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Abstract

makes predicting directly gene function infeasible.

positive examples and far from each other.

Background: A large amount of functional genomic data have provided enough knowledge in predicting gene
function computationally, which uses known functional annotations and relationship between unknown genes and
known ones to map unknown genes to GO functional terms. The prediction procedure is usually formulated as
binary classification problem. Training binary classifier needs both positive examples and negative ones that have
almost the same size. However, from various annotation database, we can only obtain few positive genes
annotation for most offunctional terms, that is, there are only few positive examples for training classifier, which

Results: We propose a novel approach SPE_RNE to train classifier for each functional term. Firstly, positive
examples set is enlarged by creating synthetic positive examples. Secondly, representative negative examples are
selected by training SVM(support vector machine) iteratively to move classification hyperplane to a appropriate
place. Lastly, an optimal SVM classifier are trained by using grid search technique. On combined kernel ofYeast
protein sequence, microarray expression, protein-protein interaction and GO functional annotation data, we
compare SPE_RNE with other three typical methods in three classical performance measures recall R, precise P and
their combination F£: twoclass considers all unlabeled genes as negative examples, twoclassbal selects randomly
same number negative examples from unlabeled gene, PSol selects a negative examples set that are far from

Conclusions: In test data and unknown genes data, we compute average and variant of measure F. The
experiments showthat our approach has better generalized performance and practical prediction capacity. In
addition, our method can also be used for other organisms such as human.

Background

One of the important challenges in the post-genome era
is determining the functional role of all genes in the cell
although about one-third of the genes have been anno-
tated and deposited in database such GO(gene ontology)
[1]. With the recent invention of several large-scale
experimental methods, a wealth of functional genomic
data was accumulated, including sequence, micro-array
expression profile and protein-protein interaction data.
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These large data-sets have fueled an interest in compu-
tational approaches to gene function prediction, which
promises to harness the information present in these
large collections of data to automatically deduce accu-
rate gene annotations [2,3]. Furthermore, many works
have shown that integration of different kinds of data
sources can considerably improve prediction results
[4,5]. GO is a widely-used set of functional terms with
which some genes are annotated, we also call functional
terms as functional classes in related to classification
problem from machine learning. GO functional annota-
tion associates each gene or gene product to some func-
tional terms. For an unknown gene, predicting its
functions will assign some GO functional terms to it,
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which is called multi-label classification problem in
machine learning community. The mainstream approach
is to transform it into a binary classification task for
each functional class, which focuses on training a classi-
fier such as SVM (support vector machine) with some
labeled positive and negative examples. However, the
available information from the annotation databases,
such as GO [1], is only about positive examples, i.e. for
a functional class, we only know which gene is assigned
to it, but we are not sure that a gene has no this func-
tion except for too few genes. As a result, when training
classifier for a functional class, we can only obtain
labeled positive examples and many unlabeled ones. In
other words, for a functional class, we need to learn a
classifier from positive and unlabeled examples. Thus,
an important step is to select a suitable set of negative
examples from unlabeled examples before training
classifier.

Some approaches to select negative examples have
been proposed. For example, Lanckriet et. al labeled the
annotated genes as positive examples and the remaining
ones as negative ones for each functional class [4]. Car-
ter et al randomly selected the negative examples with
the same size as the positive examples from the unla-
beled examples [6]. We call these two methods twoclass
and twoclassbal algorithm respectively. Chunlin Wang
et.al selected a set of negative examples in two steps:
firstly, identifying genes which are far from each other
and the most dissimilar to positive examples as initial
negative examples set. Then, using iteratively SVM to
expanse negative examples and stopping while the
remaining unlabeled examples are less than given
threshold. Their method is called PSoL(Positive Sample
only learning) and its detail can be found in [7].

