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Abstract

Background: Tandem mass spectrometry (MS/MS) has become a standard method for
identification of proteins extracted from biological samples but the huge number and the noise
contamination of MS/MS spectra obstruct swift and reliable computer-aided interpretation. Typically,
aminor fraction of the spectra per sample (most often, only a few %) and about 10% of the peaks per
spectrum contribute to the final result if protein identification is not prevented by the noise at all.

Results: Two fast preprocessing screens can substantially reduce the haystack of MS/MS data. (1)
Simple sequence ladder rules remove spectra non-interpretable in peptide sequences. (2) Modified
Fourier-transform-based criteria clear background in the remaining data. In average, only a
remainder of 35% of the MS/MS spectra (each reduced in size by about one quarter) has to be
handed over to the interpretation software for reliable protein identification essentially without
loss of information, with a trend to improved sequence coverage and with proportional decrease of
computer resource consumption.

Conclusions: The search for sequence ladders in tandem MS/MS spectra with subsequent noise
suppression is a promising strategy to reduce the number of MS/MS spectra from electro-spray
instruments and to enhance the reliability of protein matches. Supplementary material and the
software are available from an accompanying WWW/-site with the URL http://mendel.bii.a-star.edu.
sg/mass-spectrometry/MSCleaner-2.0/.
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Background

Liquid chromatography (LC) coupled with tandem mass
spectrometry (MS/MS) is the method of choice for the
identification of proteins extracted from biological
samples. The standard procedure of post-MS/MS data
processing involves computer-aided interpretation of the
measured spectra with MASCOT [1], SEQUEST [2] or
some other software for comparing theoretical spectra
calculated for database sequences with the experimental
ones. But modern instruments generate extremely large
sets of MS/MS spectra (in the order of 10000 per
sample), which are heavily contaminated with different
types of background and noise. In addition to b-, y- and
their derivative ions from peptides, spectra contain
repeated shifted signals due to the natural isotope
distribution (isotope clusters), multiply charged replicas,
peaks from unknown fragmentation pathways, sample-
specific or systematic chemical contaminations and
random noise from the electronic detection system.

Thus, the spectra consist mostly of background; typically,
only a few percent of the spectra recorded have signals from
target protein fragments and just about 10% of the peaks in
such a spectrum contribute to the peptide identification.
Thus, computer resources in mass spectrometry depart-
ments all over the world are mostly spent on analyzing non-
relevant data if the identification of the protein with
significance is possible within the background at all. This
strategy clashes with limitations in compute server capacity
in proteomics laboratories and seriously limits the access of
less generously equipped teams to the field.

With the broad availability of accurate MS/MS instruments
with resolution in the order of tenths of a Dalton, automatic
background removal procedures before interpretation soft-
ware application became possible [3-5]. Various spectrum
pre-processing rules, deconvolution of multiply charged
peaks and deisotoping procedures have been described
[6-15]. It should be noted that many spectra do not contain
peaks from peptide fragmentations or are extremely noisy
and, therefore, are non-interpretable into peptide sequences
reliably. Thus, the exclusion of non-interpretable spectra is a
valid strategy for reducing the computational load. For a
well performing method, one would desire it to remove
clearly more than half or three quarters of the experimental
MS/MS spectra and, essentially, to keep all interpretable
ones. At the same time, computation time for this task
should be negligible or, at least, small compared to the
processing time used by an interpretation program such as
MSACOT that is saved by unselecting a large spectra subset.

Published approaches to this problem differ in the
criterion for spectrum selection, either with empirically
defined score functions or with a classifier generated by
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automated learning approaches [16-23]. Although many
of these methods apply quite sophisticated criteria, they
either are not efficient filters or suffer from a substantial
fraction of unselected but nevertheless interpretable MS/
MS spectra (e.g., loss of ~10% of the interpretable spectra
for removing ~75% of the total number spectra in
Figures 2 and 3 of Bern et al. [18]). Thus, substantial
computational load reduction is traded in for the risk
not to find the desired peptide hit. Consequently, none
of the published techniques has routinely entered the
laboratories so far.

