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Abstract

Background: The interaction of a multiplicity of scales in both time and space is a fundamental
feature of biological systems. The complementation of macroscopic (entire organism) and
microscopic (molecular biology) views with a mesoscopic level of analysis able to connect the
different planes of investigation is urgently needed. This will allow to both obtain a general frame of
reference for rationalizing the burden of data coming from high throughput technologies and to
derive effective operational views on biological systems.

Results: The network paradigm in which microscopic level elements (nodes) are each other
related by functional links so giving rise to both global (entire network) and local (specific) behavior
is a promising metaphor to try and develop a statistical mechanics inspired approach for biological
systems. Here we show the application of this paradigm to different systems going from yeast
metabolism to murine macrophages response to immune stimulation.

Conclusions: The need to complement the purely molecular view with mesoscopic approaches
is evident in all the studied examples that in turn demonstrate the untenability of the simple ergodic
approach dominant in molecular biology in which the data coming from huge ensemble of cells are
considered as relative to a single ‘average’ cell.

Background of the described system (genes, proteins, metabolites and
The classical form in which biological systems are  so forth) and the edges connecting them some rules of the
described (being they metabolic charts, gene expression  kind ‘is transformed into’ or ‘is increased by’ [1,2].
regulation pathways, protein-protein interaction maps,

food webs and so forth) corresponds to a set of nodes  With the development of high throughput methodolo-
linked by edges in which the nodes are the basic elements  gies these graphs became larger and larger and asked for
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some form of global analysis in order to get rid of their
wild multiplicity.

The approach considering the graph as a system of
differential equations in which an entering stimulus,
correspondent to a modification of a peripheral node of
the network, is progressively processed according to the
wiring architecture and kinetics constraints of the
network itself, while being the most potentially exhaus-
tive avenue of research is severely hampered, in the case
of biological systems, by a lot of problems. First of all the
practical impossibility to attach to the whole set of edges
reliable kinetic-like weights for quantifying the entity of
the between elements correlation. Only in the case of
very small networks this can be done by means of the
statistical estimation of the parameters from experimen-
tal data, but it is well known that in physiological
settings these weights can vary of orders of magnitude
[3]. Moreover in many cases we cannot rely on the
complete knowledge of the wiring diagram of the
network.

For these (and other) reasons many authors preferred a
purely topological approach to the analysis of biological
networks, considering the presence of a link between two
nodes as a pure yes/no binary relation and limiting
themselves to statistical descriptions making use of the
so called graph-invariants, i.e. a collection of indexes
that, relying on the simple count of nodes and edges,
enable the analyst to identify crucial elements of the
network (like the so-called hubs, nodes engaged in a very
large amount of relations) or to highlight specific
features of the entire network architecture responsible
for some aspects of the studied system behavior (this is
the case of the so called ‘scale-free’” architecture that was
demonstrated to be at the basis of the huge resilience of
biological systems) [4-6].

The consideration of biological systems at the coarse-
grain level of the graph topological approach is, in my
opinion, a very important first step for the development
of a sort of biological statistical mechanics in which the
actual behavior of the global system can be predicted by
a convenient statistics over its constituent parts.

In the case of statistical mechanics of inanimate systems
this was the case with the Boltzmann microscopic
definition of entropy as a statistical index computed
over the microstates frequency distribution of the
studied system [7]. This deliberate coarse-grain approach
that abandoned the dream of following the trajectories
of the single elements for a population level view,
enabled scientists to get a link between microscopic and
macroscopic physical descriptions [7-9].
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In the following we will try and describe the search for a
Boltzmann-like approach to biology by the critical
analysis of different regulation network-like systems.

