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Abstract

Background: Cotton, with a large genome, is an important crop throughout the world. A high-density genetic
linkage map is the prerequisite for cotton genetics and breeding. A genetic map based on simple polymerase
chain reaction markers will be efficient for marker-assisted breeding in cotton, and markers from transcribed
sequences have more chance to target genes related to traits. To construct a genome-wide, functional marker-
based genetic linkage map in cotton, we isolated and mapped expressed sequence tag-simple sequence repeats
(EST-SSRs) from cotton ESTs derived from the A;, Ds, (AD);, and (AD), genome.

Results: A total of 3177 new EST-SSRs developed in our laboratory and other newly released SSRs were used to
enrich our interspecific BC; genetic linkage map. A total of 547 loci and 911 loci were obtained from our EST-SSRs
and the newly released SSRs, respectively. The 1458 loci together with our previously published data were used to
construct an updated genetic linkage map. The final map included 2316 loci on the 26 cotton chromosomes,
44189 cM in total length and 1.91 cM in average distance between adjacent markers. To our knowledge, this map
is one of the three most dense linkage maps in cotton. Twenty-one segregation distortion regions (SDRs) were
found in this map; three segregation distorted chromosomes, Chr02, Chr16, and Chr18, were identified with 99.9%
of distorted markers segregating toward the heterozygous allele. Functional analysis of SSR sequences showed that

1633 loci of this map (70.6%) were transcribed loci and 1332 loci (57.5%) were translated loci.

Conclusions: This map lays groundwork for further genetic analyses of important quantitative traits, marker-
assisted selection, and genome organization architecture in cotton as well as for comparative genomics between
cotton and other species. The segregation distorted chromosomes can be a guide to identify segregation
distortion loci in cotton. The annotation of SSR sequences identified frequent and rare gene ontology items on
each chromosome, which is helpful to discover functions of cotton chromosomes.

Background

Cotton (Gossypium spp.) is the most important fiber crop
in the world and one of the most important oilseed
crops. Within the genus Gossypium, two cultivated allo-
tetraploid species, G. hirsutum L. and G. barbadense L.,
account for 90% and 8% of the world cotton production
respectively [1]. The construction of a molecular genetic
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map is a foundation in genetic dissection of economically
important traits, marker-assisted selection (MAS), and
map-based cloning. It provides new insights into genome
structure and chromosomal architecture of the cotton
genome. However, the allotetraploid (2n = 4x = 46) spe-
cies has a large genome size of ~ 2246 Mb [2], which has
hindered the development of a high-density map.

To explore the cotton genome structure and to
identify quantitative trait loci (QTLs) for agronomically
important traits which can facilitate MAS in cotton,
several genetic maps have been constructed including
high-density interspecific [3-8] and intraspecific maps
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[9-13]. The early cotton genetic maps were comprised of
only restriction fragment length polymorphisms (RFLPs)
[2]; later, polymerase chain reaction (PCR)-based mar-
kers were widely adopted, including random amplified
polymorphic DNA (RAPD), amplified fragment length
polymorphism (AFLP), simple sequence repeat (SSR),
sequence-related amplified polymorphism (SRAP), and
target region amplification polymorphism (TRAP) [1].
Among the molecular markers, SSRs have become pop-
ular markers of choice for cotton genetic analysis and
mapping.

SSRs, consisting of a variable number of tandem
repeats, are mainly characterized by their high
frequency, even distribution, co-dominance, reproduci-
bility, and high polymorphism [14,15]. Because of these
characteristics, microsatellites have become the most
favoured genetic markers for plant breeding and genet-
ics such as genetic diversity assessment, genetic map
construction, QTL mapping, and marker aided selection,
etc [16]. In general, SSRs are identified from either
genomic DNA or ¢cDNA sequences. The usual source
sequences for SSRs have included SSR-enriched library
clones, expressed sequence tags (ESTs), and bacterial
artificial chromosome end sequences [17-19]. However,
conventional SSR marker development (from enriched
libraries) is costly and time consuming [20]. In recent
years, with the rapid increase of ESTs in public
databases and the advent of bioinformatics tools, SSR
marker development has become easier and more cost-
effective. Mining SSRs from ESTs is becoming popular
for SSR development.