Above approaches can be divided into two categories
and some problems can occur when only few positive
examples and major unlabeled ones are given: 1.
Regarding all unlabeled examples as negative examples
[4]. On the one hand, it may lead to class imbalance
problem because of few positive examples [8]. on the
other hand, the false negative noise may seriously
decrease the prediction accuracy. 2. Selecting negative
examples with same size as positive examples [6,7].
These methods eliminate the impact of imbalanced pro-
blem, but, only few negative examples can be selected,
as a result, the classifier is trained on a small training
set and easily leads to over-fitting. When we use GO
annotation, many functional classes have few annotated
genes, which will lead to a lower prediction accuracy
and need to be solved [9]. In this paper, aiming at both
imbalance and over-fitting problem for genes function
prediction with only few positive examples and unla-
beled examples, we propose a novel strategy for predict-
ing genes function using SVM. Firstly, we create some
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synthetic positive examples with few negative noises to
enlarge positive examples set P. Secondly, we extract a
representative negative example set RN from unlabeled
genes U using SVM iteratively. Finally, an optimal SVM
classifier with RBF (Radial Basis Function) is trained by
using Grid-search technique. This method is called
SPE_RNE(Learning classifier by Synthetic Positive
Examples and Representative Negative Examples).

Results and discussion

Experiment setting

Data sets

Gene annotation We used gene ontology and corre-
sponding gene function association of Yeast [10]
released in April 2007. Gene association file contained
5,873 genes ,the number of known and unknown genes
is 3,796 and 2,077 respectively. We up-propagate the
gene annotation along GO hierarchical structure and
obtained a reduced GO which has only 99 GO terms
under guidance of biological experts. To compare the
algorithm performance, we divide them into four groups
according to number of annotated genes as shown in
Table 1. There are 53 functional classes with annotated
genes less than 60 among total 99 terms.

Protein sequence The protein sequence of all of the
Yeast genes were downloaded from SGD [10].We
applied the Smith-Waterman pairwise sequence align-
ment algorithm [11] to these sequences. Each protein is
represented as a vector of Smith-Waterman log E-
values, and computed with respect to all 5,873 Yeast
genes. A 5873*5873 similar matrix is obtained.
Microarray expression profile Microarray datasets are
real-valued matrices measuring gene expression levels
under different experimental conditions. We use gene
expression microarray data from the Stanford Microar-
ray Database(SMD) [12] containing results from several
publications, providing a total of 294 real-valued fea-
tures for all 5,873 genes. Microarray entries typically
include missing values due to experimental imperfec-
tions. We estimate such entries using the widely
accepted KNNimpute algorithm [13] with default k
value. Then, we computed similarity between two genes
using Gauss kernel with y = 2. The second 5873*5873
gene similar matrix is generated.

Protein—protein interaction We downloaded the pro-
tein-protein interaction data from BioGRID2.0.30 [14].

Table 1 Four groups of function terms and number of
term

annotation interval < 60 60-100 100-300 > 300
number of terms 53 17 18 11

99 functional terms are divided into four groups according to number of
annotated genes. The first row are four groups with interval of genes number.
The second row is number of terms.
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Protein-protein interaction data is described as a graph
in which nodes denote protein and edges denote inter-
action and diffusion kernel [15] with diffusion constant
B = 2 is used to measure the similarity between two
proteins. Each gene is also represented as a vector of
similarity with respect to all 5,873 genes. The third gene
similar matrix is computed.

Several previous researches have shown that integrat-
ing various genomic data to predict gene function can
improve prediction accuracy [4,5]. In this paper, we add
three similar matrices and obtain a sum matrix. It is
noticeable that each matrix should be centralized and
normalized to eliminate the effect from major data
before adding them [4]. While training SVM classifier,
this pre-computed kernel matrix is used.

