described are thus restricted to invertebrate
species. Interestingly, our phylogenetic analysis shows
that venom chitinases belong to distinct clades
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comprising also non venomous enzymes. This suggests
chitinases have been selected for production in inverte-
brate venom glands through multiple independent
recruitment events.

Ci-48b, an IDGF-like protein

Like Ci-45, Ci-48b possesses a glycosyl hydrolase family
18 domain (see additional file 4: Amino acid sequence
alignment of Imaginal disc Growth Factors (IDGFs)-like
proteins from different insect species). However, in the
second conserved region, a glutamine residue (Q157)
replaces the glutamic acid residue that plays a key role
in active insect and bacterial chitinases, in being the
putative proton donor during the catalytic mechanism
[49,57,58]. This feature is shared by members of the
imaginal disc growth factors (IDGFs) family which have
presumably evolved from chitinases to gain new func-
tions [59]. Interestingly, Ci-48b shows high sequence
similarity to IGDFs from several insect species, namely a
venom gland protein of honey bee workers [NCBI Refer-
ence Sequence: XP_396769.2] and a hemocyte aggrega-
tion inhibitor protein from the lepidopteran species
Manduca sexta [GenBank:ACW82749.1] (Blast P 38%
identity; E-value = 2e-76) [60]. Thus Ci-48b may contri-
bute to the survival and development of C. inanitus

1 f CAA7T7014.1_Phaedon_cochleariae
L BAF49605.1_Monochamus_alternatus
NP_001128139.2_Nasonia_vitripennis
0.84 0.5 XP_397146.3_Apis_mellifera
.84 _1_ XP_001606158.1_Nasonia_vitripennis
5 AAXG69085.1_Toxoneuron_nigriceps
0.65 1 : Ci-45b-Chelonus_inanitus_v
AAA61639.1_Chelonus_sp.
1 AAL65401.1_Glossina_morsitans_morsitans
067 I NP_524962.2_Drosophila_melanogaster
AAV49322.1_Phlebotomus_papatasi
1 o o XP_001663097.1_Aedes_aegypti
1 XP_001841679.1_Culex_quinquefasciatus
_|_—EAT45693. |_Aedes_aegypti
NP_001155084.1_Nasonia_vitripennis
ABL73927.1_Tribolium_castaneum
0.66 EY188405.1_Loxosceles_laeta
1 AAN39100.1_Araneus_ventricosus
AAHI11460.1_Homo_sapiens
0.3
Figure 3 Bayesian reconstruction of representative arthropod chitinase proteins. The Ci-45 venom chitinase from C. inanitus characterized
in this study is shown in blue and the branches of venom chitinases are shown in red.
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eggs once oviposited into their host either by acting as a
growth factor or alternatively, by modulating the cellular
immune response of young S. littoralis host larvae.

Ci-23c and Ci-220, two putative mucin-like peritrophins
The sequence of the Ci-23c venom protein is 177 amino
acid long, giving a theoretical molecular mass of 19.6
kDa (see additional file 5: Amino acid sequence align-
ment of Ci-23c, Ci-220 and AD-873). It possesses two
Chitin-binding peritrophin domains 14 (CBM_14, posi-
tions 26-78 and 92-144) and a predicted glycosamino-
glycan attachment site (positions 155-158). Another
venom protein, Ci-220 (229 amino acids, theoretical
molecular mass 26.3 kDa), also contains two CBM_14
domains (positions 29-84 and 82-135) and a predicted
glycosaminoglycan attachment site (positions 138-141).
The two proteins share an overall 32% identity (BlastP,
E-value = le-16) and show sequence similarities to a
wide variety of CBM_14 domains containing proteins,
including a venom component from N. vitripennis [28].
Moreover they share the domain organization of the
mucine-like peritrophin AD-873 identified from the sali-
vary gland transcriptome of the mosquito Anopheles
darlingi [GenBank:ACI30179.1]. Interestingly this peri-
trophin is speculated to contribute to the maintenance
of the structure of the mouthparts and/or salivary canal
of A. darlingi [61]. In C. inanitus, oviposition is accom-
panied by intense contractions of the abdomen, which
are necessary to push the venom from the reservoir into
the oviduct, since the venom reservoir is located at the
distal end of one of the gland filaments and has a very
thin wall without a muscle layer [38]. It is thus possible
that the venom proteins Ci-23c and Ci-220, as the mos-
quito peritrophin, contribute to keeping the reservoir in
shape.