Results

i) Essential by location: the case of yeast metabolic
network

From a purely topological point of view, each node of a
network is uniquely defined by its position in the graph.
Obviously, when dealing with experimentally derived
and not abstract networks, each node has a name (a
particular gene, protein, metabolite) pointing to a rich
basin of knowledge and evoking cognition resonance to
the specialist mind and the same is true for the edges.
However, if we are interested in discovering what can be
inferred solely from topological information (so acquir-
ing a Boltzmann-like statistical attitude sacrificing the
unique personality of the element to the search of a
mesoscopic principle), we should try and predict some
relevant features of the studied system without relying
on the particular ‘nature’ of nodes and edges, but only
taking into consideration their connectivity pattern. In
other terms all the properties relative to each node
(edge) must be derived only by its pattern of relations
and thus by its peculiar location in the complete graph.
We checked for the possibility to derive, from purely
topological information on the metabolic network of
yeast (Saccharomyces Cerevisiae), the lethal character of
genetic mutations [10]. The metabolic network
of microorganisms is very well understood: it can be
considered as a graph having enzymatic reactions as
edges and metabolites as nodes. Since an enzymatic
reaction is catalysed by one or more enzymes, an edge
(or arc) can also represent the enzymes involved in the
reaction. This opens the way to a straightforward analysis
of the possibility to derive biologically meaningful
features at a macroscopic scale (entire organism) from
network topology: the elimination of an enzyme by a
knock-out experiment implies the elimination from the
network of the edge (or edges since the same enzyme can
catalyze different reactions) corresponding to that
particular enzyme [10,11]. If it is possible to pick up a
connectivity descriptor able to unequivocally define
essential enzymes (those enzymes whose lack provoke
the yeast death) we can safely assume the biological
relevance of the metabolism ‘wiring structure’, irrespec-
tive of the specific nature of the involved enzymes, and
consequently deriving a mesoscopic biological principle.

In the considered case of yeast metabolic network, the
analysis of 36 lethal mutations out of the 412 relative to
enzymes involved in metabolism, reported in the
Stanford repository (http://www-sequence.stanford.
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edu/group/yeast_deletion_project/deletions3.html) and
in Jeong and colleagues [12], allowed us to discover that
all of the enzymes corresponding to lethal mutations,
when deleted, prevent the connections between the
separate nodes [10]. No alternative path is available to
connect the separate nodes and this explains the
essential character of the mutation on a pure topological
basis (Figure 1).

This ‘essentiality-by-location” mesoscopic principle
equating the lethal character of a mutation to the lack
of an alternative path in the network, was confirmed by
another study by our group [11] demonstrating that a
double mutation involving two enzymes that per se are
not essential acquires essentiality and then causes the
death of the organism, if the double knock-out provokes
the ‘lack of alternative path’ condition. This illustrates
the emergent character of the ‘essentiality by location’
principle: the arising of lethality by the summation of
two non lethal events derives from the existence of a
global metabolism architecture and thus cannot be

http://www.biomedcentral.com/1471-2164/11/S1/S2

inferred by going in depth into the nature of the two
enzymes, in other words is a collective emergent
property of the network system [11].

It is worth noting we did not find any exception to this
rule: if an alternative pathway does exist then the
mutation is not lethal. These data suggest the lack of
‘purely kinetic’ lethal mutations, i.e. situations in which
the poor kinetic properties of alternative paths do not
allow the yeast to survive. This points to a remarkable
difference between metabolic and artificial networks: if
we think of a road map, an accident causing a block of a
huge highway (kinetically optimal path) causes the
traffic flow to shift into much narrower alternative
roads (kinetically non-optimal paths), this will provoke
soon or later a traffic jam that will make impossible a
normal traffic flux with a consequent detrimental
condition for the entire system. The fact we never
observed such a situation allows for the speculation
that kinetic constraints in biological networks are not
hard-wired in the network architecture and can be

Figure |

The metabolic network of yeast is depicted in the figure, the enzymatic reactions correspond to edges, while
the nodes point to the metabolites. The yellow signs indicate the analyzed mutations.
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relatively easily circumvented. There are in fact some
experimental data demonstrating the possibility of many
orders of magnitudes variations of kinetic parameters of
biochemical reactions [3,13].

