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Abstract

Background: MicroRNAs (miRNAs) represent a growing class of small non-coding RNAs that are important
regulators of gene expression in both plants and animals. Studies have shown that miRNAs play a critical role in
human cancer and they can influence the level of cell proliferation and apoptosis by modulating gene expression.
Currently, methods for the detection and measurement of miRNA expression include small and moderate-
throughput technologies, such as standard quantitative PCR and microarray based analysis. However, these
methods have several limitations when used in large clinical studies where a high-throughput and highly
quantitative technology needed for the efficient characterization of a large number of miRNA transcripts in clinical
samples. Furthermore, archival formalin fixed, paraffin embedded (FFPE) samples are increasingly becoming the
primary resource for gene expression studies because fresh frozen (FF) samples are often difficult to obtain and
requires special storage conditions. In this study, we evaluated the miRNA expression levels in FFPE and FF samples
as well as several lung cancer cell lines employing a high throughput gPCR-based microfluidic technology. The
results were compared to standard gPCR and hybridization-based microarray platforms using the same samples.

Results: We demonstrated highly correlated Ct values between multiplex and singleplex RT reactions in standard
gPCR assays for miRNA expression using total RNA from A549 (R = 0.98; p < 0.0001) and H1299 (R = 0.95; p <
0.0001) lung cancer cell lines. The Ct values generated by the microfluidic technology (Fluidigm 48.48 dynamic
array systems) resulted in a left-shift toward lower Ct values compared to those observed by ABI 7900 HT (mean
difference, 3.79), suggesting that the microfluidic technology exhibited a greater sensitivity. In addition, we show
that as little as 10 ng total RNA can be used to reliably detect all 48 or 96 tested miRNAs using a 96-multiplexing
RT reaction in both FFPE and FF samples. Finally, we compared miRNA expression measurements in both FFPE and
FF samples by gPCR using the 96.96 dynamic array and Affymetrix microarrays. Fold change comparisons for
comparable genes between the two platforms indicated that the overall correlation was R = 0.60. The maximum
fold change detected by the Affymetrix microarray was 3.5 compared to 13 by the 96.96 dynamic array.

Conclusion: The gPCR-array based microfluidic dynamic array platform can be used in conjunction with
multiplexed RT reactions for miRNA gene expression profiling. We showed that this approach is highly
reproducible and the results correlate closely with the existing singleplex qPCR platform at a throughput that is 5
to 20 times higher and a sample and reagent usage that was approximately 50-100 times lower than conventional
assays. We established optimal conditions for using the Fluidigm microfluidic technology for rapid, cost effective,
and customizable arrays for miRNA expression profiling and validation.
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Background

MicroRNAs (miRNAs) are short, single-stranded, non-
coding RNAs that regulate gene expression by interacting
with or inhibiting mRNA in both plants and animals
[1-3]. To date, more than 800 human miRNAs have been
identified and the total number is still increasing [4]. It is
estimated that about two thirds of all protein-coding
genes are regulated by miRNAs [5]. Although some miR-
NAs are yet to be characterized, biochemical and genetic
studies have indicated that miRNA regulation is essential
for biological processes such as development, differentia-
tion, cell proliferation, and apoptosis [6-9]. Recent studies
have demonstrated that miRNA genes can be aberrantly
expressed in human cancers and they function as either
oncogenes or tumor suppressor genes via regulation of
target transcripts [10,11].

Although formalin fixed, paraffin embedded (FFPE) tis-
sue samples typically contain fragmented nucleic acids,
they are the most commonly available clinical specimens
for histology and pathological analysis and are a critical
resource for developing new molecular markers in the
cancer research [12,13]. Because of their small size,
miRNA molecules appear to be less prone to degrada-
tion, in contrast to mRNA expression studies, and no sig-
nificant differences in miRNA expression between FFPE
and FF samples have been observed [14-16].

