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Abstract

Background: In addition to determining static states of gene expression (high vs. low), it is important to
characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed
but also poised for activation. However, the responsiveness of genes to perturbations has never been studied
systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to
analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not
exist before.

Results: We estimated the responsiveness of all genes in mouse ES cells using our recently published database on
expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes

(N = 4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have
regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was
evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (N =

and GABP binding motifs in promoters.

specificity.

9562), which did not change their expression much following any perturbation, were enriched in housekeeping
functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene
expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks,
and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1,

Conclusions: We thus propose the responsiveness of expression to perturbations as a new way to define the
dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue

Background

Gene expression is regulated by the interplay of various
kinds of factors including transcription factors (TFs)
that bind to DNAs in a sequence-specific manner, the
chromatin structure [1-4], and the association of genes
with the nuclear lamina/matrix [5,6]. Many TFs directly
switch gene expression on or off, whereas others factors
may serve as constraints (e.g., by controlling the access
of TFs to DNA). Thus, in addition to identifying static
states of gene expression (e.g., high vs. low) it is
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important to characterize the dynamic status, which is
the capacity to modify the level of expression. For exam-
ple, genes with H3K27me3 chromatin marks at promo-
ters are not only suppressed (static state) but also
poised for activation (dynamic state) [7]. Responsiveness
of genes to perturbations is a dynamic property that was
never studied systematically because such studies
require the analysis of expression profiles of cells
responding to a large variety of disturbances, and such
databases did not exist before. The only comparable
study used indiscriminately all data for a specific human
array platform in the Gene Expression Omnibus (GEO)
database, which included both perturbations of the same
cell type as well as differences between various cell
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types, tissues, and organs [8]. Thus, it did not distin-
guish between responsiveness of genes and their tissue-
specific expression.

This paper examines the responsiveness of all genes in
mouse ES cells estimated using our recently published
database on gene expression changes after controlled
induction of 53 transcription factors (TFs) and other
genes [9]. In this experiment, we established mouse ES
cell lines in which individual transgenic TFs were
induced by the removal of doxycycline. Each manipu-
lated TF modifies the expression of many downstream
target genes, including other TFs, which can in turn
activate or repress genes even farther downstream.
Thus, we can quantify responsiveness of not only direct
targets of manipulated TFs, but also indirect (i.e., sec-
ondary, tertiary) target genes. We show that responsive
genes mostly have regulatory functions and a propensity
to become tissue-specific upon differentiation, whereas
many non-responsive genes have housekeeping func-
tions. To examine the relationship between the respon-
siveness and tissue-specificity of gene expression, we
performed whole-genome expression profiling of 15
mouse adult organs/tissues. Responsiveness of genes in
undifferentiated ES cells appears to be a better predictor
for tissue-specific gene expression than other known
markers (presence of a CpG island and TATA box).
Among genes with CpG islands, responsiveness is
strongly associated with their epigenetic marks (e.g., his-
tone modifications such as H3K27me3 and H3K36me3),
as well as with binding of certain TFs in promoters.
These results suggest that TF-responsiveness can be
used as a novel indicator of the dynamic status of genes.

Results

Definition of TF-responsiveness

We define TE-responsiveness as a gene’s readiness for
expression change, irrespective of direction (up or
down), upon an induced change in the abundance of
various TFs. Some genes may change their expression
following the manipulation of a wide range of TFs,
whereas others may react specifically to one or a few
TFs. It is thus important to assess TF-responsiveness
based on the data from a wide range of TF manipula-
tions. To differentiate between upregulation and down-
regulation of genes, we use three indicators of TF-
responsiveness for each gene: maximum logratio for
upregulation, U; downregulation, D;; and the average
for both up- and downregulation, B;:

u; = m};ix(xij); D, = m]ax(—xi]-); B; = average(U;, D;); (1)
where x;; is the logratio of expression change of i-th gene

after perturbation j. Term “responsiveness” is similar to
“sensitivity”, however the latter term is traditionally
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applied to a single type of perturbation (as in “sensitivity
analysis”). Thus, here we use the term “responsiveness” to
describe the combined sensitivity of gene expression to
various perturbations.