In the attempt to develop an alternative methodical
approach, we propose to return to ideas from the
beginning of mass spectrometry of proteins. Originally,
interpretation of an MS/MS spectrum meant experts
trying to manually find sequence ladders (i.e., sets of
peaks with amino acid mass spacing between them)
among the high-intensity peaks. The concept of search-
ing mainly among the higher intensity peaks is still
reminiscent in the formulas for evaluating the signifi-
cance of a peptide hit as used in MASCOT [1]. Indeed, a
peptide the theoretical fragmentation spectrum of which
matches exclusively low intensity peaks cannot serve as
convincing explanation of the experimental data.

In this work, we explore the idea that at least some short
oligopeptide segment of a significant peptide hit should
be fully matched by the higher intensity peaks in the
spectrum. In an efficient implementation, the computa-
tional costs are low if one tries just to check whether
small peptide ladders of predefined length do occur in a
MS/MS spectrum at all among the top fraction of most
intense peaks. The identity of the oligopepetide is not
important in this context; it is rather questioned whether
such an amino acid chain theoretically exists at all. It is
reasonable to suggest that the spectrum is probably not
interpretable into a peptide sequence with statistical
significance if not even a short oligopeptide sequence is
matched by this criterion.

After this unselecting procedure, the remaining spectra
still contain considerable background in the typical case.
In a previous publication [24], we developed an
approach based on techniques from electrical signal
processing. Periodical band-reject and high-frequency
filters as well as correlation analyses with etalons of
multiply charged clusters can successfully be used for
background suppression. In this work, we describe a
workflow involving sequence ladder and improved
signal processing criteria on a large MS/MS dataset
exemplified in the MS Cleaner version 2.0 that efficiently
reduces the number and the size of spectra and,
subsequently, dramatically shrinks the computing time
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used by the interpretation software. To emphasize, the
approach described in this work is thought to increase
the efficiency of protein identification. It is not con-
sidered to process MS/MS data that is intended to be
screened for protein posttranslational modifications.

Methods

Mass spectrometry

Commercially acquired proteins (o.-amylase, amyloglu-
cosidase, apo-transferrin, B-galactidase, carbonic anhy-
drase, catalase, phosphorylase B, glutamic
dehydrogenase, glutathione transferase, immunoglobu-
lin y, lactic dehydrogenase, lactoperoxidase, myoglobin)
were used, each in two independent preparations (each
with a concentration of 100 fmol). For chromatography,
a UltiMate Plus Nano-LC system. LC-Packings - A Dionex
Co was used. Chromatographic mobile phases were:
loading mobile phase 0.1% TFA in water, separation
mobile phase A 5% acetonitrile in 0.1% aqueous formic
acid and mobile phase B 80% acetonitrile, 20% water
with 0.08% formic acid. The sample was loaded for 10
min onto a reversed phase trap column (PepMap C18,
300 pm ID x 5 mm length, 5 pm particle size, 100 A pore
size, LC Packings - A Dionex Co., not online with the
separation column) at a flow rate of 20 pl/min and
washed free of ion pairing agents and other impurities.

The gradient for separation of analytes starts at 10 min when
the trap column is switched online with the separation
column (PepMapC18, 75 pm ID x 15 cm length, 3pm
particle size, 100 A pore size) at 0.275 pl/min. The gradient
used starts at 100% mobile phase A and changes to 50%
mobile phase B from 10 minutes (trap column and
separation column online) to 40 minutes. Additional
wash step of 90% mobile phase B is incorporated in order
to clean the separation column and elute hydrophobic
analytes. After the separation, the trap column is switched
offline and equilibrated with loading mobile phase. The
analytical nano column is equilibrated with separation
mobile phase A. The mass spectrometric data are only
recorded for the time both columns are online.

The mass spectra were recorded with a Thermo Finnigan
LTQ (positive nano-ESI mode, ionizing spray voltage:
1.5 kV, enhanced mass-spec full-scan range: 220 - 2000
amu). The much smaller datasets for bovine serum
albumin (BSA), yeast alcohol dehydrogenase (ADH) and
human transferrin (TRF) recorded with a 3D IT mass
spectrometer (model DecaXP Thermo Finnigan) were
reused from our previous work [24].