Real-time quantitative PCR (qPCR) is considered a
‘gold standard’ for quantification of gene expression and
has been widely employed as a validation method for
microarray studies. However, the qPCR method is a
relatively low throughput, high cost, and tedious techni-
que typically performed in a 96 or 384 well plate format.
The Fluidigm microfluidic technology uses the inte-
grated fluidic circuits (IFC) which contain tens of thou-
sands of microfluidic controlled valves and
interconnected channels to move molecules of biological
samples and reagents in a variety of patterns [17]. IFCs
reduce a qPCR reaction from the routine 10-20 microli-
ter volume down to a 10 nanoliter scale making it possi-
ble to perform routine qPCR analysis for thousands of
reactions in a single run. This technology has been used
for gene expression, genotyping, mutation detection, and
absolute quantization of nucleic-acid sequences [17,18].
Spurgeon et al. [19] showed that microfluidic dynamic
arrays can be used to simultaneously measure 48
mRNAs in several tissues. Wang et al. [20] developed a
high throughput SNP genotyping assay demonstrating
high accuracy and call rate in human samples using a
nanofluidic platform. This new real-time PCR technol-
ogy makes it possible to perform validation as well as
high throughput gene expression measurements using
very limited sample and reagent quantities [17,19].

Here we show that miRNA expression profiling and
validation are possible using high throughput real-time
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quantitative PCR (qPCR) method with the microfluidic
technology. FFPE and FF samples appear to perform
similarly in this platform when ¢cDNA are generated
from 96 multiplexed RT reactions. We compared this
new approach to the standard microarray-based technol-
ogy. To our knowledge, this study is the first report
comparing miRNA expression profiling between micro-
arrays and qPCR using microfluidic arrays.

Results

Correlation of Reverse Transcription Efficiency between
Single- and Multiplexed Primer Sets

To evaluate the efficiency of reverse transcription (RT)
reactions using different number of primer, we first
compared the use of a single miRNA specific primer
and an 11 primer-mixed set using 100 ng total RNA iso-
lated from A549 (Figure 1A) and H1299 lung cancer
cells (Figure 1B). After the RT reaction, a pre-amplifica-
tion PCR was performed for 10 cycles and qRT-PCR
was carried out using individual TagMan probes for all
11 genes. Results in Figure 1 showed a strong correla-
tion of Ct values between the two conditions with corre-
lation coefficients at 0.98 and 0.95, respectively, for
A549 and H1299 cell lines.

Reproducibility of Expression Levels between 48.48
Dynamic Arrays and ABI 7900 HT

As an initial evaluation to determine miRNA expression
by using 48.48 dynamic array, we tested its reproducibil-
ity by comparing Ct values observed between ABI 7900
HT and Fluidigm dynamic array system using FF sam-
ples. Fourteen out of 16 miRNA targets exhibited lower
Ct values in the microfluidics 48.48 dynamic array sys-
tem compared to those obtained by standard qPCR
using the ABI 7900 HT (Figure 2A &2B). The mean Ct
values between the platforms were 12.48 (+ 0.49) for the
48.48 dynamic array and 16.21 (+ 0.82) for the ABI
7900 HT (coefficient of variance CV = 0.08 and 0.06,
respectively) reflecting a significantly increased
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Figure 1 Correlation scatter plots of Ct values for gPCR using
multiplexed or single-plexed RT reactions. Eleven different
miRNA primers were used in single-plex (Y-axis) or 11-plex (X-axis)
for reverse transcriptions using A549 (A) and H1299 (B) lung cancer
cell lines. The gPCR was done with respected TagMan probes using
the ABI 7900HT instrument.
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Figure 2 Ct value comparisons using the 48.48 dynamic array
and ABI 7900 HT. cDNAs were synthesized using 96-plexed primer
set and 100 ng total RNA from FF normal lung (A) and FF tumor
lung (B) samples. Bars represent the means of Ct values from
replicates for the indicated miRNA targets. Open bars: ABI 7900 HT,

closed bars: 4848 dynamic array systems.

sensitivity by the microfluidics array when qPCR reac-
tions are being carried out in nanoliter volumes.