Experiment setting and evaluation

We used LIBSVM [16] to implement SPE-RNE and
related algorithms two class SVM twoclass, two class
balanced SVM (twoclassbal)and PSoL in matlab. First,
we divided 3796 known genes into training set and vali-
dation set, after training SVM classifier on training set,
the generalized performance of algorithms were com-
pared on validation set. Widely-accepted measures,
including precision rate P, recall rate R and their combi-
nation F1, are used. Their definitions are as follows:

TP

p=__-" (1)
TP + FP

R—_ 1P 2)
TP + EN

Fl = 2XPXR 3)
P+R

where TP,FP and FN denote the number of true posi-
tive, false positive and false negative respectively. Then,
using 2,077 unknown genes released in April 2007 as
test examples, we predict their functions and evaluate
ROC (Receiver operating characteristics) score with
gene function association released in December 2008 as
annotation standard.

Performance comparison on known genes
For each functional class, 3796 genes are in two cate-
gories: genes assigned to this functional class and unla-
beled genes. we randomly select 20 percent from these
two categories as validation set, the others are training
set. SVM classifiers are learned on training set and used
to predict genes functions on validation set to evaluate
generalized performance of algorithms.

When the number of negative examples is far more
than positive examples, imbalanced problem occurs and
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Table 2 The number of functional class whose F1 = NaN
for four algorithms and four functional groups

algorithms < 60 60-100 100-300 > 300
twoclass 31 8 3 1
twoclassbal 0 0 0 0
PSol 22 6 0 1
SPE-RNE 0 0 0 0

When the number of negative examples is far more than positive examples,
imbalanced problem occurs and the algorithm can not recall any true positive
examples for some functional classes. As a result, P = 0 and R = 0 result in F1
= NaN (Not a Number) in matlab. Table 2 shows the number of NaN for each
functional group.

the algorithm can not recall any true positive examples
for some functional classes. As a result, P = 0 and R = 0
result in F1 = NaN (Not a Number) in matlab. Table 2
shows the number of NaN for each functional group.

As shown by table 2, twoclass has the most serious
imbalance and PSoL has more serious imbalance, but
our method SPE-RNE, like twoclassbal, doesn’t suffer
from imbalanced problem at all because we select rea-
sonable quantity of negative examples after enlarging
the positive examples set. In addition, functional classes
with few annotated genes have more serious imbalance.

For twoclassbal algorithm, while serious imbalance
does not occur, the over-fitting may arise to affect pre-
diction performance due to few training examples. To
evaluate the algorithm fairly, we set F1 = NaN to F1 =
0. For each algorithm and functional group, the means
and variances of F1 are listed in Table 3 and Table 4
respectively.

In table 3, although twoclassbal has not class imbal-
ance problem, but it has worst performance because it
has too few training examples, which easily causes over-
fitting. For functional classes with few annotated genes,
the existed algorithms, like twoclass, twoclassbal, PSoL
have lower F1 values, our algorithm significantly
improves the F1 values in this case. For functional
classes with more annotated genes, our algorithm has
better performance too. While only few training exam-
ples are used to learn SVM classifier, over-fitting pro-
blem may occur and make algorithms unstable. We
compute the variances of F1 for each functional group

Table 3 The mean of F1 for four algorithms and four
functional groups

algorithms < 60 60-100 100-300 > 300
twoclass 0.1679 0.1881 0.3641 0.3675
twoclassbal 0.0912 0.1329 02877 03785
PSol 0.2094 02223 04006 0.3999
SPE-RNE 0.5545 0.6589 0.5639 0.4848

Table 3 lists the average values of F1 for all algorithms on four functional
terms groups. These values can evaluate the comprehensive prediction
performance of algorithms on different groups and compare their generalized
capacity.
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to evaluate the stability of algorithm. Table 4 shows that
our algorithm has good stability.

Predicting performance on unknown genes

Since April 2007, some of 2077 unknown genes have
been annotated with some functions. We consider these
2077 genes as test examples and use trained SVM classi-
fier to predict function for them. The GO function asso-
ciation released in December 2008 is regarded as
complete annotation, that is, for each functional class, if
a gene is assigned to it, the label is set to 1, otherwise
-1. For each algorithm, the ROC score, which is area
under ROC, is evaluated as comparison measures. In
previous section, we use F1 to evaluate algorithm per-
formance because we think that GO function association
released in April 2007 is incomplete. The ROC scores
are listed in Table 5.