Vem?7, an ancient yellow-e3-like venom protein

Vem?7 shares high sequence similarity to the yellow-e3
protein [GenBank:ABB82366.1] from A. mellifera
(BlastP, 42% identity, E-value = 2e-81). The yellow-e3
gene is highly expressed in the head and hypopharyngeal
gland of honey bee workers and is considered as the
progenitor of all genes of major royal jelly proteins
(MR]Ps) of A. mellifera. Located in the same genomic
region and sharing a similar exon/intron organization,
MRJPs would have been generated via recent duplica-
tions [62,63]. Recently, two members of the MR]JPs
family, MRJP8 [GenBank:ACD84799.1] and MRJP9
[GenBank:ACD84800.1], were identified in the venom
gland proteome of A. mellifera [5]. It is noteworthy that
phylogenetic analyses put them at the basis of the
MR]Ps tree, meaning that they are the most ancient
members of the MRJPs family and suggesting a veno-
mous “pre-royal jelly” function for the MRJPs progenitor
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originating from yellow-e3 [5,63]. Our phylogenetic ana-
lysis shows that Vem7 forms a monophyletic group with
yellow-e-3 protein (Figure 4) and thus represents the
first example of a venomous protein in this clade. This
supports the hypothesis that a yellow-e-3 gene progeni-
tor of MRJPs may have encoded a venomous protein
like the Vem?7 gene.

Putative enzymes

Ci-50 is a venom protein belonging to the lipase family
(Pfam: PF00151). One carboxyl-esterase and two other
lipases were previously identified in the venom pro-
teome of N. vitripennis [28] and a lipase activity has
been found in the venom of P. hypochondriaca [64]. In
N. vitripennis, venom lipases might participate in the
alteration of host’s lipid metabolism to the benefit of the
developing parasitoid eggs [65] and a similar function is
conceivable for C. inanitus.

The partial sequence of the Ci-300 venom protein
shares 39% sequence similarity (BlastP, E-value = 2e-05)
with a Zinc-dependent metalloprotease identified in the
venom of P. hypochondriaca [GenBank:CAD21587.1].
However, Ci-300 lacks the functional characteristic Zn>
*-binding motif of HExxHxxGxxH and a distal located
methionine [66] found in venom metalloproteinases
from the parasitoid species P. hypochondriaca [67], M.
aethiopoides [33], Eulophus pennicornis [68] and N.
vitripennis [28] (see additional file 6: Partial amino acid
sequence alignment of Ci-300 with insect metallopro-
teases). The sequence of Ci-300 could have thus consid-
erably diverged from an ancestral Zinc-dependent
metalloprotease-like protein to acquire an original func-
tion in the venom of C. inanitus.

The Ci-95 venom protein shows significant sequence
similarity to various angiotensin converting enzymes
(ACEs, Pfam: PF01401) and notably to an ACE-like pro-
tein from A. mellifera [NCBI Reference Sequence:
XP_393561.2] (BlastP, 46% identity, E-value = 2e-29). In
addition, upon Western analysis with an antibody made
against recombinant Drosophila ACE (kindly provided
by Dr. Elwyn Isaac, University of Leeds, UK) a clear
band was seen (data not shown). ACE is a dipeptidyl
carboxydipeptidase with a broad in vitro substrate speci-
ficity that is best known, in mammals, for its role in
converting inactive angiotensin I to the vasoconstrictor,
angiotensin II, and the inactivation of bradykinin [69].
In insects, ACE-like proteins appear to have a wide tis-
sue distribution, from embryos to adult stages [70,71]
and some have been implicated in the metabolic inacti-
vation of neuropeptides in the central nervous system
[72]. Dani et al. [73] have detected an ACE-like enzy-
matic activity in the venom of P. hypochondriaca and
have speculated that venomous ACE could be involved
in the processing of peptide precursors in the venom
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reservoir. More recently, another ACE-like enzyme has
also been identified in the venom of N. vitripennis [28].