All in all this case showed us the existence of a
mesoscopic level (the network) whose behavior cannot
be simply derived by the knowledge of the constituting
elements while, in an apparently counterintuitive man-
ner with respect to the reductionist paradigm, influen-
cing the microscopic level. In the subsequent paragraphs
we will look for other examples of the need to seriously
approach such mesoscopic organization [8].

ii) Gene waves: gene function independent transcriptome
motions

The almost totality of microarray experiments is aimed to
find ‘gene expression signatures’ of different biological
macrostates as specific pathologies or phenotypic conse-
quences of mutations. The aim of these studies is to look
for specific genes whose level of expression is affected by
the cellular macrostate (e.g. tumor phenotype) so to give
both a mechanistic explanation and some potentially
useful diagnostic or therapeutical hints. Two implicit
assumptions are hidden at the basis of these studies: 1)
The existence of few ‘master genes’ that drive the observed
phenotype while the great majority of gene products are
completely unaffected by the studied condition and 2) A
fully ergodic assumption of complete independence of the
cells in the culture so that each observed variation in gene
expression can be traced back to something happening
inside an ‘average cell’ and thus explained in terms of
‘nodes-and-arrows’ regulation pathways involving intracel-
lular molecular constituents [14].

In its paper [15] Bar-Yam and colleagues equated the first
assumption to an ‘autocratic regime’ in which few master
genes govern the entire behavior of the cell. In the same
paper, the authors criticize this view for a so-called
‘intermediate’ regime in which both local and global
motions of the transcriptome machinery take place in
response to a given stimulus. In the local mode, few
master genes are in fact maximally affected by a given
condition but, given the high connectivity of the gene
regulation network, these initially local motions are
transformed into a general motion of the entire
transcriptome so that the system can acquire a new
‘equilibrium state’ correspondent to the new phenotype
and involving the entire set of gene products.

In so doing the authors introduce the concept of ‘energy’,
i.e. the need to think of a global minimization principle
in order to explain the presence of a relatively small
number of cellular phenotypes (cell kinds) with respect
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to the infinite number of possibilities offered by the
different combinations of gene expression levels [15,1].

On a practical ground, the common experience of any
experimentalist dealing with microarray data is the fact
that any two independent samples of the same cell kind
when correlated over the expression of more or less
twenty thousands different gene products display a near
to unity correlation (see Figure 2).

This organization, spanning four order of magnitudes of
gene expression levels and encompassing tens of
thousands of gene products is a very remarkable fact of
nature calling for an explanation and clearly supporting
the crucial importance of a thorough investigation of its
origin by a statistical mechanics perspective [1,2]. We
will go back to this theme in the last paragraph of the
results section, here we will concentrate on the falsifica-
tion of the second assumption, i.e. the supposed
irrelevance of cell-cell interactions necessary for concen-
trating only on single cell explanations of population
based measures like microarray studies.

When asynchronously (as for reproductive cell cycle)
cultured, freely growing colonies of cells are normally
considered as ergodic ensembles in which each cell
behaves independently of the others, this allows to refer
the data coming from population made of billions of
cells to a single average cell. If this hypothesis is tenable,
we should not observe any relevant temporal structure
arising from such cell ensembles, being all the relevant
(and well known) cell based rhythmic activities averaged
out, at the colony level, by the substantial independence
of cells. This was demonstrated not to be the case in a
paper by Tsuchyia et al . [14] where different cellular
systems, going from yeast, to human fibroblasts were
shown to present marked periodicities in time as for
their gene expression levels .

Figure 3 reports the first principal component of gene
expression as measured in freely growing yeast colonies
and computed over different choices of genes. While
metabolic cycles in yeast colonies were already very well
known and associated to the alternation of ‘reductive’ and
‘oxidative’ phases [16], in this case the relevant feature of
the observed cycles was their independence of any specific
biological function of the involved gene products. The
same time course of the first principal component of gene
expression was observed with different choices of gene
probes, going from the whole genome, to ribogenesis
related genes and random gene extractions. This implies
the impossibility to get rid of this phenomenon in terms
of specific gene functionalities or cell physiology features
and the need to think of a sort of ‘ecology-in-a-plate’
arising from the interaction of many cells living together
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The picture reports the microarray derived differential gene expression values correspondent to two samples
of the same cell kind. They refer to 22690 ORFs and span four order of magnitudes of expression levels.

and interacting each other and thus asking for a different
kind of ‘statistics’ with respect to the simple “average cell
hypothesis” implicit in the classical molecular paradigm
[17]. The observed behavior is analogous to the behavior
of paramagnetic substances (e.g spin glasses) which
acquire specific macroscopic organization thanks to the
existence of preferred orientations of nearby elementary
units (e.g. dipoles) [7].

This kind of systems (Figure 4) can collectively respond
to externally applied stimuli (e.g. electromagnetic fields)
acting as order parameters so acquiring information
processing capabilities [18].