For group 1 and 2, our algorithm significantly improve
the ROC score, which illustrates better prediction per-
formance for unknown genes. For group 3, we only add
synthetic examples as many as positive examples, and
for group 4, we don’t create any synthetic positive
examples. But, our algorithm for extracting representa-
tive negative examples slightly improve the ROC score
too. The average number of correctly predicted genes
and true average number are displayed in Figure 1 for
each group. In each group, our algorithm can recall
more positive genes on average.

Predicting result on unknown genes

We list predicted functional classes for ten genes with
most predicted functional terms in Table 6, these genes
were unknown in April 2007, but they were annotated
with one or multiple functional classes in December
2008.

Conclusions

In this paper, We propose a novel approach to predict-
ing gene function for genes with few positive examples
and unlabeled ones SPE-RNE: creating synthetic exam-
ples to enlarge the set of positive examples, extracting
representative negative examples from unlabeled

Table 4 The variance of F1 for four algorithms and four
functional groups

algorithms <60 60-100 100-300 > 300
twoclass 0.0636 0.0929 0.1034 0.0536
twoclassbal 0.0142 0.0083 0.0462 0.0215
PSoL 0.0594 0.0813 0.0629 0.0456
SPE-RNE 0.0523 0.0485 0.0359 0.0420

Table 4 lists the variances of F1 for all algorithms on four functional terms
groups. These values can evaluate the stability of algorithms on different
groups. While only few training examples are used to learn classifier, over-
fitting may occur and makes algorithm unstable.
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Table 5 The average ROC score for four algorithms and
four functional groups

algorithms <60 60-100 100-300 > 300
twoclass 0.5081 0.7448 0.7743 0.7044
twoclassbal 0.5207 0.7529 0.8002 07118
PSol 05313 0.7626 0.7726 0.7142
SPE-RNE 0.6827 0.7969 0.8084 0.7266

ROC score, that is area under ROC curve, is a widely-accepted performance
measure for prediction classification problem. The larger ROC score is, the
better the performance of classification algorithm is.

examples and training SVM classifier using Grid-search
technique. For SPE-RNE, the validation on known gene
data set shows its best F1 value and good stability. Pre-
diction on unknown genes set illustrates its higher ROC
scores and better prediction performance than several
classic algorithms. All the algorithms run in a sum
matrix which is obtained by adding simply several simi-
larity matrixes from heterogeneous data sources, which
may loss some information. How to integrate effectively
these heterogeneous data to predict gene function is our
next research subject in future. In addition, our method
can also be used for other organisms such as human.

Methods

Creating synthetic examples to enlarge the positive
examples set

The problem about learning classifier with few positive
examples can be found in text classification domain. An
intuitive idea is to enlarge the positive examples set. Li
et al [17] assume that positive examples in P and likely
positive examples from U have common underlying fea-
ture dimensions (or subspaces) as they belong to the
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C— true average number
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Function groups

Average number of correctly predicted genes

Fig. 1 The average number of correctly predicted genes
according to GO association released in December 2008 for
unknown gene in April 2007 In figure 1, the height of bar
denotes the average number of genes predicted correctly by four
algorithms and average true number of genes on different groups.
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Table 6 The ten genes with the most predicted functions
and their predicted functions

protein predicted functions

YKRO84c GO:0000166  GO:0003676  GO:0003824  GO:0003924
GO:0005488  GO.0016462  GO:0016787  GO:0017076
GO:0017111  GO:0045182