Ci-80a, a venom protein encoded by a single transcript
identified in our VgORFs database, belongs to the pepti-
dase family C1, sub-family C1A (papain family, clan CA,
Pfam: PF00112). The partial sequence of Ci-80a contains
two out of the four conserved residues of the active site
of C1A proteases and all the residues involved in the S2
subsite, which is involved in specificity for the dominant
substrate of papain-like cysteine proteases. Interestingly,
viral cystatins encoded by the genome of the bracovirus
CcBV, associated with the parasitic wasp Cotesia congre-
gata, were shown to target some C1A proteases of the
host M. sexta [74]. Cathepsins and their inhibitors may
play an important role, yet undetermined, in the context
of host-parasitoid physiological relationships.

The Ci-40a venom protein contains a partial trypsin-
like serine protease domain (Pfam: PF00089) but
displays low sequence similarities with other known pro-
teases (see additional file 7: Amino acid sequence align-
ment of Ci-40a with serine protease homologs (SPHs)).
At least one of the three residues involved in the cataly-
tic triad for serine protease (aspartate residue in position
111) is present in the partial sequence of Ci-40a. Several

serine protease homologs were already reported from
parasitoid venoms. In the endoparasitoid C. rubecula,
the venom protein Vn50 [GenBank:AAP49428.1] has
been found to be a mutated serine protease acting as an
inhibitor of the defensive reaction of melanization of
host hemolymph [21]. In addition, members of the ser-
ine protease protein family were recently identified in
the venom proteomes of N. vitripennis [28] and P.
puparum [29].

The Ci-120 protein shares significant sequence simi-
larity with insect alpha-N-acetyl glucosaminidases
(Pfam: PF05089, EC: 3.2.1.50) and might play a role in
proteoglycan metabolism.

Lectin-like venom protein

A C-type lectin domain (Pfam: PF00059) was found in
the sequence of the Ci-180 venom protein. The domain
extends from positions 76 to 199 of the partial
sequence. An immunosuppressive function has been
proposed for a lectin with a similar C-type lectin
domain, encoded by the genome of the bracovirus
CpBV, associated with the parasitic wasp Cotesia plutel-
lae [75]. Since parasitoid venoms and PDVs are used by
the wasps to manipulate parasitized host physiology, it


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAP49428.1

Vincent et al. BMC Genomics 2010, 11:693
http://www.biomedcentral.com/1471-2164/11/693

might not be surprising that common molecules have
been selected for delivery into the host via different
pathways.

CSP-like and OBP-like proteins

The Ci-14a venom protein belongs to the A10/OS-D
insect pheromone-binding protein family (Pfam:
PF03392). A high sequence similarity was observed
between Ci-14a and Csp3 from A. mellifera (BlastP, 56%
identity, E-value = 5e-27), another member of the A10/
OS-D protein family. Csp3 [GenBank:ABH88171.1] is a
chemosensory protein (CSP) ubiquitously expressed in
adults and pre-imaginal stages of the honeybee in which
it may play a role in cuticle maturation [76].

Ci-23b is a venom protein containing a pheromone
binding protein/general-odorant binding protein (PBP/
GOBP) domain (Pfam: PF01395). Homology searches
revealed that Ci-23b has highly diverged from known
PBPs and GOBPs. In particular, it only shows 4 out of
the 6 cystein residues strictly conserved between PBPs
and GOBPs [77,78]. Other OBP-like venom proteins,
unrelated to Ci-23b, have previously been identified in
the venom proteomes of A. mellifera workers and N.
vitripennis females (NCBI Reference Sequences:
NP_001035313.1 and NP_001155150.1, respectively)
[5,28]. Beside the involvement of PBPs and OBPs in
chemical communication, it is possible that in Hyme-
noptera, some OBP-like proteins fulfil other roles in
relation with the venomous functions.