File processing and MSIMS data analysis
The MS/MS output was converted into mgf-files (MAS-
COT generic format). Each dataset was then separately
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processed using the MS Cleaner program (with default
internal parameters), generating two new mgf-files with
cleaned and bad (non-interpretable) spectra respectively.
The MASCOT search parameters were the same in all
runs (enzyme: trypsin; fixed modifications: carbamido-
methyl (at cysteines) for BSA, ADH and TRF, carbox-
ymethyl (at cysteiness) for other proteins; variable
modifications: oxidation (at methionines); peptide
charges: 1+, 2+ and 3+, mass values: monoisotopic;
protein mass: unrestricted; peptide mass tolerance: + 2
Da; fragment mass tolerance: + 0.8 Da; max. missed
cleavages: 1). The MASCOT search results output html-
file was formatted with standard scoring, a significance
threshold of p < 0.05, and an ion score cut-off for each
peptide of 30. The non-redundant protein database
(NCBI) was used (both for the local PC MASCOT
installation and for the MASCOT Linux cluster).

In this work, we compare the MASCOT interpretation
results of non-pre-processed tandem MS datasets with
those obtained in a two-step preprocessing. First, each
spectrum (.dta-file) is analyzed with the sequence ladder
algorithm. Only those spectra that pass this test, are then
processed with the background removal routines
described in our previous publication [24].

The sequence ladder algorithm

For this algorithm, two parameters are critical - the values
n (in amino acid residues), the minimal length of the
sequence ladder, and s (in per cent), the fraction of peaks
from the spectrum that is considered of high intensity.
The number n can theoretically be just one (i.e., we would
require just two high intensity peaks that are spaced by the
mass difference corresponding to the mass of one of the
amino acids); yet, larger values of n (for example, between
two and six residues) represent stricter requirements to
the sequence ladder. The other parameter s restricts the
search space. For this purpose, the peaks in the spectrum
considered (i.e., in one .dta-file) are sorted by intensity
into a list with descending order. Only the first part of this
list (the fraction s of the total set) is used for searching
sequence ladders. The condition of s = 100% implies that
all peaks are included; yet, considerably smaller values of
s are desirable since they would help unselecting more
non-interpretable spectra. Once the set of high-intensity
peaks is defined, their pair-wise mass differences are
compared in a systematic enumeration with the masses of
amino acids residues (to select pairs of peaks separated by
the mass of any of the amino acids within a user-defined
accuracy) and it is tested whether a subset of peaks forms a
sequence ladder of the required minimal length. If at least
one such ladder is found, the search is stopped and the
procedure is restarted with the next tandem MS spectrum
in the dataset.
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Table I: Influence of background removal on the recovery of BSA, ADH and TRF in MS/MS spectra of 100 fmol test samples. The
original number of MS/MS spectra for the BSA (bovine serum albumine), ADH (yeast alcoholdehydrogenase) and TRF (human
transferring) datasets (recorded on a DecaXP machine) are 2679, 2325 and 2608 respectively. The intensity threshold s (column 3)
describes the search of the sequence ladder (length n in column 2) within the 15%, 20%, 25% or 30% top peaks (100% - all peaks are
considered). The following three columns show the MS Cleaner output - number of spectra with background removal, number of
unselected spectra and the MS Cleaner CPU time on a single-processor Windows XP computer (Pentium IV 2.4 GHz; to get exact
measurements of computation time, we did not use the cluster version). The remaining four columns present the MASCOT output -
the CPU time on the same machine, the protein score, the number of spectra matching peptides in a MASCOT search and the final
sequence coverage. For each dataset, the first line shows the results for the case when MS Cleaner is not used for pre-processing and
the MS/MS data is immediately interpreted by MASCOT.

protein sequence intensity cleaned bad MS Cleaner MASCOT MASCOT queries sequence
ladder threshold spectra spectra time [min] time [min] score matched coverage
length n s [%]

BSA 0 100 - - - 6l 586 89 55
3 100 1664 1015 3.92 44 720 91 57
3 15 390 2289 1.21 17 1991 84 52
3 20 490 2189 1.40 21 2108 87 57
3 25 601 2078 1.6l 26 2114 89 57
3 30 688 1991 1.75 29 2114 90 57
4 100 940 1739 3.80 36 2108 91 57
4 15 260 2419 0.91 12 1875 78 47
4 20 321 2358 1.06 14 1911 80 47
4 25 380 2299 1.25 18 2114 86 57
4 30 441 2238 1.30 19 2114 89 57
5 100 593 2086 3.82 26 2108 91 57
5 15 174 2505 0.60 9 1579 60 41
5 20 232 2447 0.85 I 1809 72 44
5 25 28I 2398 1.00 13 1963 8l 49
5 30 313 2366 0.85 14 2058 86 54