Data sets used in the study

A list of gene expression data sets used in this study is
given in Additional File 1. To analyze TF-responsiveness
of genes in ES cells, we used the following two data
sets. First, the “NIA ES bank, 53 genes” data includes
gene expression profiles of ES cells 2 days after the
induction of each of 53 genes (50 TFs and 3 other
genes) [9]. Figure 1A shows a typical response of genes
(x;) located sequentially in a 7.65 Mb window on Chro-
mosome 1. Second, the “NIA Other ES perturbations”
data include time-courses expression profiles 1-3 days
after downregulation of the PouSfI or Sox2 genes
[10-12], and expression profiles of ES cells 2 days after
Leukemia Inhibitory Factor (LIF) removal, addition of
retinoic acid (RA) [13], or addition of inhibitors of
FGER (PD173074), MEK (PD98059), and GSK (BIO) sig-
naling pathways. The expression profiles of ES cells after
treating them with inhibitors of FGFR, MEK, and GSK
for 2 days were newly generated for this work and sub-
mitted to the public database (GEO accession number
GSE19814). The results showed that all three inhibitors
downregulated Rxrg and WtI and upregulated Gbx2 and
Plagll (Zacl). We also observed inhibitor-specific
effects: FGFR inhibitor caused upregulation of Gata3
and Gata2 and downregulation of Myc; MEK inhibitor
caused upregulation of Gbp3 and downregulation of
Ergl and Nr4a3; and GSK inhibitor caused upregulation
of T, Nkx1-2, MsxI, and Evxl and downregulation of
Tcfec and Rfx4.

To analyze the tissue specificity of gene expression, we
used two datasets of expression profiles. First, the “NIA
Differentiated cells/tissues” set includes expression pro-
files of 15 mouse adult organs and tissues (new data:
GEO accession number GSE19806), as well as published
data on gene expression in trophectoderm stem (TS)
cells, neural stem (NS) cells, placenta, several lines of
fibroblasts, and newborn mice [10,14]. The “NIA Differ-
entiated cells/tissues” microarray data were newly gener-
ated for this work and submitted to the public database
(GEO accession number GSE19806). Second, the “GNF
Mouse tissues” set includes expression profiles of 51 tis-
sues from the mouse Gene Atlas V2 [15] after excluding
expression profiles of oocytes, early embryos, and
gonads, as they may include undifferentiated cells.

We also used TF binding data, which was inferred from
published ChIP-seq data [9,16,17] as well as data on
whole-genome chromatin modifications for H3K4me3,
H3K27me3, H3K36me3 [7], and H3K9me3 [18]. Relative
expression of genes in ES cells was estimated using
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Figure 1 TF-responsiveness of genes in ES cells. (A) A heatmap of gene response to the induction of 50 transcription factors and 3 other
genes in ES cells; responding genes are plotted in the order of their genome locations in chr1:130,400,000-138,050,000, as listed in Additional
File 2. (B) Correlation between log-transformed TF-responsiveness of genes for upregulation and downregulation. (C) TF responsiveness plotted
against log-expression of genes estimated from published RNA-seq data [19]; groups of responsive, non-responsive, and borderline genes are
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RNA-seq data [19] and transcript coordinates from the
NIA Mouse Gene Index [20]. See the Methods section
for further detail.

Estimating the TF-responsiveness

Indicators of TF-responsiveness (U;, D; and B;) were esti-
mated for 18,544 non-redundant genes based on the “NIA
ES bank, 53 genes” data set (Additional Files 2, 3).
Although the microarray platform we used represented
25,030 non-redundant genes, we analyzed only those
genes (N = 18,544) whose expression was determined with
sufficient accuracy and whose transcription start sites
(TSS) were known (see Methods for further detail). TF-
responsiveness for upregulation (U/;) and downregulation

(D;) are positively correlated (r = 0.329 in the log-scale),
which indicates that genes upregulated by overexpression
of some TFs tend to be downregulated by overexpression
of other TFs (Figure 1B). A heatmap also showed that
many genes that were strongly upregulated following one
perturbation were also strongly downregulated by another
kind of perturbation (Figure 1A). The positive correlation
between U; and D; was the basis for considering TF-
responsiveness as a general dynamic state of a gene that
can be applied to both upregulation and downregulation
of its expression. To check if measurements of TF-respon-
siveness were reproducible, we analyzed an independent
data set “NIA Other Perturbations.” Estimates of TF-
responsiveness, B;, from both data sets showed strong
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correlation (r = 0.614, in the log-scale), indicating a high
level of reproducibility and independence from the pertur-
bation type (Additional Files 4, 5).