Thanks to global efforts, 11938 SSR markers have
been released (CMD website, http://www.cottonmarker.
org) up to 2009. Among these SSRs, more than half are
EST-SSRs. However, compared to the huge ESTs tank
of cotton, only ~25% of the cotton ESTs is applied to
SSR development. Cotton ESTs are still a valuable
resource for SSR marker development, especially for
gene-derived SSRs. It is worth mentioning that the
genetic map constructed by Guo et al. contains 71.96%
functional marker loci, of which 87.11% are EST-SSR
loci [7]. High-density genetic maps of EST-SSR markers
are an essential tool for enhanced genome analysis.
They represent the transcript part of the genome and
can be links between genetic and physical maps [21].
Moreover, as EST-SSRs target coding regions of the
genome, they may be useful in association with genes of
known function to facilitate the dissection of complex
traits [22].

With an endless effort to construct a high-density
genetic map of cotton in our laboratory, we have tried
RAPDs, SRAPs, and SSRs when no sufficient easy-to-use
markers such as SSRs in cotton were available [5,23].
In the last 5 years, the cotton EST project and genome
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sequencing project generated a great number of
sequences that could promote the marker development,
and thousands of EST-SSRs and BAC-end SSRs have
been developed. Benefited from these projects, we con-
structed an SSR-based genetic map using SSRs available
in 2008 [8]. Thereafter, 700 new Gh-prefixed SSRs [24],
new NAU-prefixed SSRs [7,25], and more recently 2937
genomic SSRs (gSSRs) (Monsanto Company) [26] have
been released. In this study, we enriched our SSR-based
map by these new SSRs; we also isolated and mapped
SSRs from ESTs with BLAST hits to known genes, from
newly released ESTs of G. hirsutum by Yuxian Zhu
(GenBank, December 31, 2007), and from newly
developed ESTs of G. barbadense in our laboratory.
Additionally, our recently published markers were also
included in this map [27-29], and a final map with 2316
loci map was constructed. This sequence-based,
high-density map allowed us to detect segregation dis-
tortion regions within the whole genome, to identify
gene distribution on chromosomes and homologs
between chromosomes.

Results

Marker development

A total of 1831 new EST-SSRs were developed from the
assembled cotton EST's in the TIGR database http://www.
tigr.org based on the criteria of marker development (see
Materials and Methods): 346 from G. arboretum
(HAU231-HAU576), 293 from G. raimondii (HAU577-
HAUS869), and 1192 from G. hirsutum (HAU870-
HAU2061).

The 131182 ESTs released by Yuxian Zhu were
clustered and assembled into 46296 unique sequences,
consisting of 10691 contigs and 35605 singletons.
A total of 1047 unique EST-SSRs (HAU2062-HAU3108)
were developed from these sequences.

The 10979 ESTs from developing fiber of G. barba-
dense acc. 3-79 generated in our laboratory were clus-
tered and assembled into 5852 unique sequences,
consisting of 1492 contigs and 4360 singletons. A total
of 299 novel EST-SSRs (HAU3109-HAU3407) were
developed from these sequences.

All the marker primers, sequence ID, sequences,
motifs, estimated product size, and BLASTX results are
listed in Additional file 1.

Maker polymorphism

Of the 700 Gh-prefixed gSSRs derived from G. hirsutum,
134 SSRs (19.1%) showed polymorphism and generated
172 polymorphic loci with an average of 1.28 loci/SSR.
Among the 1554 and 754 NAU-prefixed EST-SSRs
derived from G. raimondii and G. hirsutum, respectively,
and 578 gSSRs from BAC sequences of G. hirsutum,
439 (24.7%), 109 (14.5%), and 68 (11.8%) SSRs were
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polymorphic, and they generated 537, 131, and 71 loci,
respectively, with an average of 1.22 loci/SSR, 1.20 loci/
SSR, and 1.0 loci/SSR, respectively.