ADH 0 100 - - - 64 242 39 39
3 100 1446 879 4.15 45 327 34 39
3 15 269 2056 0.88 12 673 29 35
3 20 347 1978 1.10 13 696 31 37
3 25 440 1885 1.33 17 697 32 37
3 30 697 1628 1.53 20 697 33 37
4 100 902 1423 4.15 35 733 34 39
4 15 173 2152 0.58 7 562 26 28
4 20 216 2109 0.71 9 673 30 35
4 25 271 2054 0.90 12 607 28 33
4 30 325 2000 1.05 13 697 32 37
5 100 594 1731 4.20 23 712 33 39
5 15 94 2231 0.35 5 311 15 21
5 20 125 2200 0.46 6 366 17 25
5 25 145 2180 0.53 7 434 19 26
5 30 186 2139 0.66 9 589 24 31

TRF 0 100 - - - 52 588 86 47
3 100 1587 1021 3.57 42 768 87 49
3 15 373 2235 1.00 17 1988 86 49
3 20 485 2123 1.23 20 1988 86 49
3 25 568 2040 1.36 24 1998 87 49
3 30 639 1969 0.78 27 1998 87 49
4 100 864 1744 3.62 34 1973 87 49
4 15 231 2377 0.70 I 1987 8l 49
4 20 298 2310 0.86 13 1988 84 49
4 25 360 2248 1.00 16 1988 85 49
4 30 414 2194 1.12 19 1998 87 49
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Table I: Influence of background removal on the recovery of BSA, ADH and TRF in MS/MS spectra of 100 fmol test samples. The
original number of MS/MS spectra for the BSA (bovine serum albumine), ADH (yeast alcoholdehydrogenase) and TRF (human
transferring) datasets (recorded on a DecaXP machine) are 2679, 2325 and 2608 respectively. The intensity threshold s (column 3)
describes the search of the sequence ladder (length n in column 2) within the 15%, 20%, 25% or 30% top peaks (100% - all peaks are
considered). The following three columns show the MS Cleaner output - number of spectra with background removal, number of
unselected spectra and the MS Cleaner CPU time on a single-processor Windows XP computer (Pentium IV 2.4 GHz; to get exact
measurements of computation time, we did not use the cluster version). The remaining four columns present the MASCOT output -
the CPU time on the same machine, the protein score, the number of spectra matching peptides in a MASCOT search and the final
sequence coverage. For each dataset, the first line shows the results for the case when MS Cleaner is not used for pre-processing and

the MS/MS data is immediately interpreted by MASCOT. (Continued)

5 100 540 2068
5 15 164 2444
5 20 194 2414
5 25 245 2363
5 30 286 2322

3.63 23 1973 87 49
0.55 9 1785 68 45
0.6l 10 1890 74 47
0.75 12 1957 80 48
0.86 14 1968 84 48

Modifications of the noise detection algorithm

If a spectrum has passed the sequence ladder test, it is
handed over to a series of routines for noise and
background detection. The procedures for removing
multiply charged peak clusters with the etalon method
and for the suppression of high-frequency noise with a
low-pass filter after Fourier transformation have been
described in a previous publication [24] in detail and
have been applied without changes here.

The algorithm for the removal of latent periodic back-
ground (including deisotoping) received another option
with respect to the determination of the base frequency
of the noise. We observed that the determination of the
base frequency fp in the first power spectrum (see
sections 3.3 and 3.5 in ref. [24]) is, in rare cases, not
always as unambiguous as in Figure 2A of ref. [24] since
several almost equally intense peaks may appear in the
second-level Fourier transform. Wrong base frequency fp
detection leads to wrong multi-band rejection filter
creation and a few interpretable spectra can be lost
after applying this technique. This ambiguity can be
avoided by not choosing the frequency of the most
intense peak in the second-level Fourier transform.
Rather, we propose to iterate through all possible base
frequencies detected in this spectrum. For each of these
frequencies, theoretical maxima and minima expected in
first level Fourier transform are calculated. Best matching
between the theoretical and experimental maxima and
minima (see Figure 3 in ref. [24]) confirms the right base
frequency. We call this method “soft recognition” of
latent periodic noise which should be applied if minor
improvements in sequence coverage (in rare cases, a
single additional peptide) are more important than data
size reduction; yet, it leads to an increment of about 10%
of the computation time compared with the previous
method [24].