As the spectrum for TF-responsiveness of genes was
continuous, we split all the genes examined for expres-
sion profiling into three parts: responsive (top 25% of
genes), borderline, and non-responsive (bottom 50% of
genes) genes (Figure 1C). Because genes with low expres-
sion generally had higher levels of TF-responsiveness
than highly-expressed genes, we used floating thresholds
to separate these groups of genes (Figure 1C) (see details
in Methods). All responsive genes had statistically signifi-
cant responses to manipulation of TFs, based on
ANOVA (FDR < 0.05). Further analysis is focused on the
comparison of two extreme groups of genes: responsive
(N = 4746) and non-responsive (N = 9562).

Because there is a possibility that genes with high
expression show weak response to perturbations simply
due to saturation or miscalibration of microarray signals,
we tested the sensitivity of the microarray by serial dilu-
tion of mRNA [14]. Our results showed that saturation
was detected only in 0.2% of genes, and microarray signals
were well-calibrated in the full dynamic range of gene
expression levels. The difference in TF-responsiveness
among genes cannot be attributed to differential mRNA
stability because groups of responsive and non-responsive
genes had similar distributions of mRNA decay rates
(Additional File 6). Data on mRNA degradation was taken
from our database (http://lgsun.grc.nia.nih.gov/mRNA)
[14]. The mean mRNA decay rate of responsive genes
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(0.1307 hr'') was only 15.4% higher than that of non-
responsive genes (0.1133 hr™'); this difference is too small
to explain a 3-fold gap between averages of TF-responsive-
ness in these groups of genes (0.5224 vs. 0.1745).

Functional annotation of responsive and non-responsive
genes

To characterize responsive and non-responsive genes, we
first analyzed their possible functions by examining Gene
Ontology (GO) classifications. Overrepresented GO terms
for responsive genes included various kinds of regulatory
functions (e.g. “organ development”, “transcription factor”,
“nervous system development”, and “cell motility”)
(Table 1). The full list of overrepresented GO terms with
statistical analysis can be found in Additional File 7. By
contrast, overrepresented GO terms for non-responsive
genes included various kinds of housekeeping functions
(e.g. “protein transport”, “RNA processing”, “translation”,
“cell cycle phase”, and “DNA repair”). It is well known that
housekeeping genes have stable expression levels in
various kinds of cells and tissues [8,21], but our data
shows that housekeeping genes are also somehow shielded
from a wide variety of artificial disturbances. This finding
indicates that genes with regulatory and housekeeping
functions have clearly different dynamic states.

TF-responsiveness of genes in ES cells is correlated with
tissue-specific expression upon cell differentiation
Because non-responsiveness appeared to be associated
with housekeeping functions, we decided to check if, on

Table 1 Gene Ontology (GO) categories over-represented in groups of responsive and non-responsive genes

Group of genes GO id GO name N genes p-value Enrichment ratio

Responsive genes with CpG islands GO:0048513 Organ development 543 0 2.233
GO:0003700 Transcription factor 323 0 2.198
GO:0007399 Nervous system devel. 268 0 2.351
GO:0007155 Cell adhesion 211 0 2032
G0O:0006928 Cell motility 134 6.6027E-12 2.095
G0:0009888 Tissue development 125 1.0458E-13 2322
GO:0031012 Extracellular matrix 115 3.245E-11 2175
GO:0001568 Blood vessel devel. 107 0 3313
GO:0007507 Heart development 85 2.8866E-15 3122
GO:0016055 Wnt receptor signaling 60 1.1637E-10 3.008

Non-responsive genes with CpG islands GO:0015031 Protein transport 370 0 2.147
G0O:0006396 RNA processing 236 0 3403
GO:0006412 Translation 228 0 3.154
GO:0044429 Mitochondrial part 206 44409E-16 2475
G0:0022403 Cell cycle phase 161 4.5759E-10 2141
GO:0016887 ATPase activity 158 1.3717E-10 2278
GO:0008380 RNA splicing 133 0 5358
GO:0006281 DNA repair 124 1.6187E-13 3.088
GO:0006260 DNA replication 92 1.5896E-09 2.864
GO:0006457 Protein folding 78 6.4245E-07 2484
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the contrary, genes that are responsive in ES cells are
associated with tissue-specific functions in differentiated
cells. We used two datasets on murine gene expression:
“NIA Differentiated cells/tissues” and “GNF Mouse tis-
sues” (Additional Files 8, 9). The degree of tissue specifi-
city of genes was quantified by the information measure,
which is based on Shannon’s entropy [21]. We found that
the information measure increased with increasing TF-
responsiveness of genes in ES cells (Figure 2A, B). The
results were consistent among two databases, but the
relationship between TF-responsiveness and tissue speci-
ficity was stronger in the NIA database. The results thus
indicate that responsive genes in undifferentiated ES cells
tend to become tissue-specific upon differentiation.