This is in line with the dynamics toward general
‘attractors’ correspondent to different cell kinds and
influencing the entire transcriptome as demonstrated in
the case of blood cell differentiation [1,19]. The link
between the spin-glass systems and differentiation
dynamics is made more cogent by the use of the authors
(to demonstrate a collective order spanning the entire
transcriptome) of the (GEDI Gene Expression Dynamics
Inspector.) algorithm deriving by the so called SOMs

(Self Organizing Maps) and implementing a classical
statistical mechanics renormalization approach in which
each element of a system re-orientates itself coherently
with the orientation of the neighbors and iterating the
same model at different scales [1,19,20]. This paradigm
is potentially extremely useful for biological systems
description as already stated by many authors involved
in protein folding dynamics [8,21], given it allows for
the establishing of different hierarchies of order corre-
spondent to different scales in both space and time [21]
and in the meanwhile it offers a rational explanation to
the presence of sharp thresholds allowing the system to
undergo very different trajectories (and consequently
very different final attractors) starting from the same
initial configuration [1].

This is the case of the generation of very different cell
kinds from the same stem cell population described by
Huang [1].

iii) Innate immune response: local, global and scalable
The last example I will discuss has the goal to summarize
three landmarks of the suggested perspective: the
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Figure 3
The first component of the variation in time of different gene choice is reported as for free growing yeast
colonies. Pclsmall corresponds to a choice of 60 genes connected to ribogenesis, pclwhole to the entire genome, pclrand to

a random extraction of 275 genes. It is worth noting the superposition of the time courses and the practical invariance of the
percent of explained variance of the extracted mode.
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A simplified schema of a dipole gas is reported: in the absence of an external field the dipoles only display local order
with a statistical tendency of opposite polarities to come close each other (panel a). In panels b) and c) an increasingly powerful
external field acts on the system inducing a global order of the dipoles.

relation holding between local (specific genes/proteins)
and global (genome-wide/proteome-wide) effects and
the cognate concept of scalability, i.e. the possibility to
reproduce some general effects by a randomly down-
sized version of the entire system [22]. For this goal use
is made of the results of a study I participated in the
recent past [23,24].

The general setting of the study follows the classical
molecular biology approach: three strains of mice, two
of them knocked out of a gene known to deeply affect a
biological process, while the third is knocked out of
both, were selected. The phenotypes (in terms of
genome-wide transcriptome) of cultured cells coming
from the above mice were compared between them and
with the phenotype of a wild-type strain so to dissect the
effect of the particular mutations (the knocked-out
genes) on the behavior of the other genes involved in
the same process.

In this case we were dealing with mutations affecting the
so called innate immunity process, i.e. the response set
for by organisms when invaded by a potentially
pathogen biological entity (generally a bacterium). The
defense response starts from very specialized cells called

macrophages: the innate immune system utilizes pat-
tern-recognition receptors (PRRs), proteins present on
the cell membrane that are able to recognize and bind to
pathogen associated molecules, such as lypopolisacchar-
ides (LPS). LPS, which are located in the outer
membrane of Gram-negative bacteria, after being recog-
nized by the macrophage receptors, trigger a cascade of
signaling events eventually leading to the digestion of
the bacteria. Two effector proteins that are essential for
the correct execution of the above process are called
MyD88- and TRIF- (see Figure 5).

It is only after MyD88- and TRIF- (or both) are activated
that a number of signaling molecules (cytokines and
interferons) are produced [25,26]. These molecules
effectively start the so called ‘inflammatory process’ by
activating other cell populations (namely helper T-cells)
for the onset and correct execution of the entire immune
defense process by which foreign intruders are elimi-
nated and immunological memory is created [25,26].