Comparison of miRNA Expression between FF and FFPE
Samples

We next used both ABI 7900 HT and Fluidigm 48.48
dynamic array to directly compare the qRT-PCR perfor-
mance using RNA from FF and FFPE samples over a
wide range of miRNA gene expression levels. The
c¢DNA was synthesized using a 96-plex primer set and
100 ng of total RNA from both sample types. The Ct
values of FFPE samples ranged from 13 to 25 while
those of FF samples ranged between 11 to 22 on the
standard ABI platform with correlations at R = 0.95 and
0.87, respectively, p < 0.0001) (Figure 3A &3B). When
the same reaction were carried out using the 48.48
dynamic arrays, FFPE samples had similarly higher aver-
age Ct values compared to FF samples reflecting the
generally lower quality of the RNA in FFPE samples
(6.84-22.6 in FFPE vs. 6.49-20.97 in FF). Again, the Ct
values from both sample types were highly correlated
(Figures 3C and 3D).

Effect of RNA Template Concentration Using 48.48
Dynamic Arrays

To evaluate the dynamic range of the multiplex RT-PCR
in the 48.48 dynamic array systems, we evaluated the Ct
values for each miRNA target using total input RNA
quantities at 10 ng, 25 ng, 50 ng or 100 ng per reaction.
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Figure 3 Correlation between matched FFPE and FF samples in
qPCR by ABI vs 48.48 dynamic array platforms. cDNAs were
synthesized using 96-plex primer sets and RNA from both normal
lung (A and C) and lung tumor samples (B and D). gPCR reactions
were carried out individually for 16 miRNA targets (A and B) by ABI
7900 HT, and for 48 miRNA targets by the 48.48 dynamic array (C
and D). Each plot displays mean values calculated from triplicate
samples.

The reverse transcription and pre-amplification were
carried out in 96-plex format and the qPCR were run
using 48.48 dynamic arrays. The scatter plots shown in
Figure 4 demonstrates that the correlation coefficients
were essentially the same over the tested range of input
RNA for both FF (Figure 4A &4B) and FFPE samples
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Figure 4 Effect of in put RNA concentrations on Ct values. A
total of 48 miRNAs were tested using different input amounts of
total RNA from FFPE and FF samples for RT and gqPCR by the 4848
dynamic array systems. The Ct values were plotted using the
average of the duplicated measurements and the error bar for
values on Y-axis. Correlation scatter plots represent the correlation
of Ct values for 100 ng RNA (X-axis) and the Ct values for the same
FF (A and B) or FFPE (C and D) sample at 10 ng to100 ng

concentrations (Y-axis).
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(Figure 4C &4D) with the lowest correlation at R = 0.96
(p < 0.0001).

Comparison of miRNA Expression between the 96.96
Dynamic Array and Affymetrix GeneChip microRNA
Microarray

We compared miRNA expression levels measured by
the 96.96 dynamic array with those obtained from the
Affymetrix miRNA GeneChip™. The same samples, FF1
and FFPE9 analyzed by the 96.96 dynamic array were
subjected to gene expression profiling using the Affyme-
trix miRNA arrays. In the Affymetrix miRNA array ana-
lysis, 33-35% of miRNA targets were detectable in each
sample with a correlation of R = 0.99. Similarly, strong
correlations were also obtained using the 96.96 dynamic
array when replicate RNA samples were analyzed (R =
0.95). This high correlation value was consistent across
both FF and FFPE sample types (Table 1). Overall, the
miRNA microarray profiles generated for FFPE and FF
samples showed high correlations across all 847 human
miRNAs (R = 0.94, p < 0.0001, data not shown). Simi-
larly, the Ct values above detection threshold were
obtained for 86 (FF) and 80 (FFPE) of 94 miRNA targets
by the qPCR-based analysis using microfluidics. Fifty-
nine probes that were called present on Affymetrix
miRNA array matched those tested by the 96.96
dynamic array. Comparison of the fold changes between
the two samples obtained by Fluidigm and Affymetrix
arrays showed an overall correlation of R = 0.60. Signifi-
cantly, the fold changes detected by Affymetrix microar-
ray ranged between 0 to 3.5, while those by Fluidigm
ranged between 0 to 13 reflecting a much higher
dynamic range by the microfluidics platform (Figure 5).