For these EST-SSRs from the assembled ESTs in TIGR,
28 (8.1%), 33 (13.8%), and 233 (19.5%) SSRs were poly-
morphic for EST-SSRs from G. arboretum, G. raimondii,
and G. hirsutum, respectively, and they generated 29, 36,
and 236 loci, respectively. One hundred and sixty-eight
SSRs (16.0%) of the 1047 EST-SSRs (HAU2062-
HAU3108) were polymorphic and 199 loci were
produced; 42 SSRs (14.0%) were polymorphic from the
299 EST-SSRs (HAU3109-HAU3407) and 47 loci were
produced.

Map construction and overview

A total of 1458 loci obtained in this study, adding to the
1026 loci published by Zhang et al. [8] and other pub-
lished loci [27-29], a total of 2521 loci were applied to
map construction. After calculation, 2316 loci including
2311 SSR loci and 5 gene-derived loci were mapped on
26 cotton chromosomes; the total length of this map
was 4418.9 ¢cM with an average of 1.91 ¢cM between
adjacent markers (see Additional file 2 Figure 1, 2, 3, 4,
5,6, 7).

The chromosome with most loci was Chr19 (134 loci);
Chr02 and Chr04 (53 loci) were the chromosomes with
the fewest loci. Eighty-nine loci were on each chromo-
some on average, with 1043 and 1273 loci on At and Dt
subgenomes, respectively. More loci were distributed on
the Dt subgenome mainly because the NAU-prefixed
EST-SSRs were from G. raimondii (Ds), the progenitor
of the Dt subgenome of tetraploid cotton [7].

The longest chromosome was Chr21 (265.9 ¢cM) and
the shortest was Chr14 (102.2 cM); the average chromo-
some length was 169.96 cM. The total lengths of the At
and Dt subgenomes were 2250.1 cM and 2168.8 cM,
respectively, which was the result of more loci on the
Dt subgenome to increase recombinants.

The biggest average distance between markers was on
Chr02 (2.78 ¢cM) and the least was on Chrl4 (1.12 cM).
The average distances for At and Dt subgenomes were
2.16 and 1.70 cM, respectively, which also benefited
from the more loci on the Dt subgenome. The biggest
gap between markers was 23.2 cM on Chr03; there were
a total of 35 gaps >10 cM with 15 on At and 20 on Dt
subgenome, respectively.

SSRs were not evenly distributed on the cotton
chromosomes with more gSSRs and EST-SSRs on the
Dt subgenome. More gSSRs were on Chrll, Chrl9,
and Chr21, and more EST-SSRs on Chr05, Chrll,
Chr15, Chr19, Chr21, Chr24, and Chr26. gSSRs and
EST-SSRs were also differently distributed on each
chromosome; they were similar on Chr02, Chr04,
Chrl1, Chr19, and Chr20 (difference < 5%), but
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Figure 1 The genetic map of Chr01/Chr15 homoeologous
chromosome. The interspecific genetic map was constructed using
the BC; population [(Emian22 x 3-79) x Emian22]. Duplicated loci
are in bold. Map distances are given in centimorgans (cM). Markers
showing segregation distortion are underlined and indicated by
asterisks (*P < 0.05; ** P < 0.01; ** P < 0.005; **** P < 0.001; ***** p
< 0.0005; ****** p < 00001 for markers skewed toward the
‘Emian22" allele or degree symbols (°P < 0.05; *°P < 0.01; *°P <
0.005; °**°P < 0.001; °°°*°P < 0.0005; *****°P < 0.0001 for markers
skewed toward the heterozygous allele). Segregation distortion
regions (SDRs) are named as ‘Chromosome + No. SDR), for example,
SDR2.1 refers to the first SDR on Chr02.
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Figure 2 The genetic maps of Chr02/Chr14 and Chr03/Chr17 homoeologous chromosome. All legends are same as described for Figure 1.

Chr03 Chr17

dramatically different on Chr05, Chrl5, Chrl18, and
Chr26 (difference > 50%).