This is an extremely specific mechanism whose activa-
tion follows a very precise sequence of events in time, for
this reason the elimination of Myd88- or TRIF- genes is
expected to partially impair the obtained response, while
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Figure 5
The LPS stimulus processing pathway.
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the contemporary elimination of both Myd88- and TRIF-
genes should abolish the acute immune response with
no production of cytokines. For this reason this is an
almost ideal model to study the contemporary presence
of local, acute responses and general, systemic, responses
of the gene regulation network that in turn correspond
to the global rearrangement of the gene regulation
network following the acute response. If the classical
‘purely molecular’ view of gene regulation holds, we
expect that macrophages coming from MyD88- and

TRIF- knocked out mice, when challenged with LPS
stimulation, to have a severe impairment in the
expression of genes linked to the immune response,
while the other should remain substantially unchanged.
In the case of double knock-out mice we expect the
expression increase of the genes induced by MyD88- and
TRIF- proteins to be completely abolished and, again, all
the other genes to maintain the same characteristic level
of expression. Clearly the wild-type group is expected to
have the immune related genes abruptly up-regulated
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after the LPS stimulus while maintaining the same basic
level of expression for the other genes. This is the
classical molecular biology view separating a set of so
called house-keeping genes that keep an invariant level
of transcription because they are responsible of the
maintaining of the cell, i.e. the business-as-usual, and
regulated genes whose activity undergoes abrupt changes
in expression according to external stimuli. In this view
genes are implicitly considered as independent units that
are switched on or off by an invisible hand that correctly
matches the genes with the cell needs. An alternative
view looking at the entire genome like an highly
connected dynamical system gives a different prediction:
the whole genome expression will ‘sense’ the LPS
stimulus (with the only possible exception of double
knock-out that in principle has no possibility to sense
the incoming stimulus) by globally shifting on another
(slightly) different level of expression while the immune
related genes neatly increase their expression. The global
shift in expression corresponds to the ‘resonance’ on the
entire regulation network of the abrupt increase of some
specific genes.

We analysed the whole genome expression of Affymetrix
standard platform encompassing 22690 different ORFs
after LPS stimulation of murine macrophages and refer
to 12 experimental conditions (4 genotypes at 3 time
points): Wild type, MyD88KO, TRIFKO, and Myd88/
TRIF DoubleKO (DKO) at 0 (t0), 1 (t1) and 4 h (t4). The
basic metrics adopted for the genotype comparison in
terms of entity of response to the LPS stimulus was the
Pearson correlation coefficient on the entire genome
[22,23] computed on the whole genome expression
vector (state vector in Huang terms [1]) as well as on
different extractions of specific gene subsets (random
and immune-related). Unlike the use of DNA micro-
arrays to identify specific genes we, treated genes as
anonymous members of a single ensemble containing N
genes and calculated the samples similarity in terms of
Pearson correlation. As stated by Chang et al. [19] this
ensemble property of the population of genes is a robust
measure of the samples similarity not being affected by
noise at the level of individual gene similarity. We
adopted four different choices of genes extractions as
basis for computing autocorrelation with t0 state vector:
entire genome, only cytokine, random extraction of
genes, and ‘connector’ genes respectively. These choices
correspond to different mesoscopic views on the gene
regulation system. Global motion of gene regulation
network as a connected system is registered by the entire
genome basis, while the scalable character and gene-
function-independence of this motion is caught by the
random extraction choice. The local motion of specific
genes responsible for the acute effect of LPS stimulation
is registered by the cytokine choice.

http://www.biomedcentral.com/1471-2164/11/S1/S2

The so called ‘connector’ genes refer to a collection of
136 genes selected by means of a principal component
analysis that was recognized to discriminate DKO
samples from the other ones so pointing to the
difference from genotypes correspondent to a systemic
immune response observable at the level of the entire
organism (wild type, Myd88KO and TRIFKO) and
samples coming from DKO mice that do not display
any general immune response. These 136 genes list has
inside many well known immune related genes as well as
other genes involved in the systemic response to
immune stimulus like apoptosis related genes.

Figure 6 reports the autocorrelation distribution in time
(Pearson r with the t0 sample) for all the four genotypes
relative to the above described choices of genes. In the
case of the entire genome (top left panel) we observe a
major departure from unit correlation correspondent to
a greater response, as expected, in the case of wild type.
The three mutated genotypes all displayed a very minor
albeit reliable and monotonically related to time
departure from unity correlation pointing to the ‘global
sensing’ of LPS stimulation. The presence of a strong
attractor-like structure constraining the genome-wide
expression at the cell population level into a very sharply
defined configuration spanning the entire set of gene
expression values allows for only minor departures from
unit of the autocorrelation in time. Shifting to a random
choice of 100 genes (bottom left panel) we can observe
exactly the same pattern displayed by the entire genome
basis. We iterated many times these random choices
observing a completely invariant picture starting from
minimal choice of around 60 genes [22]. This is a
confirmation of the ‘scalable’ character of gene expres-
sion network that constitutes a strongly connected set
whose general connectivity can be appreciated starting
from a minimum sample of elements.