It is conceivable, however, that the association of TF-
responsiveness with tissue-specificity may have resulted
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from a non-random selection of TFs used in our perturba-
tion experiments. To address this issue, we repeated the
analysis after dividing the data to 3 functional subsets of
TFs according to their expression in ES cells and differen-
tiated organs and cells, as well as information measure of
tissue specificity: (1) ES cell-specific (Dnmt3b, Eed,
Gadd45a, 1d1, Kif4, Mybl2, Mycn, Nanog, NrObl, Nr5a2,
PouSfl1, Sall4, Sox2, Tcea3, Whsc2, and Zscandc), (2) tis-
sue-specific (Ascll, Ascl2, Cdx2, Dix3, Eomes, Esx1, Gata3,
Mef2c, Msc, Myodl, Otx2, Rhox6, Sfpil, Sox9, and T), and
(3) widely expressed (Aes, Atf3, Cbx8, Ctnnbl, EIf1, Etv3,
Foxj2, Myc, Nr2f2, Nripl, Rxra, Smadl, Smad4, Smad?7,
Stat3, Suzl2, Tcf3, Tcf4, and Zfand3). These subsets
of induced TFs yielded highly correlated values of
TF-responsiveness (r > 0.7) (Additional File 10, A-C),
which were strongly associated with tissue specificity of
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Figure 2 Association of TF-responsiveness in ES cells with tissue-specificity. (A, B) Scatterplot of average tissue-specificity measured by the
information of mRNA abundance in: GNF and NIA databases, respectively, versus TF-responsiveness (B); each dot represents the average for 100
genes with similar TF-responsiveness. (C) Percent unique variance of tissue-specificity (information) explained by TF-responsiveness (B), presence
of CpG island (CpG), presence of TATA box, and interaction of the two later factors (CoG*TATA), based on multi-variate linear regression; “n/s" =
non-significant, otherwise it is significant (p < 0.05). (D) Fraction of the top 1000 tissue-specific genes that fall into four categories based on the
presence of a CpG island (CpG) and TATA box. (E) Comparison of TF-responsiveness in tissue-specific genes from the GNF database (same as D)
and in other genes, all differences are significant (p < 0.05).
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responding genes for all subsets of manipulated TFs
(Additional File 10, D-F). Thus, the association between
TE-responsiveness with tissue-specificity is stable and does
not seem to be related to the function of manipulated TFs.

It has been reported that tissue-specific genes tend to
have a TATA box but no CpG islands [1,21]. Thus, we
used linear regression to assess the effect of these factors,
together with TF-responsiveness of genes in ES cells, on
the degree of tissue-specificity. In both databases (GNF
and NIA), the TF-responsiveness of genes in ES cells was
the best predictor of tissue specificity (Figure 2C, Addi-
tional File 11). Considering that 67.5% of responsive
genes have CpG islands, the correlation between TF-
responsiveness and tissue-specificity may seem contradic-
tory to the notion that tissue-specific genes have no CpG
islands. This prompted us to further examine the charac-
teristics of the top 1,000 tissue-specific genes selected on
the basis of the highest information measure. We found
that more than a third (33.4-34.1%) of these tissue-speci-
fic genes had CpG islands (Figure 2D). This is consistent
with another observation that 24% of brain-specific pro-
moters have CpG islands, although the proportion of tis-
sue-specific promoters with CpG islands in other tissues
is lower (9 - 14%) [22]. Our data showed that tissue-spe-
cific genes with CpG islands had higher TF-responsive-
ness in undifferentiated ES cells than non-tissue-specific
genes with CpG islands (Figure 2E), indicating their spe-
cial dynamic status. TATA box is over-represented
among tissue-specific genes (30.1-31.4%) compared
to other genes (15.1%), but it has only a weak association
with TF-responsiveness of genes with CpG islands
(Figure 3B).