Standalone implementation and cluster version

We created two implementations for MS Cleaner 2.0. A
single-machine Windows version was used for most of
the computations in this article and it is available for free
download at the associated WWW site. A Unix-Port of
the MS Cleaner 2.0 software is deployed in a clustered
environment in order to guarantee scalability. The
spectrum file is partitioned into workpackages, which
are then handed over to a batch queuing system for
scheduling on available nodes. Each node processes the
spectra in its workpackage and transfers the results back
to the controlling application where they are post-
processed into the final good/bad spectra output. This
version is the engine behind the MS Cleaner 2.0 WWW
Server.

WWW Supplement

At the WWW-site http://mendel.bii.a-star.edu.sg/mass-
spectrometry/MSCleaner-2.0/, supplementary resources
are available: all experimental mass-spectrometry data
used in this work, the processed spectra, the user
manual, default parameter datasets and a free down-
loadable Windows version of the program MSCleaner
2.0 as well as free access to a MSCleaner 2.0 WWW server
accessing a local Linux cluster. Other implementations
can be obtained on request.

Results and discussion

For the initial determination of optimal parameter
ranges (sequence ladder length n and peak intensity
threshold s), we used the datasets for bovine serum
albumin (BSA), yeast alcohol dehydrogenase (ADH) and
human transferrin (TRF) from our previous work [24]
since they are quite small (less than 3000 .dta-files per
set). We checked the influence of the preprocessing
procedures on the spectrum interpretation with the
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Table 2: Performance of the MSCleaner version 2.0 over a large test set.

Al A2 A3 A4 A5 A6 A7 A8 A9 AI0 AIl AlI2 AI3 Al4 AI5 Alé
alphaAmyl_col| 10108 633 24 1130 667 24 3165 6007 667 24 513 5109 667 24 18.07
alphaAmyl_col2 10184 698 35 982 780 35 3420 5022 780 35 19.05 2025 780 35 2276
AmylGlu_coll 10030 736 28 1326 761 28 2840 7924 76l 28 866 7358 76l 28 10.63
AmylGlu_col2 9870 801 36 1331 860 37 2950 7262 80 37 1170 6395 860 37 1429
apo_coll 10032 2606 63 1172 2814 63 3076 63.10 2814 63 1393 5449 2814 63 1678
apo_col2 10090 2571 60 1213 2761 60 3295 53.12 276l 60 1753 4432 276l 60 21.03
betaGal_coll 10324 1459 56  7.17 1567 57 3498 4806 1567 57 2205 4053 1567 57 24.60
betaGal_col2 10368 1309 51 812 1508 56 3671 4290 1454 55 2476 33.10 1454 55 286l
CarAnly_coll 9946 586 49 1235 616 49 2635 9031 573 49 365 8494 607 49 548
CarAnly_col2 9534 582 52 1340 616 52 2627 8607 616 52 508 7844 616 52 7.6
Cat_coll 10098 1798 61 1113 188 61 3088 6726 1879 61 13.13 5789 1879 &1 1650
Cat_col2 10034 1567 65 11.78 1693 65 31.90 59.50 1693 65 1591 4855 1693 65  19.56
phosB_coll 10118 2780 59 1030 3079 61 3513 6349 3014 60 1426 5446 3047 61 1725
phosB_col2 10096 2655 61 1052 3116 65 3258 53.96 3084 65 1758 4431 3116 65 2I.16
GluDey_coll 10006 892 36 1129 98 36 2730 7955 98 36 775 7342 98 36 971
GluDey_col2 9886 850 34 I1.8] 962 34 2873 7251 962 34 10.13 6225 962 34 [35]
GluTra_coll 10022 351 25 1036 389 25 286l 7164 348 25 1025 6278 389 25 [4.30
GluTra_col2 10156 341 33 9.8 384 33 3131 6115 384 33 1425 4959 384 33 28I
Immo_col 10330 506 35 927 565 35 3620 4230 565 35 2495 3444 565 35 27.66
Immo_col2 10334 356 66 861 500 66 3805 3706 500 66 2731 2847 500 66 303l
LacDe_coll 10286 1549 58 1036 1694 58 3536 5320 1694 58 2003 4486 1694 58 23.I5
LacDe_col2 10250 1346 54 9.07 1483 54 3648 40.16 1483 54 2560 31.67 1483 54 2831
LactoPee_coll 10242 1613 45 13.16 1764 45 3478 62.12 1756 45 1591 5237 1764 45 1953
LactoPee_col2 10402 1679 43  9.09 1890 44 3518 5170 1890 44 2031 4176 1890 44 2385
Myo_coll 9958 561 66 11.67 594 66 2726 8542 594 66 546 7925 594 66  7.45
Myo_col2 9744 530 66 1215 584 66 2801 8083 584 66 695 7092 584 66 1035