For different genome-derived SSRs, the A genome-
derived SSRs mostly targeted Chr05 and Chrl5, and of
course preferentially targeted the At subgenome; D gen-
ome-derived SSRs mostly targeted Chr05, Chr11, Chrl9,
Chr21, and Chr26, and also preferentially targeted the
Dt subgenome; the AD genome-derived SSRs mostly
targeted Chrl1, Chr19, and Chr21, but preferentially
targeted the Dt subgenome.

Segregation distortion
Among the 2521 polymorphic loci, 423 loci (16.8%)
including one gene-specific locus showed segregation
distortion (P < 0.05) with 139 loci segregating toward
the ‘Emian22’ allele and 284 loci toward the heterozy-
gous allele. For SSR loci, 15.0% of gSSRs and 18.2%
EST-SSRs were distorted, respectively.

A total of 323 distorted loci, accounting for 12.8% of
the mapped loci, were mapped on cotton chromosomes
with 74.9% segregating toward the heterozygous allele
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Figure 3 The genetic maps of Chr04/Chr22 and Chr05/Chr19 homoeologous chromosome. All legends are same as described for Figure 1.

(Figure 1, 2, 3, 4, 5, 6, 7). These segregation distorted
loci were unevenly distributed on the 26 cotton chromo-
somes with 3-51 loci on each chromosome (see Addi-
tional file 2). More distorted loci were located on the Dt
subgenome than on the At subgenome (195 versus 128).

The most distorted loci were on Chr02, Chr16, and
Chr18 (> 50% of loci were distorted), and the least on
Chr05, Chr08, Chr20, and Chr25 (< 5% of loci were dis-
torted). A total of 21 segregation distortion regions
(SDRs) were found on the 26 cotton chromosomes with
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Figure 4 The genetic maps of Chr06/Chr25 and Chr07/Chr16 homoeologous chromosome. All legends are same as described for Figure 1.

8 SDRs on the At subgenome and 13 on the Dt subge-
nome. More SDRs were found on Chr02, Chrl6, and
Chr18, the chromosomes with the most distorted loci.
The distorted loci showed a phenomenon in which loci
skewing toward the same allele appeared on the same

chromosomes or within the same SDRs (e.g., Chr02,
Chr13, Chr16, and Chr18; Figure 2, 4, 7). Interestingly,
adjacent markers in some SDRs showed the same degree
of segregation (SDR5.1, SDR7.1, SDR18.1, SDR18.2,
SDR24.1, and SDR24.2).
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Figure 5 The genetic maps of Chr08/Chr24 and Chr09/Chr23 homoeologous chromosome. All legends are same as described for Figure 1.
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Annotation and functional characteristics of sequences
containing SSRs

In addition to the 1261 EST-SSRs and 5 gene-derived mar-
kers, 367 gSSR loci had homologous sequences to cotton
ESTs by BLASTN with E < 1 e 1® (see Additional file 3),
which indicated that they were transcribed sequences.
Thus, a total of 1633 loci of this map (70.6%) were

functional markers. The BLASTX results of these tran-
scribed loci showed that 809 loci sequences had no hits to
protein; 976, 302, and 54 loci sequences (total 57.5%) had
hits to known gene products, hypothetical proteins, and
unknown genes, respectively (see Additional file 4).

These sequences containing SSRs totally targeted 38
items of molecular function with 1236 sequences
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Figure 6 The genetic maps of Chr10/Chr20 and Chr11/Chr21 homoeologous chromosome. All legends are same as described for Figure 1.

Chr26 targeted more molecular functions; Chr03,
Chr05, Chrl1, Chrl6, Chrl9, and Chr21 targeted more
biology processes; and Chr05, Chrl1, and Chr26 tar-
geted more cell components. Most chromosomes tar-
geted more molecular functions and biology processes

involved in, 85 items of biology process with 2123
sequences involved in and 23 items of cell component
with 2273 sequences involved in. However, sequences
on different chromosomes targeted different Gene
Ontology (GO) catalogs: Chr05, Chr1l, Chr21, and
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Figure 7 The genetic maps of Chr12/Chr26 and Chr13/Chr18 homoeologous chromosome. All legends are same as described for Figure 1.

than cell components, and some chromosomes tar-
geted more special catalogs: Chr03 and Chr21 predo-
minately targeted biology processes and Chr05, Chrll,
and Chr26 predominately targeted cell components
(Figure 8).