TF-responsiveness of genes in ES cells is correlated with
histone modifications and binding of TFs

To examine the relationship between TF-responsiveness
of genes and their known features, we analyzed available
data on chromatin modifications and binding of various
TFs to gene promoters in ES cells. First, we searched for
possible overrepresented sequence motifs (defined de
novo) in promoters of non-responsive and responsive
genes using CisFinder [23] and identified GABP, NRF1,
YY1, SREBP1, and MIT008 motifs for non-responsive
genes (Figure 3A). Motif SREBP1 was described by [24]
and MITO008 was over-represented in mammalian pro-
moters [25], although the TF that binds to this motif
remains unknown. The TATA box was over-represented
in promoters of responsive genes with CpG islands.
Next, we estimated the proportion of genes that carried
specific histone modifications, binding of TFs based on
published ChIP-seq data [7,16,18], and putative TF-
binding motifs identified above. The most striking dif-
ferences between non-responsive and responsive genes
were observed for genes with CpG islands: responsive
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genes tended to bear the H3K27me3 and H3K9me3
chromatin marks, whereas non-responsive genes tended
to have a H3K36me3 chromatin mark, binding of E2F1,
ZFX, MYC, and MYCN within 300 bp from TSS, and
binding motifs of GABP, NRF1, and YY1 in promoters
(Figure 3B, Additional File 12). Among genes with no
CpG islands, responsive genes were enriched in
H3K4me3 chromatin marks and binding of several TFs
to distal portions of promoters; however the effects of
these factors were much weaker than for genes with
CpG islands (Additional Files 12, 13).

In addition to qualitative categories of histone methy-
lation, we examined quantitative “strength” of methyla-
tion as represented by the number of ChIP-seq tags
within 1 Kb distance from TSS for H3K4me3 and 3 Kb
distance from TSS for H3K27me3 based on data from
[7]. Among genes with CpG islands, H3K4me3 chroma-
tin, and no qualitatively-assigned H3K27me3 peaks,
responsive genes had weaker H3K4 tri-methylation
levels and stronger residual H3K27 tri-methylation levels
than non-responsive genes (Figure 3C, D; Additional
File 14).

To further analyze the effect of major factors on the
TF-responsiveness of genes, we used linear regression
analysis, as this method helps distinguish true functional
relations between cell characteristics from mere correla-
tions [14]. Regression analysis of TF-responsiveness
measured by the index B; (eql) for the top 10 qualitative
factors and 2 quantitative factors (histone methylation
strength) identified from the comparison of responsive
and non-responsive genes revealed that a large propor-
tion of the variation in TF-responsiveness of genes with
CpG islands could be attributed to chromatin modifica-
tions, binding of TFs, and the presence of TF binding
motifs (R* = 37.51%) (Figure 4A, Additional File 15).
Especially, the presence of H3K27me3 and H3K36me3
chromatin marks and the strength of H3K4 and H3K27
tri-methylation had a major unique contribution to the
level of TF-responsiveness of genes. Binding of E2F1
and the presence of GABP binding motif also had a
strong effect. By contrast, regression analysis of genes
without CpG islands showed a weak dependency
between TF-responsiveness and 10 top factors (R* =
2.22%) (Figure 4B, Additional File 15).

The strongest association of H3K27me3, H3K36me3,
and H4K4me3 chromatin marks with the TF-responsive-
ness of genes with CpG islands prompted us to examine
this relationship in greater detail. The proportion of
genes with H3K27me3 marks, measured in groups of
100 genes with a similar level of TF-responsiveness,
increased with increasing TF-responsiveness (Bi),
whereas the proportion of genes with H3K36me3 marks
and the strength of H3K4 tri-methylation decreased
with increasing TF-responsiveness (Bi) (Figure 4C). This
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relationship remained the same even if TF-responsiveness ~ was measured using the alternative data set “NIA Other
of genes was measured by Ui or Di (Figure 4D,E), indicat-  Perturbations” (Additional File 16). Presence of the
ing that the association is not specific to either upregu- H3K27me3 chromatin marks among genes that were
lated or downregulated genes. Similar relationships with  upregulated during differentiation of ES cells is consistent
chromatin marks were observed if responsiveness of genes  with the previous finding that these genes are silent in ES
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cells but poised for activation [7]. However, as this chro-
matin mark was also overrepresented among downregu-
lated genes (Figure 4E), many genes with H3K27me3
marks were not fully suppressed in ES cells and were
poised for both upregulation and downregulation. Strong
downregulation of 5 genes with H3K27me3 chromatin
marks, selected on the basis of microarray data, was pre-
viously confirmed by PCR [9]. Similarly, the presence of
the H3K36me3 chromatin marks and strong tri-methyla-
tion of H3K4 among genes that were not upregulated fol-
lowing the induction of TFs is consistent with the notion
that these genes are already active and thus cannot be acti-
vated further [7]. However, this reasoning does not seem
to explain why genes with H3K36me3 chromatin and
strong tri-methylation of H3K4 had low TF-responsive-
ness for downregulation (Figure 4D).