Venom proteins similar to lethal (1) G0193 isoforms

Ci-48a, Veml17 and Ci-80b venom proteins share
sequence similarities with members of a group of pro-
teins similar to protein isoforms A [GenBank:
AAF46301.1] and B [GenBank:AAS65275.1] encoded by
the lethal (1) GO193 gene from D. melanogaster. This
group of cystein-rich proteins notably includes several
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venom and salivary gland proteins of unknown func-
tions reported from various insect species (see additional
file 8: Sequence similarities between Ci-48a, Vem17 and
Ci-80b and proteins similar to isoforms of lethal (1)
G0193). Ci-80b possesses the least conserved amino
acid sequence towards lethal (1) G0193 isoforms sug-
gesting it might have diverged as a virulence factor
involved in host-parasite interactions, which are often
characterized by a high level of divergence.

New lineage-specific proteins

In addition to Ci-23a and Ci-45 which are conserved in
the venom of two Chelonus species, ten C. inanitus
venom proteins did not show any significant sequence
similarity to known proteins (Ci-14b, Ci-15, Ci-27, Ci-
28, Ci-35a, Ci-35b, Ci-40c, Ci-60, Vem11 and Vem 37).
This is reminiscent of observations on twenty three
venom proteins in N. vitripennis which also have no
similarity to known proteins and appear to be lineage-
and/or species specific [28]. Given that Chelonines are
egg-larval parasitoids it is possible that new C. inanitus
proteins have evolved to cope with this particular parasi-
tic context. Although they do not contain conserved
domains, they may play an important role during host-
parasite interaction and notably Ci-14b, the second
most abundant sequence of the transcriptome (286
ESTs).

Additional putative venom proteins identified from the
vgORFs database

In addition to proteins identified by mass spectrometry,
several ESTs encoding putative venom proteins were
identified in our vgORFs database (Table 3). Five ESTs
encoded partial sequences of at least three different hya-
luronidase-like proteins that show significant sequence
similarities to venom hyaluronidases described from sev-
eral hymenopteran species [79]. One EST encoded a

Table 3 Additional putative venom proteins identified by similarity searches (BLASTP).

Sequence EMBL Acc. no. Best-matched Protein (Acc. no.) Species Id. (%) E-value
name

AG6YN21CM1 FN985040 Hyaluronidase Orancistrocerus drewseni 37 2e-16
[GenBank: ACD61711.1]

A4YEOBCM1 FN985041 Hyaluronidase Apis mellifera 46 7e-07
[GenBank:AAA27730.1]

A3YM10CM1 FN985042 Hyaluronidase 2 Apis cerana cerana 45 8e-36
[GenBank:AAK51798.2]

A2YM17CM2 FN985043 Hyaluronidase Anoplius samariensis 37 6e-13
[GenBank:BAF93867.1]

ATYB14CM3 FN985044 Hyaluronidase Apis mellifera 42 7e-43
[GenBank:AAA27730.1]

ATYI24CM3 FN985045 Allergen 5 Dolichovespula arenaria 48 7e-36
[GenBank:AAA28303.1]

Amino acid sequences encoded by the mentioned ESTs were compared to protein sequences deposited in NCBI nr database using BLASTP algorithm. Id.: identity
between the amino acid sequence deduced from a given C. inanitus transcript and the corresponding best-matched protein.
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venom allergen 5-like protein (Figure 5). Venom aller-
gen 5 proteins (also called antigens 5) are commonly
found in venoms of social Hymenoptera of the superfa-
milly Vespoidea [80]. They belong to a wider group of
proteins expressed by salivary and venom glands of dis-
tant animal species, recently gathered under the pro-
posed term of CAP proteins for “Cystein-rich secretory
proteins, Antigen 5 and Pathogenesis-related proteins”
[56]. CAP domain proteins are the dominant allergy-
inducing toxins in hymenopteran venoms [81], and a
related CAP protein has previously been identified from
the venom of M. hyperodae [33].