A correlation analysis between gSSRs, EST-SSRs, total
loci and GO catalogs showed that GO catalogs were

highly correlated to EST-SSR and total loci; gSSR was
highly correlated only to the ‘biology process’. The
results agreed with the concept that functional SSR
sequences were mainly derived from EST-SSRs (Table 1).

On level 2 of the GO classification, ‘binding’ (48.95%)
and ‘catalytic activity’ (30.87) dominated the molecular
function; ‘metabolic process’ (27.82%) and ‘cellular
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process’ (27.69%) dominated 50% of the biology process;
and ‘cell part’ (32.86%), ‘cell’ (32.86%), and ‘organelle’
(25.27%) predominated the cellular component (see
Additional file 5).

On level 3 of the GO classification, ‘nucleic acid bind-
ing’, ‘lon binding’, ‘transferase activity’, ‘protein binding’,
‘nucleotide binding’, and ‘hydrolase activity’ predomi-
nated in nearly 70% of the molecular function; ‘cellular
metabolic process’, ‘primary metabolic process’, ‘macro-
molecule metabolic process’, and ‘biosynthetic process’
took more than 50% of the biology process; and ‘intra-
cellular’, ‘intracellular part’, ‘intracellular organelle’, and
‘membrane-bounded organelle’ were major items of cell
component (see Additional file 6).

When taking individual chromosomes into account,
we found that some GO items were found only in some
chromosomes, for example, Chr08 occupied many
special GO items of biology process. Also, some chro-
mosomes dominated some GO items, for example,
Chr05 and Chr26 dominated the four major items of
cell component (see Additional file 7).

Discussion

High-density genetic maps are becoming increasingly
important in theoretical and applied genetic research
[30]. The construction of genetic maps in cotton with
molecular markers has been hampered by the limited
polymorphism which is 18.2%-47.9% between G.

Table 1 Correlation between GO catalogs and gSSRs,
EST-SSRs and total loci

GO catalog gSSR EST-SSR Total loci
Molecular function 048* 0.77%* 0.73**
Biology process 0.60** 0.56** 0.66**
Cell component 0.46* 0.81** 0.74**

*, **: significant at the 0.05 and 0.01 probability levels, respectively.

hirsutum and G. barbadense [5,7,31-33] and even less
(4.13%-7.9%) among G. hirsutum germplasms
[12,13,34,35]. Due to the low polymorphism and the
large genome size in cotton, the only way to construct a
high-density genetic linkage map is to apply more mar-
kers. In light of this, we developed new SSRs from ESTs
annotated to proteins and newly released ESTs including
novel ESTs from G. barbadense acc. 3-79 developed in
our laboratory. As a result, 3177 new EST-SSRs were
developed.

These EST-SSRs showed a lower polymorphism ratio
(8.1%-19.5%) when compared with other researches
[7,31-33]. Among the NAU-prefixed EST-SSRs and
gSSRs, only half of the polymorphism was detected
compared to the results of Guo et al. [7,25]. Although
our population and the population described by Guo
et al. [7] are both interspecific populations, a different
polymorphism was found between the two populations,
which might result from different materials or different
genotyping methods (denatured polyacrylamide gel vs.
non-denatured polyacrylamide gel).

