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Abstract

Background: Genomic islands (GIs) are clusters of alien genes in some bacterial genomes, but not be seen in the
genomes of other strains within the same genus. The detection of GIs is extremely important to the medical and
environmental communities. Despite the discovery of the GI associated features, accurate detection of GIs is still far
from satisfactory.

Results: In this paper, we combined multiple GI-associated features, and applied and compared various machine
learning approaches to evaluate the classification accuracy of GIs datasets on three genera: Salmonella,
Staphylococcus, Streptococcus, and their mixed dataset of all three genera. The experimental results have shown
that, in general, the decision tree approach outperformed better than other machine learning methods according
to five performance evaluation metrics. Using J48 decision trees as base classifiers, we further applied four
ensemble algorithms, including adaBoost, bagging, multiboost and random forest, on the same datasets. We found
that, overall, these ensemble classifiers could improve classification accuracy.

Conclusions: We conclude that decision trees based ensemble algorithms could accurately classify GIs and non-
GIs, and recommend the use of these methods for the future GI data analysis. The software package for detecting
GIs can be accessed at http://www.esu.edu/cpsc/che_lab/software/GIDetector/.

Background
Genomic islands (GIs) are clusters of genes in a chro-
mosome that are horizontally transferred from other
organisms. Depending on the genetic elements of these
genes, GIs can be sub-categorized into (a) pathogenicity
islands (PAIs), where genes encode for virulence factors
[1]; (b) metabolic islands (i.e., genes encode adaptive
metabolic properties) [2]; (c) antibiotic islands (encode
antibiotic resistance genes); or (d) secretion islands
(encode secretion system genes) [3]. Since different
kinds of GIs have different genetic elements, and their
sizes might range from 5-500 kilobase pairs, it is a chal-
lenging to accurately detect and characterize all GIs in
any genome.

With the explosive growth of fully sequenced gen-
omes, the approach of using comparative genomics ana-
lysis to detect GIs becomes possible. The comparative
genomics approach assumes the availability of at least
two or more genomes of related species and strains for
any query genome, and it considers the regions with
limited phylogenetic distribution in the query genome
to be GIs. To our best knowledge, MobilomeFinder [4],
MOSAIC [5] and IslandPick [6] use the comparative
genomics approach to detect GIs. The major limitation
of this approach is that about half of the query genomes
do not have minimum number of related species/strains
for comparative genome analyses [6]. Thus, detecting
GIs in such query genomes may not be applicable. In
addition, such methods may also need manual selections
of genomes.
An alternative approach of detecting GIs is to use the

structural features of GIs. GIs often contain mobile
genes such as integrase and transposes. Cheetham and
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Katz [7] discovered that one PAI in the chromosome of
Dichelobacter nodosus carries an integrase, which was
acquired from Escherichia coli phage. GIs are usually
flanked by direct repeat (DR) sequences, in which each
DR is 16-20 long with nearly perfect sequence repeti-
tion, or inverted repeat sequence elements (IS) [8]. In
addition, the mobile gene products usually play the roles
in inserting and excising of the genomic regions by
recombination between the flanking repeats [9]. Another
interesting property Hacker and Kaper found is that 75%
of the insertion sites of GIs are at the 3′-end of a trans-
fer RNAs (tRNAs) [2].
Another interesting feature that can tells GIs from

non-GIs is based on the sequence composition of the
genome. Typically, each genome generally has its own
unique sequence composition signature, and thus the
sequence compositions between GIs, which are from
an alien genome, and the rest of the host genome are
different. For instance, the measurement of guanine
and cytosine (G+C) contents in a chromosome showed
that 20-30% genomic regions carried atypical G+C
contents which were possibly GI-associated [10]. The
combination of codon bias and Codon Adaption Index
(CAI) was used to detect alien genomic regions
[11,12]. Besides, Karlin [13] used dinucleotide fre-
quency difference (δ* difference) to identify possible
GIs. In order to improve the discrimination power for
detecting alien gene clusters, Tsirigos and Rigoutsos
[14] extended the 2 mers (i.e., δ* difference) to 8-9
mers. Recently, Vernikos and Parkhill [18] proposed a
new model, interpolated variable order motifs, to
detect horizontally acquired genes. This new method
overcomes the low discrimination power problem
using the lower-order motif models, and the extremely
low frequency problem of observed motifs using the
higher-order motif models.
In order to improve the detection power, the integra-