Al name of test set (.mgf file; see Methods), A2 total number of spectra (.dta files), A3 MASCOT score of top protein hit with the original .mgf file
(without application of MS Cleaner), A4 sequence coverage (in %) without application of MS Cleaner, A5 fraction of non-interpretable “bad” spectra
found with sequence ladder length n = 4 among all peaks (intensity threshold s = 100%) A6 MASCOT score of the top protein hit for this search, A7
sequence coverage (in % of the whole protein length) for this search, A8 MS Cleaner processing time (in min) on a PC with a single Pentium IV (to
achieve exact time consumption values, we did not use the cluster version and stopped the “soft frequency recognition option”) A9 fraction of non-
interpretable “bad” spectra found with sequence ladder length n = 4 among the s = 20% most intense peaks Al0 MASCOT score of the top protein
hit for this search, Al | sequence coverage (in % of the whole protein length) for this search, A12 MS Cleaner processing time (in min), Al3 fraction
of non-interpretable “bad” spectra found with sequence ladder length n = 4 among the s = 25% most intense peaks (in % of A2; i.e., of all spectra) Al4
MASCOT score of the top protein hit for this search, Al5 sequence coverage (in % of the whole protein length) for this MASCOT search, Al6 MS
Cleaner processing time on the same machine as described in the legend of Table | (in min). The sequence ladder criterion (minimal ladder length 4
with varying peak intensity thresholds) and the noise suppression algorithms of MS Cleaner 2.0 have been applied over a large set of tandem MS
results. For each of the test proteins, two independent sample preparations and dataset recordings (marked with appendices _coll and _col2 in the
dataset name) were carried out: a.-amylase, amylogucosidase, apo-transferrin, 3-galactidase, carbonic anhydrase, catalase, phosphorylase B, glutamic
dehydrogenase, glutathione transferase, immunoglobulin vy, lactic dehydrogenase, lactoperoxidase, myoglobin). For these datasets, the MASCOT
interpretation was carried out on a cluster in parallel with other jobs; therefore, no computation time is provided.

MASCOT tool. A systematic analysis was performed;
sequence ladder length was tested with values n between
2 and 6 and the high-intensity threshold s was varied
from 5% to 35% (the sequence ladder was searched for
only among the 5%, 10%, 15%, ..., or 35% of most
intense peaks). The goal is to have as many unselected
“bad” spectra as possible (the savings in computing time
are about proportional to the fraction of spectra that is
not handed over to the spectrum interpretation pro-
gram) without losses of (i) MASCOT score, (ii) spectra
giving peptide matches and (iii) sequence coverage.

Due to the space limitation, only the results of a
parameter subset are presented (Table 1). As expected,
the number of detected bad spectra increases with
growing sequence ladder length n and decreasing

intensity threshold s. We observe that the MASCOT
score of the non-preprocessed data (586 for BSA, 224 for
ADH and 588 for TRF; see rows with n = 0 and s = 0%) is
considerably smaller than that of the cleaned datasets
(often, by a factor of 2-5) regardless of the severity of
data pre-processing. Thus, the reliability of the top
protein hit in the database searches greatly increases by
the background reduction, both by discarding bad
spectra and by removing noise from spectra that can be
interpreted in peptides. This alone is an interesting
result.

The sequence coverage is more sensitive to the pre-
processing parameters. For a sequence ladder length of
n = 5 residues, we see a trend that sequence coverage is
slightly decreased with respect to that of unprocessed data

Page 6 of 8

(page number not for citation purposes)



BMC Genomics 2010, 11(Suppl 1):S13

(41-54% instead of 55% for BSA, 21-31% instead of 39%
for ADH, 45-48% instead of 47% for TRF). Sequence
coverage is about the same or even slightly higher as for
non-preprocessed data for sequence ladder lengths n = 3
and n = 4 and intensity thresholds s at and above 20%.
With regard to the number of spectra that lead to a
significant peptide match in the MASCOT search, the
settingsn=3,s=20%; n=3,s=25%; n=4,s=20% and
n=4,s=25% are close to reproduce the result achieved
with the unprocessed data for the BSA and TRF cases.
Surprisingly, the number of peptide matches is slightly
higher for s = 100% (all peaks are included in the
sequence ladder search) than for the datasets without
preprocessing. Thus, the number of falsely rejected
spectra by the sequence-ladder algorithm is essentially
zero in these two cases. For ADH, the number of spectra
matching peptides is always somewhat lower if the
tandem MS/MS data is pre-processed, although MASCOT
score and sequence coverage do not suffer from choices of
n =3, or n = 4 and the higher values of s.