Top right panel is related to the cytokines local response,
it is immediate to note the much bigger displacement
from tO (before LPS stimulus) with respect to the global
response, this is in line with the location of cytokines
just after the ‘perceived stimulus’ along a sequential
pathway. As expected, DKO does not appear to have any
response in terms of cytokine expression, consistently
with its complete lack of LPS receptors, while the other
three genotypes show a marked departure from t0 state
vector with a non-linear character (as opposed to the
monotonous global motion) reaching its maximum at
1h , Myd88KO was much more seriously affected than
TRIFKO as for this acute response.

Connector genes (bottom right panel) display an
intermediate behaviour in between acute and collective
motion, from collective motion (probably due to their
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The figure reports four different gene choices correspondent to different mesoscopic views on the gene
regulation system (see text). The graphs have the Pearson correlation coefficient r with t0O state vector as ordinate and
time (hours) as abscissa and report the dynamical response to LPS stimulus for each genotype, a lower value of r corresponds
to a more marked response.
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elevated number) they inherit a minimal displacement
from unit correlation of DKO, from their link with acute
response they inherit both the more marked displace-
ment from unit with respect to aspecific global motion
and the expected ranking of detrimental effect of
mutations with Myd88 KO more affected than TRIFKO.

The presence of a ‘global response’ encompassing the
entire genome expression in the case of DKO is
surprising. This response, albeit minimal, it is present
and strongly invariant across different choices of gene
subsets and point to a possible decoupling between
acute and global response of the system implying the
presence of an alternative ‘pattern recognition
pathway’allowing the DKO cells to sense the stimulus
without being able to evoke an acute massive response.

An exacerbated sensitivity to apparently minor stimuli
and a general resilience of the entire system stay together
side-by side in biological systems. This apparent paradox
can be explained by the consideration of biological
systems as very strongly interconnected network systems.
Some nodes of these networks (in this case those
corresponding to cytokines), thanks to their peculiar
location in the network architecture, are responsible for
the sensitivity aspects, while the large degree of inter-
connection is at the basis of the resilience properties of
the system, here appearing as a global adjustment of the
entire system following the stimulus. All in all these
results falsify the simplistic view of autonomus ‘house-
keeping’ and ‘regulated’ genes compartments and point
to an attractor-like dynamics of global gene expression at
the cell population level. Our interpretation goes on the
same line of the results obtained by Nykter et al. [28]
that analyzed the same biological system (global gene
expression data from macrophage cell populations)
demonstrating, by means of information theory based
methods, the presence of criticality. Criticality [28] is
another crucial landmark of self-organized dynamical
systems and corresponds to a state of the system in
which perturbations are propagated over long temporal
or spatial scales. In the case of macrophages this
corresponds to the spreading of the initial stimulus to
the genome wide expression we observed to be mediated
by the connector genes.

Conclusions

There are some general points we can derive from the
consideration of the above described results. First of all
the necessity to take into consideration even when, like
in the case of yeast metabolic network, we concentrate
on a single element (the lethal character of a specific
mutation), the general frame in which the element is
inserted. This style of reasoning has the name

http://www.biomedcentral.com/1471-2164/11/S1/S2

‘mesoscopic’ [8] because concentrates on the between
elements relation structure that is considered as the
channel along which the microscopic and macroscopic
views are related.

The mesoscopic view implies a statistical approach to the
studied system that in turn implies that the same
macrostate can be generated by a multiplicity of
microstates so strongly limiting the possibility of a
one-to-one mapping between a given network config-
uration and the observed behaviours. Not only the same
network architecture (in terms of wiring diagram) can
‘occupy’ a multiplicity of different states (see [1] for a
thorough discussion of the difference between network
architecture and network states), but different network
architectures can give rise, to the same state vector of
their elements through different pathways so to be
virtually not discriminable starting from the output [27].
The plasticity and state dependence of the kinetic
parameters of the same network adds indeterminacy to
the picture and asks for a statistical perspective.