tion of multiple GI-associated features for detecting GIs
may be applied. IslandPath [16] is a web-server that dis-
plays the G+C contents of open reading frames (ORFs),
δ* difference (dinucleotide), the location of mobile
genes, and the location of tRNAs. IslandPath leaves
users to judge whether a genomic region are GIs or not,
based on provided multiple feature values. A recent
study on IslandPath has shown that using the feature of
δ* difference only leads to the low specificity problem,
while using the combined features of δ* difference and
mobile gene leads to the low sensitivity problem [6].
Garcia-Vallve et al. [17] used a simple rule-based algo-
rithm to identify horizontally acquired gene cluster. The
gene cluster is considered to be horizontally acquired if
either the G+C content and codon usage deviate by
more than 1.5 standard deviations from the mean
values, or the G+C content is extremely high or low.

Recently, Vernikos and Parkhill [18] combined multiple
GI-associated features such as sequence composition
and mobile gene, and used Relevance Vector Machine
(RVM), a model similar to Support Vector Machines
(SVMs) but exploiting fewer basis functions, to classify
GIs. While multiple features have been used in a few
studies previously, comprehensive machine learning
approaches and performance comparison have not been
systematically studied, leaving room for improvement
for predicting GIs.
In this paper, we present our work about classifying

several genomic island datasets using supervised
machine learning algorithms, and show that decision
tree method perform better than other machine learning
models including naive Bayesian, Bayesian networks,
neural networks, simple logistic and support vector
machines (SVMs) in general. We will show decision tree
based ensemble algorithms can further improve classifi-
cation accuracy by up to 5.9%.

Results and discussion
Feature analysis
In this study, we used the datasets of GIs and non-GIs
from three genera: Salmonella, Staphylococcus, and
Streptococcus. For each instance (either GI or non-GI)
of these datasets, eight feature values, i.e., Interpolated
Variable Order Motif (IVOM), Insert point, Size, Den-
sity, Repeats, Integrase, Phage and RNA, were obtained.
The description summary of the eight features is listed
in Table 1 (See Methods for more details).
In order to evaluate each of eight features, we define

the signal to noise ratio (G2N) as the distance of the
arithmetic means of the GI and non-GI classes divided
by the sum of the corresponding standard deviations, i.e.,
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Table 1 The descriptions of the features associated with
genomic islands

Feature Description

IVOM Interpolated Variable Order Motif compositional score
(Relative Entropy)

Insertion
Point (IP)

Binary: “1” if within a CDS locus, “0” otherwise

Size Size of each genomic region in bp

Density Number of genes per kb

Repeats Binary: “1” if repeats present, “0” otherwise

Integrase Binary: “1” if containing integrase-like protein domain,
“0” otherwise

Phage Binary: “1” if containing phage-related protein domain,
“0” otherwise

RNA Binary: “1” if containing non-coding RNA, “0” otherwise
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where μGI and μnon_GI are the mean feature values
from the GI dataset and non-GI dataset, respectively.
sGI and snon_GI are their standard deviations from the
GI dataset and non-GI dataset.
We analyzed the feature analyses for the genera of

Salmonella, Staphylococcus, Streptococcus and their all
mixed-up datasets. The evaluation of the eight features
on these four datasets shows that Integrase, Phage and
Repeats are the most informative features. This can be
easily to see in the datasets of Streptococcus, where the
G2N values of Integrase, Repeats and Phages are 1.02,
0.94 and 0.82 respectively (See Table 2). The effective-
ness of these features in both individual genera and
their mixed-up datasets strongly suggests the existence
of mobile elements and flanking repeats in all GI
families (Table 2 and Additional file 1).
The effectiveness of some features is genus-specific.