Discussion

MicroRNAs are potential biomarkers and novel targets
for cancer diagnosis, prognosis and recurrence
[10,11,21]. Conventional methods for detection and
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Figure 5 miRNA expression measurements by Fluidigm
dynamic array and Affymetrix microarray. The raw intensity
values of microarray data were transformed to log, values for
comparison to PCR Ct values generated by the gPCR platform. Gene
expression differences between FF and FFPE were compared
against 59 shared genes. Fold differences by the dynamic array
(log,) were calculated by AACt method; ACt = (target miRNA log,

values-hsa-mir-16 log, value), AACt = (fresh frozen ACt-FFPE ACt).

characterization of miRNAs during clinical investiga-
tions sometimes fall short because of low throughput,
insufficient sensitivity, and relatively high cost. The
recently developed Microfluidic technology enables a
significantly higher throughput qPCR analysis for a large
number of samples; and assays in a much shorter time
and at a lower cost compared to the conventional meth-
ods [17]. This new real-time PCR technology can be
used to perform experimental validation as well as high
throughput gene expression measurement with nearly
100-fold less input of sample and reagent [17,19]. In
this study, we examined miRNA expression measure-
ments using qPCR-based microfluidic technology using
FFPE and matched FF samples. We evaluated this rela-
tively high throughput miRNA profiling method using

Table 1 Comparison of gene expression measurements between Affymetrix microarray and Fluidigm 96.96 dynamic

array.
Platform Sample’ Background Signal to Noise Positive Signal Intensity or Ct Detection Rate (%) Replicate Correlation
AVE  MAX MIN MAX AVE
Microarray FF#1a 266 1579 189 349 10530 503 33 0.997
(847 miRNA)
FFi#1b 266 1168 185 1.73 10313 493 33
FFPE#9a 226 3538 208 2.34 9331 470 35 0.996
FFPE#9b 222 1785 209 259 8724 464 35
96.96 dynamic array ~ FF#la N/A N/A - 79 224 16.7 91 0.954
(94 miRNA)
FFi#1b N/A N/A - 50 22.7 16.2 91
FFPE#9a  N/A N/A - 59 359 19.5 85 0.956
FFPE#9b  N/A N/A - 42 349 19.0 85

 Samples are as described in the method; N/A, not applicable.
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the standard TagMan miRNA assays on ABI 7900 HT
and the Fluidigm microfluidic dynamic arrays. We also
developed and validated miRNA expression assays using
cDNA made from either singleplex or multiplex RT
reactions and assessed their application for high-
throughput miRNA profiling using the microfluidic
dynamic arrays.

TaqMan® assays are traditionally used for validation
of microarray-based expression analysis [13,22-25]. The
RT primer in each TagMan® miRNA assay is a single-
stranded stem-loop RT primer which was developed to
allow cDNA detection to be more specific and sensitive
as compared to conventional linear primer reverse tran-
scription [22]. Based on this result, Chen, et al. sug-
gested that stem-loop RT primers can be used for
multiplex RT reaction and small RNA cloning for better
efficiency and specificity [22,24]. In our study, the abso-
lute Ct for miRNA expression levels by singleplex were
slightly lower than those obtained in multiplex condi-
tions, but both methods showed high correlation com-
pared to results of the qRT-PCR (A549 cells, R = 0.98
and H1299 cells, R = 0.95; p < 0.0001) (Figure 1).