The 6185 SSR primers developed in this study gener-
ated 1458 loci, and with our previous data [8], a total of
2521 loci were applied to map construction. The result-
ing map included 2316 loci on the 26 cotton chromo-
somes, 4418.9 cM long with an average distance of 1.91
cM between adjacent markers. This map is one of the
three maps composed of more than 2000 markers.
Compared to the map published by Rong et al. (2584
loci, 4447.9 cM in length with an average distance of
1.72 ¢cM) [3] and the map published by Guo et al. (2247
loci, 3440.4 cM in length with an average distance of
1.58 ¢cM) [25], the total map length and the average
marker distance of our map were more similar to the
map of Rong et al. [3], but longer than that of Guo
et al. [25]. The marker distribution on chromosomes
was similar to the map of Guo et al. [7] with the most
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loci on Chrl9 and the fewest on Chr02 and Chr04.
More loci were found on the Dt subgenome than on the
At subgenome in our map and the map of Guo et al.
[7], but more loci were present on the At subgenome in
the map of Rong et al. [3]. The At subgenome was
longer than the Dt subgenome in our map and the map
of Rong et al. [3], but shorter in the map of Guo et al.
[7]. The average marker distance of the At subgenome
is longer than that of the Dt subgenome in all the three
maps. The number of gaps (> 10 ¢cM) in our map was
similar to the map of Guo et al. [7], but fewer than
shown in the map of Rong et al. [3]; there were more
gaps on the Dt subgenome than on the At subgenome
in our map, but fewer in the other maps.

By comparing the distribution of SSRs, we found that
both gSSRs and EST-SSRs were prone to be mapped on
the Dt subgenome, with more gSSRs and EST-SSRs on
Chrl1, Chr19, and Chr21. The distributions of gSSRs
and EST-SSRs on each chromosome were also different
with four chromosomes having 50% more EST-SSRs.
The uneven distribution of SSRs on subgenomes and
chromosomes could help us to determine the distribu-
tion of SSR motifs; and the function of SSR sequences
could be conducive to further target genes in the cotton
genome. The distribution of different genome-derived
SSRs can provide us with some evidence for the evolu-
tion of tetraploid cotton; for example, Chr05, Chrll,
and Chrl5 may undergo concerted evolution because of
the distributions of other genome-derived SSRs on
them.

Segregation distortion is widespread in plant popula-
tions. In this study, 16.8% of the total loci showed segre-
gation distortion (P < 0.05), which is similar to other
reports on cotton (12.3%-19.9%) [6,7,23]. Twice as many
loci segregated toward the heterozygous allele than the
‘Emian22’ allele, and EST-SSRs showed more segrega-
tion distortion than gSSRs did. For the mapped loci,
12.8% of them were mapped on cotton chromosomes
with 74.9% segregating toward the heterozygous allele.
The loci segregated toward the heterozygous allele with
a high frequency because the heterozygous allele could
not be distinguished from the ‘3-79” allele in the BC,
population. Three chromosomes (Chr02, Chr16, and
Chr18) showed extreme segregation distortion in that
>50% of loci were distorted, among which 99.9% of the
distorted loci segregated toward the heterozygous allele
(Figures 2, 4, 7). Other maps have also proved that
these chromosomes show more segregation distortion
[3,6,7]. The extremely distorted chromosomes indicated
to us that segregation distortion loci exist on these chro-
mosomes. Faris et al. [36] and Kumar et al. [37] used
reciprocal backcross populations to identify segregation
distortion loci in Aegilops tauschii and tetraploid wheat,
respectively, which provided us with an example for
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identifying segregation distortion loci in cotton. The loci
skewing toward the same allele clustered on the same
chromosomes or within the same SDRs indicated that
genetic hitchhiking effects occur in cotton.

More than 8000 EST-SSRs were used in our mapping
population; however, only 1261 EST-SSRs were mapped.
Although gSSRs derived from genomic sequences, their
mother sequences can also be transcribed or translated.
By blasting the gSSR sequences to cotton ESTs, 367
gSSR sequences were matched to cotton ESTs. As a
result, 1633 loci of this map (70.6%) including five gene-
derived markers were functional markers, which was
fewer than those reported by Guo et al. [7]. By blasting
to the protein database, 1332 loci were derived from
translated sequences. Functional annotation of these loci
sequences revealed that some chromosomes preferen-
tially targeted certain GO catalogs, specifically, Chr03
and Chr21 mostly targeted the biology process; some
GO items were found only on some chromosomes, that
is, many special GO items of the biology process were
detected only on Chr08. These results indicated that
some chromosomes in cotton perform special functions.
What’s more, because these ESTs were mainly devel-
oped from developing fibers, this map can also be used
to identify fiber-related genes and to detect expressed
QTLs (eQTLs) for fiber quality.