For instance, the feature of Insertion point in the CDS
is very informative in the genera of Streptococcus and
Staphylococcus, but not in Salmonella. The feature of
RNA is also genomic-specific. Interestingly, unlike the
feature of Insertion point, RNA is informative for the
genus of Salmonella, with small contribution for the
genera of Streptococcus and Staphylococcus. The feature
of Density seems to be uninformative to the genus of
Salmonella, but is informative to the genus of
Staphylococcus.
Out of eight features analyzed, the feature ‘Size’ is the

least informative. This can be explained by the random
sampling process of non-GI datasets, whose genomic
region size distribution was roughly the same as that of
GIs. However, in many cases, an uninformative single
feature does not imply that that feature will not contri-
bute to the whole model when multiple features are
applied. Previous studies have shown that the ‘Size’ fea-
ture was indeed contributive in the RVM model [18].

Decision tree approaches outperform other machine
learning algorithms
Decision tree classification is one of most widely used
machine learning methods. A decision tree classification

model is represented by a tree-like structure, where
each internal node represents a test of feature, with
each branch representing one of the possible test results,
and each leaf node represents the classification. Due to
the explosive growth of biological data in the past dec-
ade, the decision tree approach has many successful bio-
logical applications, including coding and noncoding
DNA classification [19], protein secondary structure pre-
diction [20], and operon structure classification [21]. In
this study, we used two decision tree methods, Classifi-
cation and Regression Tree (CART) and J48 (an
extended Java implementation version of C4.5 algo-
rithm), for the GI classification. Figure 1 demonstrates a
J48 decision tree model built based on the dataset of the
genus of Streptococcus.
For performance comparision, we also used other five

machine learning algorithms, including naive Bayesian,
Bayesian networks, logistic regression, neural network,
and SVMs. We used the WEKA machine learning pack-
age [22] because all these algorithms have been imple-
mented in the package. For the classification of each
algorithm, default parameters provided in the package
were used.
Table 3 lists five performance evaluation metrics (see

Methods for more details) of each algorithm on the
mixed-up dataset of three genera. As we can see from
Table 3, the J48 decision tree approach has the highest
sensitivity value (0.858), though its specificity is a little
bit lower than the other five algorithms. Since F-Mea-
sure, accuracy, and AUC take both sensitivity and speci-
ficity into consideration, they reflect the performance
more accurately than sensitivity and specificity do sepa-
rately. The J48 decision tree approach unanimously
showed the best performance using the metrics of

Table 2 Feature quality analysis on dataset of
Streptococcus

Feature G2N µGI sGI µnon_GI snon_GI
IVOM 0.51 21.06 12.97 9.96 8.73

IP 0.89 0.44 0.50 0 0

Size 0.06 19879 16390 17811 15890

Density 0.26 1.15 0.40 0.99 0.20

Repeats 0.94 0.74 0.44 0.08 0.27

Integrase 1.02 0.65 0.48 0.02 0.14

Phage 0.82 0.41 0.50 0 0

RNA 0.23 0.17 0.38 0.04 0.19

Figure 1 Decision tree model An example of a decision tree
model for the genomic island classification of Streptcoccus. Each
interior node is one of the features (i.e.,Density, Insertion point,
Integrase, IVOM, and Repeat), while each leaf node is the
classification (i.e., “Yes” indicates the test sequence segment is GI,
while “No” indicates it is a nonGI).
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F-Measure, accuracy and AUC. Another decision tree
approach, CART is ranked to the second best classifier.