Several studies have demonstrated that FFPE samples
can be used for miRNA profiling analysis [13,16]. How-
ever, most of the studies are based on microarray data
and validated using low throughput Applied Biosystems
qPCR platforms [13,15,16]. Here, we compared the cor-
relation of miRNA expression profiles between FFPE
and matched FF samples using both qPCR and array
bases platforms. We observed a high correlation of
miRNA expression levels (R = 0.95 and R = 0.98; p <
0.0001) measured for both sample types using the ABI
7900 HT and the 48.48 dynamic array (Figure 3). FF
samples appeared to contain higher levels of miRNAs
than FFPE samples in our study, consistent with results
observed by Leite, et al [13] using standard qPCR assays.
This could be due to the loss of miRNA during paraffin
embedding process or RNA extraction. Considering the
minimal influence on miRNA measurements, the small
difference of Ct values between FFPE and FF samples is
not expected to affect the result of the study, particu-
larly for Fluidigm based studies since the reference
miRNA targets are measured on the same array for the
exact same sample.

To compare between qPCR platforms, we investigated
16 different miRNA targets using both ABI 7900 HT
and Microfluidic technology with FF RNA samples. The
Ct value of the 48.48 dynamic array system shifted
toward lower Ct values compared to those observed by
ABI 7900 HT in a 5 pl reaction. In our hands, the mean
Ct value difference was 3.79 between the two systems
and the coefficient of variation across the 128 reactions
in the 48.48 dynamic array system was 8.9% (Figure 2).
In addition, we showed that as little as 10 ng of total
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RNA could be used to detect all 48 miRNAs with 96-
multiplexing RT reaction in both FFPE and FF samples
(Figure 4). The minimal correlation coefficient observed
was 0.96 for 10 ng vs.100 ng input RNA for both FF
and FFPE samples (P < 0.0001). Lao et al. [24] suggested
that 10 ng of a human lung sample can be assessed with
a substantial degree of accuracy without statistical varia-
tions from stochastic effects when multiplex RT reac-
tions are employed. Therefore, our data are consistent
with those previously reported and indicates that 96-
multiplexed miRNA RT reactions can provide reliable
miRNA profiles when using low input amounts in the
dynamic array systems. Although just a few samples
were used in this study, the robustness of the assay was
demonstrated consistently for all tested assays varying at
a wide range of Ct values (Figures 3 and 4).

To determine the concordance between qPCR-arrays
and microarrays, we compared miRNA expression using
96.96 dynamic arrays and the hybridization-based miRNA
array offered by Affymetrix. We used the same samples
for both analyses and the overall correlation for the 59
shared genes was R = 0.60 (p < 0.0001) for miRNA expres-
sion between the two platforms. This moderate correlation
likely reflects the use of fundamentally different principles
for gene expression measurements in these two platforms.
Fluidigm uses the quantitative PCR assays which are
highly sensitive with a dynamic range of at least 6-7 logs
[19,22]. In contrast, Affymetrix GeneChip is primarily
based on hybridization of the labeled probes to the match-
ing oligonucleotides that are affixed to a matrix. The
dynamic range of the microarray is usually 3 to 4 logs
[25,26]. In our hands, the maximum fold change observed
was around 3 for Affymetrix arrays and 13 for Fluidigm
dynamic array (Figure 5).