Conclusions

A total of 3177 new EST-SSRs were developed to
enrich our interspecific BC; genetic linkage map. The
final map included 2316 loci on the 26 cotton chromo-
somes, 4418.9 cM in total length and 1.91 cM in aver-
age distance between adjacent markers. Segregation
distorted chromosomes were identified, which is a
guide to identify segregation distortion loci in cotton
and to understand the mechanism of segregation dis-
tortion in interspecific cross between G. hirsutum and
G. barbadense in cotton. SSR sequences were function-
ally annotated, which is helpful to identify functions of
cotton chromosomes and to detect eQTLs for fiber
quality. This map can be compared and integrated
with other cotton maps to construct a consensus map
in cotton.

Methods

Plant materials

The mapping population used in this study is the BC;
population [(Emian22 x 3-79) x Emian22] including 141
individuals which had been used to construct a 917-
locus map [8]. ‘Emian22’ is an upland cotton cultivar
with high yield and moderate fiber quality but not resis-
tant to verticillium wilt in Hubei Province. It was once
widely cultivated and is still used as a parent for hybrid
production. Sea-island cotton accession ‘3-79’ is the
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genetic and cytogenetic standard line for G. barbadense
with super fiber quality and high resistance to verticil-
lium wilt. The cross between these two materials is per-
formed to improve the performance of ‘Emian22’ by
backcrossing and molecular-assisted selection.

EST-SSR marker development

To effectively identify SSRs in ESTs, a Windows-
based tool named Serafer was developed in our
laboratory, available at ftp://ensembl.genomics.org.cn/
other/Serafer_1.9.5.zip. Serafer combines CAP3 [38],
Sputnik (Abajian, Washington University; http://
espressosoftware.com/sputnik), and Primer3.0 [39]
into a package; it can assemble the sequences, search
SSRs, and design primers at the same time, so it is a
powerful pipeline for SSR identification. Serafer takes
a FASTA formatted sequence file as an input and can
produce an Excel file with number of SSRs, sequence
ID, SSR type, SSR motif, SSR position, repeat length,
repeat number, repeat score, and the length of the
sequence.

The assembled cotton EST sequences (G. arboretum
release 2, G. raimondii release 2, and G. hirsutum
release 3) were downloaded in FASTA format from the
Institute for Genome Research (TIGR) database http://
www.tigr.org. The default criteria for SSR detection
were a minimum of seven repeats for dinucleotide
motifs, five repeats for trinucleotide motifs, and four
repeats for tetra-, penta-, and hexanucleotide motifs.
The contig or singleton sequences were used to design
primers flanking the putative SSRs. The input criteria
for primer design were primer length 18-24 bp with 20
bp as the optimum, GC content 35%-60% with 50% as
the optimum, optimum annealing temperature 57°C,
and PCR product size 100-300 bp. After the SSR identi-
fication and primer design for the three sets of data
were completed, three steps were conducted to generate
the final unique SSR markers. First, EST-SSRs (ESTs
containing SSR) with no BLAST hits to known genes
were excluded; second, unique SSRs for each dataset
were generated by comparing them to all public cotton
microsatellites deposited in CMD http://www.cotton-
marker.org according to sequence ID, target SSR, and
primer sequences; and third, internal companions
among the three datasets were conducted to reduce
redundancies. This work was finished as of January
2008.