Conclusions

In this paper we report the identification of the majority
of venom proteins of the egg-larval endoparasitoid wasp
C. inanitus. We combined technical approaches which
we had successfully used to elucidate the origin of bra-
coviruses [82]. They are powerful tools to study evolu-
tionary and functional aspects of parasitoid-associated
factors. The most highly redundant set of sequences
encoded a protein (Ci-23a) that shared sequence similar-
ity with a venom protein previously identified in the
related species C. sp. near curvimaculatus [39]. These
venom proteins are thus likely to play a key role, as yet
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undetermined, in the life cycle of Cheloninae egg-larval
endoparasitoids. In addition, we have identified 453 uni-
genes that, for the most part, are likely to code for non-
secretory products of the venom glands.

A striking feature of C. inanitus venom was the
redundancy of components able to interact with chitin.
These components might be important when intermedi-
ate or late stages of eggs are parasitized. In this case, the
parasitoid larva has to bore itself into the host embryo
which is surrounded by an embryonic cuticle [83] and
chitinases might help to facilitate this process.

A number of C. inanitus venom proteins and enzymes
shared similarities to venom gland products from other
species that also belong to the Ichneumonoidea super-
family (M. hyperodae, M. aethiopoides, P. hypochon-
driaca). Sequence similarities were also found with
venom proteins from more distant apocritan species
representative from Chalcidoidea (N. vitripennis), Ves-
poidea (O. drewseni, Anoplius samariensis, Dolichove-
spula arenaria) and Apoidea (A. mellifera, Apis cerana
cerana) superfamilies (see additional file 9: Phylogeny of
the major superfamilies of Hymenoptera). The presence
of related venom proteins in species that do not share
the same ecological constraints and lifestyles can partly
be explained by independent recruitment of these
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proteins during species evolution [56]. Our phylogenetic
analyses suggest this is the case for the venom chitinases
of the Cheloninae species and the venom chitinase 5 of
N. vitripennis that were acquired independently. How-
ever, given that all modern Apocrita share a common
ancestral parasitic origin [84], it is also expected that
some lineages have conserved ancestral venom genes.
Our finding of mRNA coding for a member of the aller-
gen 5 proteins family in the venom glands of C. inanitus
appears to be an example of such conservation. The
sequence of the deduced protein is placed, with the
allergen 5 from the venom of M. hyperodae and N. vitri-
pennis in a monophyletic clade with respect to the phy-
logenetic tree of allergen 5 proteins found in vespid and
ant venoms (Figure 5). This result suggests that the
ancestral gene was expressed by the venom glands of
the common ancestor of Ichneumonoidea and Aculeata,
155 to 185 million years ago [84] and could have been
lost in Apoidea. Allergen 5 proteins would thus be
representative of one of the most ancient group of
insect venom proteins.

Another interesting point is the discovery of a yellow-
e3-like protein, Vem?7, in the venom of C. inanitus
which give more indications on the evolutionary history
of the yellow-e3 gene family among Hymenoptera. Inter-
estingly the recent genome sequencing of N. vitripennis
has revealed the largest number of yellow/MRJP genes
so far found in any insect, including an independent
amplification of MRJP-like proteins [85]. It would be
worthy to determine if some of these genes have a veno-
mous function in Nasonia species.

On a more general standpoint, once increasing num-
ber of comprehensive analyses will become available,
our work on the venom composition of C. inanitus will
contribute to retracing the evolution of venomous func-
tions within Hymenoptera by comparison of the veno-
mous arsenal of different species.

Methods

Insects

C. inanitus (Hymenoptera: Braconidae), a solitary egg-
larval parasitoid, was reared on one of its natural hosts
S. littoralis. Adult S. littoralis were kindly provided by
Syngenta AG, Stein, Switzerland. They were raised at
27°C at a LD photoperiod of 14 h:10 h and fed with an
artificial diet. Diet was prepared from dry powder (Beet
Army Worm Diet, Bio Serv, Frenchtown, New Jersey,
USA).