Several studies have previously reported a similar rate
of inter-platform concordance among different miRNA
microarrays and the different expression values from
each miRNA microarray platform when compared to
qPCR values [27-29]. Although highly sensitive, the
quality of the gene expression assessment by the Taq-
Man-based method is dependent largely on the specifi-
city of the probe to discriminate among highly
conserved miRNA target sequences as well as the sensi-
tivity of the assay probes to quantitatively measure the
target miRNA over a wide range of expression levels.
The small 18-25 nucleotide length of the miRNA targets
creates a challenge to meet these requirements. Prader-
vand, et al. [27] observed that the different GC content
of mature miRNA sequences contributes to higher dif-
ference values between both Affymetrix and qPCR. This
same study also showed a lower correlation between
qPCR and Affymetrix while reporting a higher correla-
tion between qPCR based assay and other platforms (R
= 0.8-0.9). In the study by Chen, et al. [29], a correlation
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of 0.44 (p < 0.0001, N = 84) was reported between Tagq-
Man qPCR-array and microarray. The variation
observed was thought to result from the low abundance
miRNAs reflecting the different sensitivities of the two
platforms. Therefore, the assessment of miRNA expres-
sion in a given system should be interpreted with cau-
tion and it requires validation using at least two
different platforms when the correlation is poor or the
expression level of the target is low.

Conclusion

We demonstrated that multiplexing RT reactions with
stem-loop primers can be adapted with relative ease to a
new qPCR-array based microfluidic platform to profile
miRNA expression profiling. We showed that this
approach is highly reproducible and correlates closely
with standard ABI7900 systems yet offers higher
throughput, with much lower sample input, and reagent
usage. We believe that the microfluidic dynamic array
technology could be used to develop cost effective and
customized assays with rapid turn-around for profiling
and validating of miRNA expression.

Methods

RNA extraction from FFPE, FF samples and lung cancer
cell lines

FF and corresponding FFPE samples were obtained from
lung cancer (FF1 and FFPE9) or non-diseased lung tissues
(FF4 and FFPE7) that had been preserved between 2007
and 2008 following the approved Mayo Clinic Institutional
Review Board protocol. FFPE samples were cut to 10 pm
thickness and several tissue slices were put into a 1.5 ml
tube. One milliliter of xylene was added for deparaffiniza-
tion followed by mixing twice with a high speed vortex for
3 min at room temperature. Total RNA was then
extracted with the Qiagen miRNeasy FFPE kit (Valencia,
CA) and/or RecoverAll (Ambion Inc. Austin, TX) follow-
ing manufacturers’ protocols. Fresh-frozen tissues were
extracted using Qiagen miRNeasy kit (Valencia, CA) fol-
lowing manufacturer’s protocols. The isolation procedure
for FF and FFPE samples were performed in duplicate to
derive samples FFla and FF1b, and FFPE9a and FFPE9b.
Human lung cancer cell lines H1299 and A549 were cul-
tured in RPMI 1640 growth media with 10% fetal bovine
serum and 1% penicillin (50 IU/mL) and streptomycin (50
pg/ml). Total RNA was isolated from TRIzol (Invitrogen,
Carlsbad, CA). RNA quantity was determined using Nano-
drop (Thermo Scientific, Waltham, MA) and the quality
was assessed by Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA).

MicroRNA reverse transcription
The 15 pl reverse transcription reaction contained 2 pl
of either 5, 12.5, 25 or 50 ng/ul of total RNA, 0.2 ul of
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100 nM dNTP, 0.2 ul of RNase inhibitor 20 U/ul, 1.5 pl
of reverse transcriptase (50 U/ul), 8 pl of 11-or 96-plex
reverse primer (mixed to allow a final concentration of
0.05X of each) and 1.6 pl of H,O. 2 ul of 5 ng of total
RNA and 3 ul of 5X reverse primer were used in the
single-plex RT reaction. All reagents were purchased
from Applied Biosystems, Inc. (Foster City, CA). The
reaction mixture was mixed with RNA and incubated as
follows; 16°C for 30 min, 42°C for 30 min and then 85°
C for 5 min. A list of all 96 tested assays is available
upon request. The 11 primer set that was used for the
RT reaction included: RNU66, RNU6B, mir-135a, mir-
564, mir-29b, mir-339, mir-138, mir-425, mir-191, let-7
g and mir-566 (Applied Biosytems, Foster City, CA).