Because the association of H3K27me3, H3K36me3,
and H3K4me3 chromatin marks with TF-responsiveness
of genes can also be mediated by their effects on expres-
sion level, we analyzed the relationship between TF-
responsiveness and chromatin status within groups of
genes with similar expression levels. For simplicity, we
limited the analysis to genes with CpG islands because
they had a strong correlation between TF-responsive-
ness and chromatin status. The analysis revealed that
the proportion of genes with H3K27me3 histone marks
was consistently higher among responsive genes than
among non-responsive genes with the same expression
level (Figure 4F). By contrast, the proportion of genes
with the H3K36me3 histone mark as well as the
strength of H3K4 tri-methylation was lower among
responsive genes than among non-responsive genes with
the same expression level, except genes with very low
expression, which had no H3K36me3 histone marks at
all (Figure 4G,H). Taken together, the data indicate that
association of H3K27me3, H3K36me3, and H3K4me3
chromatin marks with TF-responsiveness of genes is a
novel dynamic feature of chromatin modifications and is
not reduced to epigenetic control of stable gene expres-
sion levels.

Discussion

This study provides the assessment of the dynamic sta-
tus of mammalian genes in ES cells by the analysis of
their TF-responsiveness to manipulation of 50 TFs and
3 other genes. Comparison with an independent data set
shows that measurements of TF-responsiveness are
reproducible. The group of responsive genes, which are
readily upregulated or downregulated depending on the
kind of perturbation, appears to be enriched in regula-
tory functions. The group of non-responsive genes with
steady expression levels unchanged after various pertur-
bations is enriched in housekeeping functions. Respon-
sive genes in ES cells tend to become tissue-specific
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upon terminal differentiation. The TF-responsiveness of
genes in ES cells appears to be the best predictor of tis-
sue-specificity, which can be used in combination with
other predictors (e.g., TATA box and CpG islands). Tis-
sue-specific genes are enriched not only in the group of
genes with a TATA box and no CpG island, as was
found before [21], but also among genes with CpG
islands that have high TF-responsiveness in ES cells.
This is consistent with the previous estimate that 40%
of genes with CpG islands show tissue restricted expres-
sion [26-28].

TF-responsiveness of genes with CpG islands has a
strong association with chromatin modifications and
binding of certain TFs to promoters. The proportion of
genes with H3K27me3 chromatin marks increases,
whereas the proportion of genes with H3K36me3 chro-
matin marks as well as the strength of H3K4 tri-methy-
lation decreases with increasing TF-responsiveness of
genes. It is well known that H3K27me3 marks suppress
gene expression, and H3K36me3 marks are indicators of
genes with high expression [7,29]. However, our finding
shows that in addition to the effect on gene expression
level, these chromatin modifications are associated with
the TF-responsiveness of genes. Furthermore, we found
that binding of several TFs (E2F1, ZFX, and MYCN)
and the presence of TF binding motifs (NRF1, GABP,
and YY1) in proximal regulatory regions are associated
with low TF-responsiveness. Because these factors corre-
late negatively with the H3K27me3 chromatin mark
[29], it is possible that they can control the type of chro-
matin modification (i.e., facilitate H3K36me3 and inhibit
H3K27me3), and in this way indirectly reduce the TE-
responsiveness of genes. However, linear regression
shows that these TFs also have a direct negative effect
on TF-responsiveness that is not mediated by chromatin
modifications in ES cells.

How is gene TF-responsiveness formed and main-
tained in ES cells? Low TF-responsiveness can be caused
by tightly closed chromatin, absence of TF binding sites,
or missing cofactors of transcription regulation. Our
finding that promoters of many low responsive genes
are occupied by E2F1, ZFX, and MYCN, supports
another possibility that they have a very stable transcrip-
tion-initiation complex that occupies the promoter and
prevents binding of other TFs. Alternatively, it is concei-
vable that low TF-responsiveness of genes can be main-
tained actively via a stabilizing effect of negative
feedback: A slight increase of transcription caused by
external perturbation could increase the methylation of
H3K36 [30], which, in turn, increases deacetylation of
histones and decreases the level of expression, closing
the negative feedback loop. For example, the Eaf3 pro-
tein (subunit of the Rpd3S histone deacetylase complex)
in yeast binds to H3K36me3 and H3K36me2, causing
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deacetylation of histones [31-33]. Although the main
function of this effect is to suppress cryptic promoters
in the coding region [31], it may also cause some
decrease in the rate of normal transcription.