To detect a considerable fraction of the bad spectra and to
reduce the time for interpretation by MASCOT, these results
support the selection of a sequence ladder length equal to n
= 4 and an intensity threshold of s = 20%. If the sequence
coverage is more important than computational time
savings, softer parameters can be chosen, for example with
an intensity threshold of s = 25%. With these parameters, it
is possible to eliminate more than 80% of all spectra in the
datasets BSA, ADH and TRF by declaring them non-
interpretable in oligopeptides (see Table 1). Minor sequence
coverage loss, if at all observed, does not affect the
interpretation result. Yet, the total computing time required
for interpretation narrows up to only 20% of the original
value. The computing time consumption for MS Cleaner
alone in such a setting is ~2% of MASCOT time for non-
preprocessed data (see Table 1); i.e., it is essentially
negligible.

For further analysis of the algorithm's performance, large
MS/MS datasets are necessary that are recorded from
samples with known protein composition. For this
purpose, we used solutions of commercially available
proteins at 100 fmol concentration. The behavior of the
MS Cleaner algorithms was tested over this large dataset
of about 270000 spectra from 26 samples of 13 proteins
(Table 2) generated by an LTQ device. We used sequence
ladder length n = 4 with intensity thresholds s = 20% and
s = 25% and contrasted the results both (i) with the
MASCOT-based interpretation of non-preprocessed data
and (ii) with sequence ladder 4 and the inclusion of all
peaks (s = 100% threshold). We find that, as a rule,
preprocessing reproduces or slightly improves the

http://www.biomedcentral.com/1471-2164/11/S1/S13

sequence coverage relative to the non-preprocessed
data (100-110% for threshold s = 100% (columns A4
and A7), 100-108% for thresholds s = 20% and s = 25%
(columns A4, A1l and Al15)). Thus, the number of
falsely rejected spectra by the sequence-ladder algorithm
is essentially zero in these examples. This clear trend says
that the preprocessing algorithm proposed here performs
even better if it is supplied with more accurate data from
the LTQ instrument as compared with those from the
DecaXP. There is a trend for increased MASCOT scores
(103-140% for threshold 100% (columns A3 and AG6),
98-140% for s = 20% (A3 and A10) and 103-140% for s
=25% (A3 and A14) with an average of 110% regardless
of threshold. The reduction of the dataset by unselecting
spectra is significant (on average, 11% for threshold
100% (column A5), 63% for threshold s = 20% (column
A8) and 53% for threshold s = 25% (column A13)). This
means that the interpretation time with MASCOT
reduces in a similar proportion.

To summarize, the results support that testing spectra for
interpretability in oligopeptides is a useful criterion for
dataset reduction in protein mass spectrometry if a sequence
ladder of a tetrapeptide segment is searched for among the
20% (or 25%) most intense peaks. This preprocessing is
accompanied by an increase in MASCOT score and more
significant top protein hits and it does not significantly
affect sequence coverage. Running MS Cleaner 2.0 as a
standard preprocessing step in peptide tandem MS data
analysis for protein identification is recommended.

The idea of using short series of sequence ions (peptide
sequence tags) as a specific identifier that speeds up
searches for matches between spectra and sequences in
databases (either by searching the database with the tag
or by creating sequence tag database filters in order to
reduce the size of a database via a preprocessing step) is
extensively explored in the literature [25-27]. It is
interesting to see that this simple idea applied to the
problem of recognizing spectra non-interpretable in
oligopeptides greatly reduces the complexity of analyz-
ing protein mass spectrometry data.

List of abbreviations used

CID: collision-induced dissociation; Da: Dalton; ESI:
Electrospray ionization; LC-MS/MS: liquid chromatogra-
phy coupled with tandem mass spectrometry; MS: mass
spectrometry; MS/MS: tandem mass spectrometry; PS:
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