Collection of venom glands and RNA isolation

Female wasps were anaesthetized on ice for several min-
utes and then shortly rinsed in 70% ethanol. The
abdominal organs were gently pulled out with forceps
and the reproductive apparatus was placed in 50 pl
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sterile Insect Ringer. Then, the venom gland filaments
were dissected, washed in sterile Ringer, put into an
Eppendorf tube containing 200 ul of RNAlater™(Qiagen)
and stored at - 80°C until RNA isolation. The morphol-
ogy of the C. inanitus venom gland was previously
described by Kaeslin et al. [38]. For RNA isolation,
venom gland filaments from 60 female wasps were used;
no homogenization was necessary and 0.45 ml Lysis buf-
fer RLT (Qiagen) including 143 mM B-mercaptoethanol
was added followed by a proteinase K digestion as
described by Johner and Lanzrein [86]. The RNA isola-
tion (RNeasy Mini Kit, Qiagen) including an on column
DNase digestion (RNase-free DNase I) was performed
according to the manufacturer’s protocol. Total RNA
was eluted from the column with 100 pl RNase-free
water. A second digestion with DNase I was carried out
and the RNA was then extracted with acidic phenol; the
RNA was precipitated as described in [87]. The yield
was 9 pg of total RNA.

cDNA library construction

A ¢DNA library was constructed with the Creator
SMART cDNA Library Construction Kit (BD Bios-
ciences, Ozyme, France) following the supplier’s instruc-
tions. The first strand cDNA was synthesized from 481
ng of total RNA extracted from C. inanitus venom
glands. The cDNA were ligated into pDNR-LIB (BD
Biosciences Clontech) and ligation products were trans-
formed into ElectroMax DH10B-T1 Phage Resistant
Escherichia coli Competent Cells (Invitrogen, Fisher
Scientific, France).

Sequencing and ESTs quality control

To obtain an unbiased overview of the venom gland
transcriptome, colonies were amplified with the ¢29
DNA polymerase by rolling circle amplification. Sequen-
cing was done on a ABI sequencer using the standard
M13 forward primer and BigDye terminator cycle
sequencing kit (Applied Biosystems, Foster City, CA,
USA). Initially 384 clones from the library were analyzed
for the presence of venom proteins-related sequences.
These were detected and a sequencing of a total of 2500
clones was performed. The EST sequences obtained
were analysed for quality control; base calling step was
performed with the Phred program f(S9). Low quality
bases (phred score < 20) were masked and sequences
with more than 30% n-content, or shorter than 60 bp
(after vector/adaptator sequences removing) were
removed.

ESTs clustering and assembly

After discarding the poor-quality sequences, 2111 high-
quality ESTs were subjected to clustering using the
TIGR software TGI Clustering tool (TGICL) [88]. The
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clustering was performed by a modified version of
NCBI's megablast. EST sequences were assigned to clus-
ters based on identity: the clustering parameters were
98% minimum percent identity for overlaps, for a mini-
mum overlap length of 40 nt and a maximum length of
unmatched overhangs of 20 nt.

Sequences from each cluster were assembled into con-
sensus sequences called “contigs” using the CAP3
assembly program [89] available in TGICL. Sequences
from a cluster containing only one sequence were called
“singletons”.

ESTs annotation

To identify similarities with known proteins, the
sequences of contigs and singletons were searched using
the BLASTX algorithm against a local non-redundant
protein database (NR, NCBI) with a cut-off E-value of
le-5. To define the function of the contigs and single-
tons, we used the Gene Ontology (GO) controlled voca-
bulary [90] and more particularly GOSlim, a subset of
GO terms, which provides a higher level of annotations
and allows a more global view of the dataset. To this
end, an automated GO-annotation of the sequences of
contigs and singletons that showed a significant similar-
ity with a Uniprot entry was achieved using the Blast2go
software [91], with a stringency cut-off of le-6.