High TF-responsiveness of genes could be explained
by the presence of TF binding sites in the promoter, de-
condensed chromatin, and the presence of cofactors of
transcriptional regulation. However, mechanisms that
amplify the stimulating effect of TFs via positive feed-
back could also be conceived. For example, it is possible
to consider H3K27me3 histone modification as a key
player, as it is abundant among responsive genes with
CpG islands and has the strongest association with TF-
responsiveness (Figure 4A). Binding of TFs to promoters
marked with H3K27me3 initiates the first round of tran-
scription but subsequently removes the H3K27me3 his-
tone mark because the elongating form of RNA
polymerase II is known to associate with UTX demethy-
lase [34]. As the repressive chromatin domain shrinks,
the rate of transcription increases, causing further
reduction of H3K27me3 marks.

Because this is the first study of dynamic status of
gene expression, many questions remain un-answered. It
would be interesting to quantify the TF-responsiveness
of genes in differentiated cells and check if the same fac-
tors are associated with responsive and non-responsive
genes. After elucidating the mechanisms of TF-respon-
siveness, we could create conditions where certain genes
would be effectively activated following specific treat-
ments, or maintain stable expression levels in fluctuating
environments. Finally, an understanding of dynamic
gene expression profiles can help to reconstruct tran-
scription regulatory networks because potential main
nodes of this network are limited to the set of respon-
sive genes.

Conclusions

Responsiveness of gene expression to perturbations is a
new way to characterize the dynamic status of genes.
Responsive genes mostly have regulatory functions and
a tendency to become tissue-specific upon differentia-
tion, whereas non-responsive genes are enriched in
housekeeping functions. Responsive genes mostly have
H3K27me3 chromatin marks at their promoters, and
non-responsive genes are associated with H3K36me3
chromatin, stronger tri-methylation of H3K4, binding of
E2F1, and GABP binding motifs in promoters.

Methods

TF-responsiveness was measured from the published
data on the change of gene expression following induced
overexpression of 50 TFs and 3 other genes [9]. Expres-
sion of a transgene inserted in the ROSA26 locus was
induced by doxycycline withdrawal (Dox-), whereas
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control cells were continuously cultured in a Dox+ con-
dition. The effect of TF manipulation was measured by
the logratio of gene expression (Dox-/Dox+) on the 2nd
day after induction. We analyzed only those genes
whose expression was determined with sufficient accu-
racy (so that 1.5-fold changes were statistically signifi-
cant) and whose TSS were known. Thresholds of TF-
responsiveness that separate responsive and non-respon-
sive genes (Figure 1C) were estimated as 75-percentile
and 50-percentile, respectively, for two groups of genes
with log-expression (logl0, RNA-seq) from 0.5 to 1.5
and from 2.5 to 3.5; then thresholds were linearly inter-
polated as a function of gene expression in ES cells.

The following organs from 30-week old male mice of
C57BL/6 strain were used for gene expression profiling:
brain cortex, cerebellum, eyes, skeletal muscle, heart,
bone, liver, kidney, bladder, skin, visceral fat, lung, small
intestine, large intestine, and stomach. Mouse husbandry
and organ collection were approved by the Institutional
Animal Care and Use Committee (ASP# 220-LG-2011).
Although comparable data is available from the GNF
database [15], the advantage of our data is that we used
in-house designed microarrays[35] that represent a large
set of genes (N = 25030), and probes for many genes
are more sensitive compared to arrays used in the GNF
database. Mice were euthanized by cervical dislocation.
Total RNA was isolated by TRIzol (Invitrogen). Cy3-
CTP labeled sample targets were prepared with total
RNA by Low RNA Input Fluorescent Linear Amplifica-
tion Kit (Agilent). Cy5-CTP labeled reference target was
produced from mixture of Stratagene Universal Mouse
Reference RNA and MC1 cells RNA. Samples were col-
lected in 2 replications taken from different animals.