This statistical perspective is made cogent by the
recognized fact that a largely stochastic and unpredict-
able behavior at the single cell level is paralleled by very
strongly repeatable phenomena observed when a large
population of cell is taken into consideration. This blend
of microscopic stochasticity and macroscopic determin-
ism is the signature of statistical mechanics and, in
general, of condensed matter physics.

Cell biology since its birth relied on population data
coming from millions of cells growing on plates but
sketched its models by means of node and arrows
cartoons implicitly posited in the interior of a single cell.
The contemporary discovery of single cell highly noisy
and unpredictable behavior and of the presence of
collective order parameters spanning four order of
magnitudes of expression intensity involving thousands
of genes simultaneously at the cell cultures level forces
cell biologists to a complete change of paradigm. The
complementation of local ‘hard-wired’” explanation of
cell biology by means of specific interactions between
localized portions of the regulation network and of the
global, collective, and independent of specific elements
approach is a crucial point in systems biology in order to
deal with a big mass of emerging data about collective
rhythms involving the entire cellular machinery at
population level as well as the delocalized and scalable
modification of the entire transcriptome in differentia-
tion processes. The idealization of cell kind as ‘attractors’
of gene expression networks made by some authors
[1,17,19,29], is in my opinion extremely fruitful because
it encompasses the two basic ingredients of ‘population
determinism’ and ‘single cell stochasticity’ we sketched
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before. The cell populations can shift from an attractor to
another thanks to their intrinsic noise correspondent to
the fact the cells inside each population are not equal
among them and the cells at the ‘extremes’ of a
distribution can be the ‘pioneers’ of an attractor shift [1].

The presence of self sustained oscillations in cell
ensembles points to a sort of ‘structuring’ of the
intercellular variance with the consequent departure of
the cell cultures from ergodicity and the need to consider
a sort of ‘ecology-in-a-plate’ and higher level constructs
linked to cell-cell communication with respect to
classical cell-centered molecular biology models [14].

This point is particularly cogent if we take into
consideration a second aspect of the ergodic assumption
that must be kept distinct from the loss of temporal
structure due to lack of synchrony we described in this
work: namely the common but unarticulated notion that
fluctuations in individuals (single cells), even if syn-
chronized, are too fast so they are not apparent at the
usual scale of observation, again we imply the sub-
stantial equivalence between all the cells inside a
population. This is a very important point because it is
strictly related to the onset of non-genetic heterogeneity
between cells, the demonstration of a stable between
cells heterogeneity in a population (both in terms of
gene expression and protein content) should allow for
going further in the direction of establishing a parallel
between statistical mechanics and biology, being the
‘temperature’ of the system (the cell population)
correspondent to the relative occupancy of different
microstates (at the basis of the observed heterogeneity)
by the single constituting cells [30,31]. In particular, in
[31] based on analysis of skewed scale-dependent
distributions of gene expression level in diverse eukar-
yotic cell types, a random and sporadic “basal”
transcription mechanism (analog of low-temperature
fluctuations) for protein-coding genes in eukaryotic cell
types was predicted. Physically, the “basal” transcription
of genes might reflect “nonlinear responses” of the
independent gene transcription molecular complexes to
internal or external fluctuations including thermal
molecular motion. Many of the lower level basal
transcription events may be essential for determining
normal development and pathological cell phenotypes.
It was suggested that the “basal” mechanism of gene
transcription might enhance the expression of rarely-
expressed genes due to noise-driven stochastic resonance
regulatory signals and, thus, provide a switch in a basic
level of phenotypic diversity, adaptability and random
mono-allelic expression in cell populations [31].

The above frame of the references could be able to
accommodate in a consistent frame the problem of
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biological noise that until now had a very questionable
and vague status, while in the above envisaged dynami-
cal paradigm it could play an essential role in biological
response as discussed in [19] and implicitly predicted for
normal and abnormal cells in [31].

This is, in my opinion, an extremely fascinating avenue
for a substantial advancement in biological science, as
for now, the consideration of biological systems in terms
of networks is a first step toward the acquiring of a new
perspective on cell biology that will shift this science
from a naive mechanistic perspective to a more broad
view encompassing dynamical systems science concepts
and findings.
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