Collection of venom, SDS-polyacrylamide gel
electrophoresis and protein identification

Wasps were anaesthetized on ice and their venom appa-
ratus (venom gland filaments and reservoir) was dis-
sected. For each protein separation the venom of four
wasps was collected. The venom was collected by pier-
cing the reservoirs with a glass capillary. The sucked up
venom was collected in 10 ul sterile H,O and mixed
with 10 pl sample buffer (0.125 M Tris-HCl pH 6.5, 4%
(w/v) SDS, 10% (v/v) glycerol, 0.01% bromophenol blue,
5% (v/v) B-mercaptoethanol) and heated at 90°C for 6
minutes. For separation of proteins, precast linear gradi-
ent READY GEL (BIO RAD) 4-15%Tris-HCI gels with
10 wells were used. Two equivalents of venom (i.e. the
amount of venom collected from two reservoirs) were
loaded per lane. Electrophoresis was in 0.02 M Tris-HCI
pH 8.8, 0.19 M glycine, and 0.1% (w/v) SDS. A constant
voltage of 150 V was applied. As marker the High-
Range Rainbow™Molecular Weight Marker (GE Health-
care) was used. Staining was done with SERVA blue R
(Coomassie) Brilliant Blue R-250 according to the man-
ufacturer’s protocol. For protein identification, gel slices
were cut out, transferred into Eppendorf tubes and cov-
ered with 20 pl ethanol (20%). Treatment of gel slices
and nano-LC-MS/MS analysis was as described in [82].
CID spectra were extracted into data files by Bioworks
(Rev.3.3.1, Thermo Scientific) without any filters applied.
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Combined dta files were automatically matched to our
personal database of vgORFs by Phenyx software, Ver-
sion 2.5 (Genebio SA, Geneva, Switzerland). N-terminal
sequencing was done by Edman degradation.

Sequence analysis

Each cluster of nucleotide sequences was annotated by
being searched against GenBank NCBI database [92]
with BLAST algorithms. Since amino acid sequences are
more useful to detect homology over long periods, the
assembled sequences were translated on-line into the
correct open reading frames (ORFs) using ORFINDER
tool from NCBI [93] and compared to the sequences in
the NCBI nr and Swissprot protein databases. Sequences
that did not match were further compared against the
Genbank nucleotide databases (Blastn).

The signalP algorithm [94] was accessed online to pre-
dict the presence of signal peptides. The deduced amino
acid sequences of all the proteins identified by nano-LC-
MS/MS analysis were annotated by searching against Pfam
protein families database [95]. Modification, cleavage and
functional sites were predicted by the ELM server [96].

For amino acid sequence alignments, sequences were
retrieved from NCBI nr database, aligned with
sequences from C. inanitus with the program MAFFT
version 6.0 [97] and edited with the program Jalview
[98]. Alignment refinement was done with Gblocks soft-
ware (version 0.91b) [99]. Phylogenetic relationships
were estimated by Bayesian MCMC analyses using the
program MrBayes 3.1.2 [100] available online [101,102].
For each set of aligned sequences, we implemented a
mixed model of amino acid substitution, with gamma-
correction for heterogeneity rate among residues and
correction for invariable residues. Model of protein evo-
lution was selected using ProtTest 2.4 software [103].

Additional material

Additional file 1: Table of peptide identification. Peptidic sequences
obtained from the nano-LC-MS/MS analysis of venom proteins from C.
inanitus are shown in blue into the corresponding amino acid sequences
encoded by ORFs obtained from the transcriptome analysis of C. inanitus
venom glands.

Additional file 2: Amino acid sequence alignment of Ci-23a and the
venom protein from C. sp near curvimaculatus. The amino acid
sequence of the venom protein from C. sp near curvimaculatus was
retrieved from GenBank [GenBank:ACI70208.1]. The position of a potential
cleavage site for both N-arginine dibasic convertase and subtilisin-like
proprotein convertase is boxed in black in the Ci-23a sequence. Red and
green arrows indicate the beginning of the predicted signal peptide and
mature protein sequences of Ci-23a, respectively. Serine residues that
potentially serve as glycosaminoglycan attachment sites are indicated by
blue triangles under the sequence of the venom protein from C. sp near
curvimaculatus. Sequence printed in bold was also obtained by N-
terminal sequencing of the Ci-23a protein.