YELO30w GO:.0000166  GO:0003824  GO:0005488  GO:0005515
GO:0016787  GO.0017076 ~ GO:0017111  GO:0051082

YDR332w  GO:0003676  GO:0003824  GO:0004386  GO:0016462
GO:.0016787  GO:.0016818  GO:0016887  GO:0017111

YBR0O25¢ GO:0000166  GO:0003824  GO:0016462  GO:0016818
GO:.0016887  GO:.0017076  GO:0017111

YMRO78c GO:.0003676  GO.0003824  GO:0016787  GO:0016818
GO:.0016887  GO:0017111

YLRO35c¢ GO:0000166  GO:0003676  GO:0003677  GO:0003824
GO:0016787  GO:0017076

YGL175¢ GO:.0003676  GO:.0003677  GO:0003824  GO:0004519
GO:.0016787  GO:0016788

YLR419w GO:.0003676  GO.0003824  GO:0004386  GO:0016818
GO:0016887  GO:0017111

YNLOOTw ~ GO:0003824  GO:0004518  GO:0004519  GO:0004540
GO:0016788

YJLO57¢ GO:.0003824  GO.0004672  GO:0016301  GO:0016740
GO:0016772

Table 6 lists ten genes with top predicted functional classes and their
predicted functional terms. The first column is gene name and other columns
are functional classes predicted correctly by algorithm SPE-RNE.

same class. The representative words (RW) extracted
from P are used to identify more hidden positive exam-
ples from U. Fung et al [18] firstly identified feature
words in P and select a set of reliable negative examples
from U, then, all negative examples are divided into
some clusters due to the diversity of negative examples,
for an example from U, computing similarity dp
between it and centroid of positive examples and simi-
larity d;; between it and cluster centroid of negative
examples, if di; — dp is greater than a given threshold, it
is added to P.

Due to sparse and discrete features of text vectors, Li
and Fung’s method can not be used for continuous fea-
ture vector of gene. We can not find so-called feature
words in gene vectors to identify hidden positive exam-
ples. We can only use some distance, such as Euclidean
distance, to measure the similarity between genes [7].
Fung’s method enlarges the positive examples set after
selecting the reliable negative examples, but, if we use
Euclidean distance or cosine distance, a better positive
example centroid can not be found due to irregularity of
positive examples distribution, which has been validated
by our many experiments. Our experiments also show
that enlarging the P by identifying hidden positive
examples from U generates easily false positive noise
because of few hidden positive examples in L.
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We create synthetic positive examples to enlarge the
P. For each e € P, we find its k nearest neighbors in P
and then create synthetic examples along the line seg-
ments joining e and some/all of the k nearest neighbors.
Depending on the required amount of enlarging, »
neighbors from the k nearest neighbors are randomly
chosen. For instance, if the needed amount of enlarging
is 500%, only five neighbors from the k nearest neigh-
bors are chosen and one synthetic example is generated
in each direction. Given e’ € P is one of k-nearest
neighbors of e, o € (0, 1) is a random number, Syn-
thetic examples are generated in the following way:

é=axe+(l-a)*e (4)

The following propositions convinces us of likely posi-
tive examples of ¢ .
Proposition 0.1
Leteande' be two positive examples. Then,

é=axe+(l—-a)*e, ae(0,1)

is a likely positive example.
Proof
Let the classification hyperplane be

fx)=wix+b

According to Vapnik’s theory minimizing empiric risk
[19], following two inequalities are correct with prob-
ability close to 1:

wle + b >0

wle' +b>0

Further floe + (1 — a)e’)
=wl(oe + (1 — @e) + b
=owle+ (1 - o)wle + b
=owle +b) + (1 — o)(wle' + b)
Thus

f(oe +(1 — )e’) >0

That is, e = ae + (1 — a)e’ is a positive example with
probability close to 1.

Therefore, the synthetic example ¢ is probably posi-
tive example and the enlarged set of positive examples,
p has few negative noise. In fact, from the point of
view of algebra, ¢ is convex combination of e and e’,
and from the point of view of geometry, ¢ is a random
point in line segment from e to e’. We have following
algorithm 1 for creating synthetic examples.