The ESTs from fast-elongating fiber of G. hirsutum cv.
Xu-142 released by Yuxian Zhu were the second
sequence source for EST-SSRs development, which was
not included in the assembled ESTs of G. hirsutum
release 3 in TIGR. These sequences were analyzed in
the Serafer pipeline from sequence assembly to primer
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design. More strict criteria were set for SSR detection
with a minimum length of 18 bp for di- to hexanucleo-
tide motifs, and the parameters for primer design were
the same as before except that the PCR product size
was 100-400 bp. These SSR markers were also com-
pared to all existing markers by primer sequences to
ensure that they were not redundant. This process was
finished as of July 2008.

The third sequence data for the development of EST-
SSRs were the new ESTs from developing fiber of
G. barbadense acc. 3-79 generated in our laboratory
(unpublished data). Aiming at understanding the
mechanism of fiber development in G. barbadense, we
have constructed a normalized fiber cDNA library (from
-2 to 25 dpa) of G. barbadense acc. 3-79 [40]. A preli-
minary sequencing of the cDNA library produced 887
high-quality ESTs that were used to construct the tran-
script map of developing fiber [40] and also to isolate
EST-SSRs [41]. After that, an additional 10090 high
quality ESTs were obtained. These new sequences com-
bined with the previous sequences were explored in the
Serafer pipeline to develop SSR markers. The SSR mar-
kers that were the same as all the previously developed
SSRs were excluded from the results, and this was fin-
ished as of August 2008.

All the SSR primers were named with a prefix HAU
and synthesized by Sunbiotech Co. Ltd. (Beijing).

Marker analysis
PCR, electrophoresis and silver staining were performed
as previously described [23].

Map construction

The mapping data for each parent were scored as the
BC; data according to the definition of JoinMap 3.0
[42], and the linkage map was constructed using a loga-
rithm of odds (LOD) threshold of 5.0 and a maximum
recombination fraction of 0.4. Map distances in centi-
Morgans (cM) were calculated using the Kosambi map-
ping function [43]. The resulting linkage map was
drawn using MapChart 2.2 software [44]. Linkage
groups were assigned to corresponding chromosomes by
mapped SSRs http://www.cottonmarker.org. Homoeolo-
gous chromosomes were identified by duplicated loci as
described in previous reports [2,3,7].

Segregation distortion

For each segregating marker, a 3> analysis was per-
formed to test for deviation from the 1:1 expected seg-
regation ratio. A region with at least three adjacent
loci showing significant segregation distortion (P <
0.05) was defined as the segregation distorted region
(SDR) [45].
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Annotation and functional classification of sequences
containing SSRs

Sequences corresponding to gSSRs were indentified to
be transcribed sequences by BLASTN to cotton ESTs
with E < 1 e'® and were annotated using BLASTX
(NCBI, Bethesda, MD, USA). The BLASTX results were
classified into three groups: known gene products,
hypothetical proteins, and unknown genes.

Functional annotation of ESTs was based on GO anno-
tation [46], and performed with BLAST2GO [47,48].
When running BLAST2GO, BLASTX DB was set to NCBI
non-redundant DB and expectation value threshold was
set at 1.0E-3, whereas high-scoring segment pairs (HSPs)
length cutoff was set at 15. The top 20 BLAST hits were
retained, then go-mapping was run, and an annotation
step with default parameters was performed. Furthermore,
InterPro Scan was performed and InteProScan GOs was
merged to annotation. Finally, the ‘goslim_plant.obo’
ontology subset was used to achieve specific GO terms.

Additional material

Additional file 1: EST-SSRs developed from cotton ESTs (The details
of marker name, sequence ID, sequence, motif, primer sequences,
product size, Tm and putative function are listed).

Additional file 2: Chromosome assignment, marker distribution,
length of chromosomes, marker density, gaps and segregation
distortion in genetic linkage map constructed with the [(Emian22 x
3-79) x Emian22] BC; population.

Additional file 3: gSSRs derived from transcribed sequences.
Additional file 4: Description: BLASTX results of SSR sequences.
Additional file 5: GO classification of mapped loci sequences (level
2): (a) molecular function; (b) cell component; and (c) biology
process.

Additional file 6: GO items of mapped loci sequences (level 3): (a)
molecular function; (b) cell component; and (c) biology process.

Additional file 7: Details of GO results.
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