Ensemble learning algorithms can improve classification
accuracy
Using the J48 decision tree approach as the baseline for
classification, we applied four decision-tree-based
ensembles, adaBoost, bagging, MultiBoost, and random
forest in classifying four datasets (Salmonella, Staphylo-
coccus, Streptococcus and their mixed-up dataset). Again
the WEKA package and default parameters were used.
Table 4 lists five performance evaluation metrics of each
ensemble algorithm on the mixed-up dataset. We found
that, in general, all ensemble algorithms could improve
classification.
For the visualization purpose, we also provide ROC

curves and their corresponding AUC values of four
ensemble algorithms, as well as the J48 algorithm, on
each of four datasets (See Figure 2). Bagging has the
highest AUC values based on the evaluation of four
datasets. Compared to those of a single J48 algorithm,
the AUC values of the bagging algorithm are 5% (0.92
versus 0.87), 6% (0.89 versus 0.83), 4% (0.94 versus
0.90), and 5% (0.94 versus 0.89) higher in the models of
Salmonella, Staphylococcus, Streptococcus, and mixed-up
three, respectively. It is interesting to see that adaBoost
performs the best among all algorithms in the dataset of
Salmonella, but no improvements in the datasets of Sta-
phylococcus and Streptococcus.
Since one genome may contain several or up to doz-

ens of GIs [6,15], we may unavoidably face the problem

of collecting small datasets for GI classification. The
datasets used in our study were from thirty-seven strains
of three different genera, with 331 GIs and 337 non-GIs.
The relative small datasets for the genera of Staphylo-
coccus and Streptococcus led to the unsmooth ROC
curves, as shown in Figure 2. As more genomes of the
strains in these genera will be sequenced and the train-
ing datasets become bigger, the ROC curves will be
more accurately reflect our classification algorithms.
We further investigated the contribution of each single

feature by using “leave-one-feature-out” model, where in
each experiment one feature was removed from all fea-
ture model. Figure 3 lists the ROC curves and their cor-
responding AUC values of the bagging algorithm on
each of four datasets (See Additional file 2 for the corre-
sponding one of adaBoost). By analyzing each feature
using the “leave-one-feature-out” model, We found that
the feature “Size” is very informative in the dataset of
Salmonella (Figure 3), where we can see that the classi-
fication power dropped by 11.3% of the AUC value
when the Size feature was removed. The high contribu-
tion of the Size feature in the model of Salmonella sug-
gests that other GI-associated features do correlate with
the Size feature. Another observation from these classifi-
cation results is that a single feature can be dropped
from the multiple features in many cases, without affect-
ing the classification performance dramatically. For
instance, the AUC values are 0.924, 0.924, 0.925 and
0.924 for the models without the feature of Integrase,
Insertion point, Phage, and Repeat, while the AUV value
for all feature model is 0.923. This analysis indicates the
contributions of some feature values are redundant,
even they are informative by applying the signal-to-
noise feature analysis.
Overall, when multiple features are considered

together, the most informative features are the Size and
IVOM features. This is in contrast with the signal-to-
noise analysis, where the features of Integrase, Phage
and Repeats are most informative. These results bring
us an attention that the feature selection should be
taken cautiously when applying the single feature
analysis.

Comparison to other approaches
We compared the classification results of our J48-based
bagging algorithm with a sequence composition based
approach, AlienHunter [15]. We found the overall accu-
racy of our approach on the genera of Salmonella, Sta-
phylococcus and Streptococcus are 14% (0.87 versus
0.73), 8% (0.79 versus 0.71), 8% (0.86 versus 0.78) higher
than that of AlienHunter, respectively. The superior per-
formance of our approach to AlienHunter is that our
approach uses multiple features, while AlienHunter uses
the information of sequence composition only.