In our experiments, all the functional classes are
divided into four groups according to number of anno-
tated genes. We enlarge positive example set with differ-
ent times for different groups and set k = 10, which is
shown in Table 7. Particularly, we did not make
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synthetic positive examples for functional classes with
more than 300 annotated genes.
Algorithm 1
Algorithm creating synthetic examples
1: function MAKESYNEXPS(P,n,k)
: P is positive examples set;
: n is amount of enlarging
: k is number of nearest neighbors
: pnum=size of P
: nnarray=array of nearest neighbor with size k
: synexps=array of synthetic examples
: making syntheticpositive examples
: for all e € Pdo
10: nnarray=k nearest neighbors of e from P
11: selnn=n nearest neighbors randomly selected from
nnarray
12: for all €' € selnn do
13: generating a random number & € (0, 1)
14: ¢ =x*e+ (1 -0o) *e
15: adding e into synexps
16: end for
17: end for
18: Return synexps;
19: end function

O 00 NI O U s W IN

Extracting the representative negative examples

After enlarging the positive examples set P, we need to
train SVM on new positive examples set p and unla-
beled examples set U . To learn a better classifier, we
should extract a subset of the most probably negative
examples from unlabeled data U so that it can best
recover the positive examples hidden in U . This
extracted negative examples subset can represent the
whole negative set well and should have suitable size to
avoid the class imbalance problem. To achieve this goal,
our algorithm extracts representative negative examples
and consists of three steps.

Step 1, identifying a reliable initial negative examples
set. For gene vectors, only distance-based similarity can
be used and the most dissimilar genes to positive exam-
ples are assumed as reliable negative examples. In PSoL,
initial negative set N met two conditions: @ all ele-
ments in N are most dissimilar to positive example set
®@. @ elements in N are far from each other. Since this
problem is NP-hard, an approximate solution was used.

Table 7 The enlarging times for different functional
groups

< 60 60-100 100-300 > 300
enlarging times 4 2 1 0

annotation interval

Algorithm SPE-RNE enlarges the positive examples set with different times
according to the number of positive examples. The first row is functional
groups and the second row is times. The functional classes with few positive
examples enlarges more times.
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In our algorithm, one-class SVM [20] is utilized to
extract efficiently initial negative examples. Give a per-
centage of negative examples, such as 10 percent, it can
draw an initial decision boundary to cover most of the
positive and unlabeled examples. The data points not
covered by the decision boundary can be regarded as
negative example points because these data points are
far from the positive set in the feature space.

Step 2, learning SVM iteratively to move classification
hyperplane to an appropriate place. In this iteration pro-
cess, a set of classifier, Cs and corresponding set of
negative example set, Ny are obtained. In i iteration,
we obtain not only SVM classifier C; but also negative
example set N;,; to be used to train next SVM

Niy = Npred U Nsyq (5)

where N,,., is the most reliable negative examples
predicted in current iteration and Ny is negative sup-
port vector set of C;. To avoid class imbalance, the size
of N,eq is set as N,z < m| P | and many experiments
shown that m = 3 is suitable. In addition, only the nega-
tive support vectors of C; are selected as representatives
of previous negative training examples. In this iteration
process, |U| becomes smaller and smaller. When only
few unlabeled examples are remained, the N; may has
more false positive examples and the classifier may
become bad, therefore, we stop iterating. According to a
large number of experiments, the stopping criteria is set
as:

|U [ 4%| P ©6)

This process is inspired by [21] and can be intuitively
demonstrated using figure 2, 3, 4, 5. In figure 2, 3, 4, 5,
plus signs, plus signs with circle and circles denote posi-
tive examples, potential positive examples and unlabeled
examples respectively. The points covered by ellipse are
negative examples set N; and the line is classification
hyperplane. Figure 2 demonstrates how one-class SVM
extracts initial negative examples. Figure 3, 4, 5 illustrate
three iterations in which the classification hyperplane
moves towards positive examples set.