Pre-PCR amplification

For pre-amplification of cDNA, we pooled 11- or 96
TagMan Assays at a final concentration of 0.2X for each
assay. Pre-PCR amplification reaction was done at 10 pl
containing 5 ul TagMan PreAmp Master Mix (2X), 2.5
pl of 11- or 96-pooled TagMan assay mix (0.2X) and
2.5 pl of cDNA. The pre-amplification PCR performed
at one cycle 95°C for 10 min, 10 cycles at 95°C for 15
sec and then 60°C for 4 min. After pre-amplification
PCR, the product was diluted 1:5 with dH,O and stored
at -80°C until needed.

Real-time gPCR

qRT-PCR was carried out using ABI 7900 HT Real-time
PCR system in a 384 well plate format. PCR reaction of
5 ul contained 2.5 ul of TagMan PCR Master Mix-UNG
(2X), 0.25 pl of each TagMan assay probe (20X), 1.25 pl
of diluted ¢cDNA and 1 pl of H,O. The PCR was per-
formed at 95°C for 10 min, followed by 40 cycles at 95°
C for 15 sec and 60°C for 1 min. The data was analyzed
with ABI RQ Manager software (Foster City, CA) after
exportation as a SDS file.

miRNA expression analysis using 48.48 and 96.96
dynamic array

Reverse transcription was carried out as described above
using pooled miRNA primers with 10 ng, 25 ng, 50 ng
and 100 ng of total input RNA. Pre-amplification was
performed with a 96 pooled (final 0.2X of each) Taq-
Man assay. After pre-amplification PCR, the product
was diluted 1:5 with dH,O and stored in -80°C until
needed. gPCR was carried out using the 48.48 or 96.96
dynamic array (Fluidigm Corporation, CA, USA) follow-
ing the manufacturer’s protocol [19]. Specifically, a 5 pl
sample mixture was prepared for each sample contain-
ing 1 x TagMan Universal Master Mix (No UNG), 1 x
GE Sample Loading Reagent (Fluidigm PN 85000746)
and each of diluted pre-amplified cDNA. 5 pl of Assay
mix was prepared with 1 x each of TagMan miRNA
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assay and 1 x Assay Loading Reagent (Fluidigm PN
85000736). An IFC controller was used to prime the
fluidics array (chip) with control line fluid and then with
samples and assay mixes in the appropriate inlets. After
loading, the chip was placed in the BioMark Instrument
for PCR at 95°C for 10 min, followed by 40 cycles at 95°
C for 15 sec and 60°C for 1 min. The data was analyzed
with Real-Time PCR Analysis Software in the BIO-
MARK instrument (Fluidigm Corporation, CA, USA).

miRNA microarray

The miRNA microarray profiling was performed using
Affymetrix GeneChip miRNA arrays (Santa Clara, CA,
USA) according to manufacturer’s recommended proto-
col. Briefly, 1 pg of total RNA was labeled by polyA
polymerase addition using the Genisphere FlashTag
HSR kit following the manufacturer’s recommendations
(Genisphere, Hatfield, PA). RNA was hybridized to the
Affymetrix miRNA array as recommended by the ven-
dor. Standard Affymetrix array cassette staining, washing
and scanning was performed using the post-hybridiza-
tion kit (#900720; Affymetrix) and GeneChip Scanner
3000. Feature extraction was performed using Affyme-
trix Command Console software. The raw data were
treated by the following workflow: background detec-
tion, RMA global background correlation, quantile nor-
malization, median polish and log2-transformed with
miRNA QC tool software (Affymetrix).

Statistical Analysis

Statistical Analysis was performed using GraphPad
Prism 4 (GraphPad Software, Inc.). The Pearson correla-
tion coefficient(R) was employed to determine the corre-
lation of efficiency of RT reaction and expression of
FFPE and FF samples.
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