Table 3 Performance comparison among machine
learning algorithms

Method Sensitivity Specificity F-Measure Accuracy AUC

CART 0.813 0.807 0.811 0.810 0.855

Naive Bayesian 0.589 0.893 0.710 0.743 0.811

BayesianNet 0.604 0.914 0.727 0.760 0.839

J48 0.858 0.843 0.850 0.850 0.892

Logistic 0.628 0.893 0.738 0.762 0.845

Neural Network 0.659 0.849 0.742 0.754 0.833

SVM 0.565 0.902 0.695 0.735 0.734

Table 4 Performance comparison between J48 and
decision tree based ensembles

Method Sensitivity Specificity F-Measure Accuracy AUC

J48 0.858 0.843 0.850 0.850 0.892

AdaBoost 0.890 0.910 0.902 0.900 0.932

Bagging 0.870 0.872 0.873 0.871 0.940

MultiBoost 0.880 0.871 0.876 0.876 0.942

Random Forest 0.819 0.889 0.859 0.850 0.908

The ensemble classifiers include bagging, AdaBoost, MultiBoost, random
forest.
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We also compared the bagging with the classification
results of the RVM method in a previous study [15],
and found that the AUC values of the bagging algorithm
are 9% (0.92 versus 0.83), 7% (0.89 versus 0.82), and 10%
(0.94 versus 0.84) higher in the models of Salmonella,
Staphylococcus, and mixed-up three, respectively, and is
same (0.94 versus 0.94) in the model of Streptococcus.

Application of trained models for the whole-genome
scale GI detection
The trained models based on J48 decision tree based
ensemble algorithms can be used to detect the whole

genome scale GIs of prokaryotic genomes. We have devel-
oped an automated software package that contains the
functionalities of downloading genome data, extracting GI
associated feature values, and predicting GIs based on our
trained models from this study. The software package was
written in C# and tested on Windows, and it is available at
http://www.esu.edu/cpsc/che_lab/software/GIDetector/.
The detailed description, as well as the usage, of our soft-
ware package will be addressed elsewhere (in preparation).
Currently, the software contains models for the genera

of Salmonella, Staphylococcus, Streptococcus. Thus, it is
advisable to use the models of the same genus to detect

Figure 2 ROC curves of decision tree based ensembles For each dataset of Streptococcus, Staphylococcus, Salmonella, and all-three. ROC
curves of adaBoost, bagging, multiBoost, random forest, and single J48 are calculated.
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any genome belonging to these three genera. For the GI
detection of the other species, we provide a general
model which was trained on three mixed datasets. The
low decreasing of classification accuracy on the tests of
all mixed datasets suggests that the models of different
genera share a super GI structure model, which is fairly
applicable to any other genomes. With more sequenced
genomes available, we believe that more GIs will be stu-
died, confirmed and assembled. To this end, our soft-
ware package also provides a platform for users to build
GI models for their own needs.

Conclusions
In this paper, we have presented a comparative study
applying several machine learning algorithms for classi-
fying the genomic island dataset. Our experimental
results have shown that the J48 decision tree approach
performed very well based on multiple performance eva-
luation metrics. Furthermore, decision tree based
ensemble algorithms were shown to improve the perfor-
mance over the single decision tree algorithm. These
results suggest that such decision tree based ensembles
can be applied for genomic island classification.

Figure 3 ROC curves for the “leave-one-feature-out” models using bagging For each dataset of Streptococcus, Staphylococcus, Salmonella,
and all-three. ROC curves of the “leave-one-feature-out” models are calculated.
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The analyses of the contribution of single features by
using signal-to-noise analysis and leave-one-feature-out
analysis, suggests that feature interaction is quite com-
plicated in this domain. While the single feature analysis
sheds new lights on the utility of each feature, it does
not tell us that it will be informative or redundant when
multiple feature models are integrated.