To characterize the effect of inhibitors, which are
known to support the pluripotent state of ES cells [36],
we treated B6R(5) mouse ES cells (C57BL/6 strain) with
FGEFR inhibitor PD173074 [37] (100 uM), MEK inhibitor
PD98059 [38] (25 uM), and GSK-3 inhibitor BIO [39] (2
uM) 24 hr after plating. Cells were grown without fee-
ders on gelatin-coated 6-well plates at 100,000 cells/well
(10* cells/cm?) in complete ES medium, which was
changed daily. Inhibitors dissolved in DMSO were
added 24 hr after plating and cells were harvested 48 hr
after treatment (72 hr after plating). Control cells were
treated with DMSO. RNA was extracted and processed
as described. Gene expression data were analyzed using
the NIA Array Analysis [40].

Whole-genome data on chromatin modifications
H3K4me3, H3K27me3, and H3K36me3 [7] were re-
mapped to the latest mouse genome (mm9, NCBI/NIH)
using the UCSC coordinate conversion tool (http://gen-
ome.ucsc.edu/cgi-bin/hgLiftOver). Tri-methylation of
H3K4 and H3K27 was counted for a gene if methylation
peaks identified using hidden Markov models and


http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgLiftOver

Sharov et al. BMC Genomics 2011, 12:102
http://www.biomedcentral.com/1471-2164/12/102

sliding windows was within 1 Kb from the TSS, whereas
tri-methylation of H3K36 was counted along the entire
transcript length. Genes with H3K9me3 marks with 5
Kb of TSS were taken from the reference [18]. Strength
of H3K4me3 and H3K27me3 methylation was assessed
by the number of ChIP-seq tags within 1 and 3 Kb from
TSS, respectively, based on the data from the reference
[7]. Expression levels were estimated using published
RNA-seq data [19] and transcript coordinates from the
NIA Mouse Gene Index, assembly mm9 [20], and
expressed in log-transformed number of tags per 1 Kb
transcript length. The RNA-seq method with random
tags is better for comparing expression levels of different
genes than microarrays because it does not have biases
related to the position of the oligo and its sequence.
Obtained gene expression values correlated well with
microarray results (r = 0.71, Additional File 17). A few
genes (N = 345) had no RNA-seq tags, possibly because
tags may have been assigned to a different gene copy in
the genome. The expression of these genes was interpo-
lated from microarray data (i.e., gene expression in Dox+
conditions) using linear regression. To plot the relation-
ship between TF-responsiveness and chromatin status,
genes were ordered by increasing TF-responsiveness and
split into sequential sets of 100 genes. We then estimated
the average TF-responsiveness and the proportion of
genes with a specific chromatin modification in each
group of 100 genes.

The location of the main TSS for 17,412 non-redundant
genes was taken from [7] and was identified using CisView
[41] for 4,981 other genes. CpG islands were identified
using CpGProD software [42] and attributed to genes if
they were located within 1 Kb from the TSS. TF binding
motifs over-represented in promoters of responsive and
non-responsive genes were identified and annotated using
CisFinder [23]. We analyzed genes with and without CpG
islands separately, and for each group of genes we analyzed
200-bp regions upstream of the TSS and 200-bp regions
downstream of the TSS (4 pairs of comparisons in total).
Promoters of all genes (from -500 to +500 bp) were
searched for the occurrence of TF binding motifs using
CisFinder assuming 5 false positive matches per 10 Kb of
random sequence. Thresholds for the matching score were
further adjusted to a minimum of 2-fold enrichment of
motif abundance either in the group of non-responsive
genes or responsive genes. In particular, all motif matches
were separated into groups according to their orientation
(“+” or “-”) and position relative to TSS in 100-bp intervals
(i.e., from -500 to -400; from -400 to -300,..., and from 400
to 500). The combination of these two criteria yielded 20
groups of motif matches, which were analyzed separately.
If the over-representation ratio of motif matches in a speci-
fic group was >2 fold, then all matches were counted in
this group. However, if the over-representation ratio was
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<2 fold, then the matching threshold was increased to
achieve the 2-fold enrichment. If the 2-fold enrichment
was not achieved after any increase of the threshold, then
no matches were counted in that group. Because TATA
box has a strictly defined location in the promoter, it
was handled separately from other TF binding motifs.
TATA box was identified using the degenerative
pattern KAWWW starting from 40 to 20 bp upstream of
the TSS [41].
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