Step 3, selecting the best representative negative set.
The representative negative set should have best classifi-
cation performance, therefore, we use each SVM from
Cs to classify a validation set V that is selected randomly
form p and U with 10 percent of total respectively at
the start of algorithm. The discrimination ability of the
trained classifiers is evaluated with F1 . Accordingly, the
negative set corresponding to the best classifier is
returned as the representative negative samples RN. In
stead PSoL selects final classifier to classify remaining
examples, our algorithm selects best classifier according
to classification performance on validation set and cor-
responding negative set is regarded as representative
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Fig. 2 One-class SVM extracts initial negative example set In
figure 2, plus signs, plus signs with circle and circles denote positive
examples, potential positive examples and unlabeled examples
respectively. The points covered by ellipse are negative examples
set Ny and the line is classification hyperplane. One-class SVM is
utilized to extract the initial negative examples. Give a percentage
of negative examples, such as 10 percent, it can draw an initial
decision boundary to cover most of the positive and unlabeled
data. The data points not covered by the decision boundary can be
regarded as negative data points because these data points are far
from the major positive set.

Fig. 4 The negative example set N, is obtained with the
second iteration In figure 4, plus signs, plus signs with circle and
circles denote positive examples, potential positive examples and
unlabeled examples respectively. The points covered by ellipse are
negative example set N, and the line is classification hyperplane.
With the new training set p* U Ny, the SVM classifier C; is learned,
the negative example set N, consists of the support vectors of C;
and the unlabeled examples predicted as negative examples.
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Fig. 3 The first iteration in which the negative example set N,
is obtained by moving the classification hyperplane towards
positive example set In figure 3, plus signs, plus signs with circle
and circles denote positive examples, potential positive examples
and unlabeled examples respectively. The points covered by ellipse
are negative examples set N; and the line is classification
hyperplane. With the positive examples B and initial negative
example set Nothe SVM classifier Cy is learned, the negative
example set N; consists of the support vectors of Cy and the
unlabeled examples predicted as negative examples.

Fig. 5 Obtaining the negative example set N; with the more
iteration In figure 5, plus signs, plus signs with circle and circles
denote positive examples, potential positive examples and
unlabeled examples respectively. The points covered by ellipse are
negative example set N3 and the line is classification hyperplane.
With the new negative example set N, the SVM classifier G, is
learned, the negative example set N3 consists of the support vectors
of C,> and the unlabeled examples predicted as negative examples.
The process can proceed until the condition |U] < 4 * | p| is meet.
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negative set, final classifier is trained in the third stage.
The algorithm for extracting representative negative
examples is displayed in Algorithm 2.
Algorithm 2
Algorithm selecting representative negative examples

1: function SELNEGEXPS( p, U)

2: randomly selecting 10 percent of p and U respec-
tively as validation set V'

3p=p-VVu=U-YV;

4: identifying the initial reliable negative examples

5: Training one-class SVM classifier Cy based on p’
and U}

6: Classify U’ using Cy. The predicted negative set Ny
is used as the initial negative training set

7.U = U - N,

8: Training iteratively SVMs.

9: Classifier set Cs;

10: negative set Ns

11:i=1

12: while |U'| 2 4 *| p’| do

13: Training two-class SVM classifier C; based on p’
and Nj;

14: Cs(i) = C, Ns(i) = Ny;

15: Classify U’ by C;, N, is the predicted reliable nega-
tive set, where |N,| < m| P’ |;
16: N1 = N, + Ngy, where Ngy is the negative SVs of
C;

17:U"' = U - N,.

18:i=i+1;

19: end while

20: selecting representive negative examples set

21: for allC € Csdo

22: computing the F1 on V

23: end for

24: return RN from Ns with maximum F1

25: end function

Training the SVM for predicting genes function

After enlarging the positive examples set and extracting
the representative negative examples, we merge these
two kinds of examples into a training set p U RN. A
SVM classifier with RBF kernel is trained on it. Grid-
search technique [22] is used to search the optimal
parameters ¢ and g and an optimal SVM classifier can
be successfully obtained.
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