Methods
GI and non-GI Datasets
We obtained the datasets of GIs (positives) and non-GIs
(negatives) of genus Salmonella, Staphylococcus, and
Streptococcus processed by Vernikos and Parkhill [18].
The detection of GIs was based on the fact that a geno-
mic region limited in one lineage was more likely to
have been horizontally acquired than to have been
deleted independently from multiple lineages [23]. On
the other hand, if a genomic region that is present in
one lineage and most of strains of another lineage, we
consider the genomic region that is missing in some
strain of another lineage is involved in the deletion,
rather than horizontally acquired. Based on these stu-
dies, putative GIs could be derived by combining com-
parative analysis and the maximum parsimony models
[24]. The numbers of GIs selected from the genus Sal-
monella, Staphylococcus and Streptococcus were 211, 54
and 66, respectively, with the total positives of 331.
For each detected GI of a genome, a corresponding

non-GI with the same genomic region size was ran-
domly sampled within the inter-GI regions. The redun-
dant non-GIs that sampled from the different strains of
the same genus were removed, and the sampling results
of non-GIs for genus Salmonella Staphylococcus and
Streptococcus were 210, 53 and 74, respectively, with the
total negatives of 337.
For each instance (either GI or non-GI) of these data-

sets, eight feature values, i.e., IVOM, Insert point, Size,
Density, Repeats, Integrase, Phage and RNA, were
obtained. The Interpolated Variable Order Motif
(IVOM) score measures the composition bias of a geno-
mic region relative to the background genomic region
by using the relative entropy of both low and high order
motifs in a genomic region over the background genome
[15]. Repeats were detected by the REPuter [25] pro-
gram which starts with finding exact repeats, and then
significantly degenerated repeats to allow mismatch,
insertion, or deletion. The protein domains associated
with integrases and phages were retrieved from the
Pfam protein families database [26]. Finally, RNA
regions was detected by tRNAscan-SE [27].

Problem formulation
The goal of this study is to construct classifiers that can
accurately classify the gnomic islands and non-genomic

islands from the genomic data in prokaryotic organisms.
The classifiers can then be used as the basis for classify-
ing any genomic segment in a whole genome. This is a
classical supervised learning problem that applies a
learning algorithm on the training data and performs
prediction on the test data. The training examples are a
set of tuples <x, c>, where c is the class label (i.e., either
genomic island (GI) or non-genomic island), and x is
the set of attributes for the instances. In this study,
eight attributes (IVOM, Insert point, Size, Density,
Repeats, Integrase, Phage and RNA) are included. The
learning algorithm is trained on the positive E+ (i.e.,
GIs) and negative E- (i.e., non-GIs) examples to con-
struct a classifier C(x) that distinguishes between these
examples.

Decision tree and decision tree based ensemble
algorithms
Decision tree
In this study, we use J48 in WEKA, the Java implemen-
tation of C4.8 algorithm. C4.8 is the latest research ver-
sion for the C4.5 algorithm, which is one of the best-
known and most widely-used decision tree algorithms.
C4.5 extends the ID3 algorithm by addressing several
important issues. The C4.5 algorithm handles numerical
attributes and missing values, it also incorporates post-
pruning process to handle the over-fitting problem.
The ID3 algorithm [28] implements a top-down

greedy search schema to search through all possible tree
spaces. It starts with all training set (S) and chooses the
best feature as the root node. The best feature should
have the highest calculated value of information gain
(IG), which is defined as

IG S A E S
S

S
E Sv

v Value A

v( , ) ( )
| |

( )
( )

= −
∈
∑ (2)

where E(S) is the entropy of S, which in turn is
defined as

E(S) = –pGIlog2pGI – pNGlog2pNG (3)

where pGI is the probability that the selected dataset is
of GI (i.e., the percentage of GIs in S), and conversely,
pNG is for non-GI. Value(A) is the set of all possible
values for the feature A, one of eight features in this
study. Sv is the subset of S for which feature A has the
value of v (i.e., Sv = {s Î S|A(s) = v}).
The ID3 algorithm splits the set based on the possible