Additional file 3: Amino acid sequence alignment of representative
chitinases from different insect species. The sequence of the Ci-45
venom chitinase from C. inanitus was aligned with sequences of
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chitinases from the following species: the parasitic wasps C. sp. near
curvimaculatus [GenBank:AAA61639.1], T. nigriceps [GenBank:AAX69085.1]
and N. vitripennis [GenBank:NP_001128139.2] and the beetle Monochamus
alternatus [GenBank:BAF49605.1]. The four conserved regions are boxed.
Black triangles indicate catalytic residues. Locations of the glycosy!
hydrolase family 18 and chitin-binding Peritrophin-A (CBM_14) domains
are indicated by blue and green lines, respectively. Red and green arrows
indicate the beginning of the predicted signal peptide and mature
protein sequences of Ci-45, respectively. Sequence printed in bold was
also obtained by N-terminal sequencing of the Ci-45 protein.

Additional file 4: Amino acid sequence alignment of Imaginal disc
Growth Factors (IDGFs)-like proteins from different insect species.
The sequence of the Ci-48b from C. inanitus was aligned with sequences
from the following species: N. vitripennis [GenBank:XP_001599305.1], A.
mellifera [GenBank:XP_396769.2] and Manduca sexta [GenBank:
ACW82749.1]. The conserved region Il is boxed. Triangle indicates a
glutamine residue replacing, in these proteins, a glutamic acid residue of
functional importance. Location of the glycosyl hydrolase family 18
domain is indicated by a blue line. Red and green arrows indicate the
beginning of the predicted signal peptide and mature protein sequences
of Ci-48b, respectively. Sequence printed in bold was also obtained by
N-terminal sequencing of the Ci-48b protein.

Additional file 5: Amino acid sequence alignment of Ci-23c, Ci-220
and AD-873. The sequences of the Ci-23c and Ci-220 proteins from C.
inanitus were aligned with the sequence of the AD-873 protein from
Anopheles darlingi [GenBank:ACI30179.1]. Location of the chitin-binding
Peritrophin-A (CBM_14) domains of Ci-23c are indicated by green lines
under the alignment. Serine residues that potentially serve as
glycosaminoglycan attachment sites are indicated by blue triangles. Red
and green arrows indicate the beginning of the predicted signal peptide
and mature protein sequences of Ci-23c, respectively.

Additional file 6: Partial amino acid sequence alignment of Ci-300
with insect metalloproteases. The sequence of Ci-300 was aligned with
sequences of metalloproteases from the following species: N. vitripennis
[NCBI Reference Sequence:XP_001604431.1] and [NCBI Reference
Sequence: NP_001155006.1], P. hypochondriaca [GenBank:CAD21587.1]
and E. pennicornis [GenBank:ACF60597.11. The Zn?*-binding motif of
HExxHxxGxxH featuring known metalloproteases’ partial alignment is
boxed in black.

Additional file 7: Amino acid sequence alignment of Ci-40a with
serine protease homologs (SPHs). The partial sequence of Ci-40a was
aligned with sequences of SPHs from the following species: A. mellifera
[NCBI Reference Sequence:XP_623150.2], C. rubecula [GenBank:
AAP49428.11, N. vitripennis [NCBI Reference Sequence:NP_001166254.1]
and [NCBI Reference Sequence:NP_001155014.1] and A. aegypti [NCBI
Reference Sequence:XP_001661226.1]. The location of the trypsin-like
serine protease domain of Ci40a is indicated by a blue line under the
alignment.

Additional file 8: Sequence similarities between Ci-48a, Vem17 and
Ci-80b and proteins similar to isoforms of lethal (1) G0193.
Sequences similarities were determined by comparing the amino acid
sequences of Ci-48a, Vem17 and Ci-80 to protein sequences deposited in
NCBI nr database using BLASTP algorithm. The percentage of identity
and E-value are given for each comparison. E: embryo; n.d.: not
determined; n.s.: no significant similarity found (E-value> 1e-04); SG:
salivary gland; VG: venom gland.

Additional file 9: Phylogeny of the major superfamilies of
Hymenoptera. Family and species names discussed in the present paper
are indicated on the right side of the figure. The phylogeny of
Hymenoptera shown on the left side of the figure is adapted from [9].
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