values of the selected best feature. If the all instances in
a subset have the same output value (i.e., either GI or
non-GI), then the process stops for that branch, and
that node is a terminal node. If the subset does contain
instances from two classes (both GI and non-GI), this
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process will be repeated until there are no further dis-
tinguishing features can be determined.
Bagging
Bootstrap Aggregating [29], better known as bagging, is
a method whose classification takes the majority votes
of multiple classifiers thus forming a hypothetical “com-
mittee”. Each classifier in the committee is un-weighted
and each classifier is a decision tree model in this study.
Each decision tree classifier model is trained on a subset
of the initial training set. The training set of each classi-
fier model can be sampled by bootstrap sampling, i.e.,
randomly selecting a subset of given dataset with repla-
cement, allowing for sample values to be independent of
one another.
AdaBoost
Adaptive boosting (adaBoosting) [30] uses the weighted
data sampling and voting scheme. The algorithm starts
by building the first base classifier, which is trained on
the dataset with equal weights. For the construction of
subsequent classifiers, the instances misclassified by the
previous classifier are assigned higher weights, while the
weights of the instances that are correctly classified
remain the same. The weights of all instances in the
whole dataset are then normalized so that all weights
add up to 1, and then used for sampling for the next
classifier. The final classification for an instance is based
on the classifications by all classifiers, with each classi-
fier weighted also. The class with the highest weighted
votes is the final classification.
MultiBoost
In the MultiBoost algorithm [31], the classification is the
weighted aggregate of multiple committees, rather than
un-weighted aggregating as in bagging. Furthermore,
each committee of MultiBoost itself is a decision tree
ensemble known as AdaBoost [32]. AdaBoost is a
weighted aggregating of committees, where each com-
mittee member is a basic decision tree model. Each
decision tree classifier is constructed on a subset of
given dataset. The sampling of the subset of dataset is a
random sampling with replacement for the first classifier
construction. In later classifier construction, however,
the instances misclassified in previous classifiers are
assigned high weights. The detailed algorithm and the
determination of weights can be referred to in [32].
Random forest
Random forest [33] is similar to bagging in that both
use the bootstrap sampling technique to select the sub-
set of the base training dataset to train decision tree
models, and both use the un-weighted aggregating of
committees for the final classification. However, the
selection of the best feature in the process of the deci-
sion tree structure is different. In the random forest
approach, m features out of M features are randomly

selected, and the optimal value of m is usually the
square root of M. The best feature out of m features is
determined based on the calculated information gain. In
addition, each tree is fully grown and not pruned in ran-
dom forest.

Performance evaluation
A ten-fold cross-validation scheme is used to evaluate
the classification accuracy of all classifiers. In particular,
the known GI and non-GI datasets are evenly separated
into ten parts, and the first part is evaluated based on
the model trained from the remaining nine parts. This
process continues until all ten parts have been evalu-
ated. The overall performance metric is the average of
all ten separate evaluations. True positives (TP) are the
number of GIs predicted to be GIs. False negatives (FN)
are the number of GIs predicted to be non-GIs. True
Negatives (TN) are the number of non-GIs predicted to
be non-GIs. False positives (FP) are the number of non-
GIs predicted to be GIs. We focus on the following vali-
dation measures:

Sensitivity = TP/(TP + FN) (4)

Specificity = TN/(TN + FP) (5)

Accuracy = (TP + TN)/(TP + TN + FN + FP) (6)

F – measure = 2 * Sen * Spec/(Sen + Spec) (7)

We have also used the area under the ROC (Receiver
Operating Characteristic) curve (AUC) to measure the
classification performance. The AUC value is the per-
centage of correctly classified one pair of samples, with
each from one class. The AUC takes the value between
0 and 1, and a random classifier has the AUC value of
0.5. Theoretically, a well-performing classifier should
have a high AUC value.

Additional file 1: Feature quality analysisFeature quality analysis.
This file contains feature analysis on three datasets, Staphylococcus,
Salmonella, and all-three mixed.

Additional file 2: ROC curves for the “leave-one-feature-out” models
using adaBoost.
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