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Abstract

artifact of the techniques used during analysis.

Background: Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production
(IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences.
Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in
vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then
use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an

Results: 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were
differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in
the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is
particularly interesting, therefore, a variety of approaches were employed to determine whether the observed
transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the
analysis of transcript abundance in oocytes in vitro matured in the presence of a-amanitin. Subsets of the
differentially expressed genes were also validated by quantitative real-time PCR (gPCR) and the gene expression
data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5,
CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related
genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured
counterparts, while ANXA1, PLAU, STCland LUM were among the over-expressed genes after oocyte maturation.

Conclusion: Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte
maturation. This dataset provides a unique reference resource for studies concerned with the molecular
mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription
during meiotic maturation and contributes to the global goal of improving assisted reproductive technology.

Background

Transition from the maternal to -embryonic genome
control of development occurs relatively late in cattle,
during the fourth cell cycle [1]. Thus, the oocyte is the
main driver of early embryo development, drawing on
maternal mRNAs and proteins accumulated during the
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oocyte growth phase [2,3]. In order to achieve a devel-
opmentally competent status, the oocyte has to gradu-
ally undergo a number of physiological changes that
include physical and molecular remodeling [4]. During
fetal life, mammalian oocytes initiate meiosis and
become arrested at the diplotene stage of prophase I
(dictyate stage). The ability of these oocytes to resume
meiosis and to complete the first meiotic division is
acquired sequentially during their growth phase [5]. In
fully grown oocytes, meiotic resumption and nuclear
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maturation, in response to the preovulatory gonadotro-
phin surge in vivo or release from the follicle in vitro, is
characterized by germinal vesicle breakdown (GVBD),
chromosomal condensation, cumulus cell expansion,
hyaluronic acid and cyclic AMP production [5-8], and
progression through metaphase I to anaphase and telo-
phase, with extrusion of the first polar body and arrest
at metaphase II (MII) until reactivation at fertilization.
The basic molecular machinery governing these devel-
opmental processes is relatively well conserved across
mammalian species [9,10]; however, there is a clear dif-
ference in the timing of these processes between species
(reviewed in [11,12]).

The origin of the oocyte and more specifically, the
environment in which oocyte growth and maturation
occur [13-17] has been implicated as an important
determinant of the subsequent developmental compe-
tence of the oocyte. Transcriptional profiling of in vivo
and in vitro matured (IVM) oocytes in cattle [18-20],
humans [21], and rhesus monkeys [22] have shown var-
iations in a number of genes and distinct pathways,
which may have consequential effects during the post
fertilization development. For example during the pro-
cess of in vitro embryo development, while maturation
and fertilization proceed apparently normally (based on
first polar body extrusion and mitotic cleavage, respec-
tively), the proportion of embryos reaching the transfer-
able (blastocyst) stage rarely exceeds 40 to 50% and
those that do reach this stage are often compromised in
quality and further developmental competence [23], an
effect partly attributed to inadequate oocyte cytoplasmic
maturation [24,25]. In contrast, fertilization and culture
in vitro of oocytes matured in vivo results in high rates
of blastocyst development [15,26] providing further evi-
dence of the importance of oocyte quality in determin-
ing developmental competence.

To date, efforts to characterize developmentally com-
petent oocytes have been hampered partly by the diffi-
culty in assessing cytoplasmic maturation [27], and the
small volume of material available for analysis. Cur-
rently, while nuclear maturation can be assessed by the
extrusion of the first polar body and the formation of
the second metaphase plate, there is no reliable assay
for the assessment of oocyte cytoplasmic maturation,
other than the development of the fertilized oocyte to a
live offspring [24,27,28]. This lack of oocyte quality mar-
kers has led some researchers to use embryo morphol-
ogy or blastocyst rate as alternative early quality
predictors of developmental competence [29-31]. Until
the mechanisms involved in establishing oocyte quality
are elucidated, any effort to use assisted reproductive
technologies in the treatment of human infertility or in
animal production will be inefficient [28]. Analysis of
the oocyte transcriptome during maturation using global
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mRNA analysis techniques provides a resource that can
be mined and expanded continuously with new software
and sequencing techniques to identify genes involved in
the processes of meiotic and cytoplasmic oocyte matura-
tion and the specific checkpoints regulating acquisition
of full competence [32].

It is well understood that mRNAs stored during the
oocyte growth phase are systematically, and in a step-
wise manner, degraded or translated to form proteins
that regulate subsequent developmental processes
[33,34]. As a result, down regulation of stored tran-
scripts during oocyte maturation is believed to occur.
Although GV intact oocytes show some transcriptional
activity [4,35], there are conflicting reports on the
occurrence of transcription following the resumption of
oocyte meiotic maturation. Comparison of immature
(germinal vesicle stage, GV) and in vivo matured oocytes
in mice [36], and in humans [32] indicated up regulation
of a number of transcripts during oocyte maturation.
However, other studies comparing immature and in
vitro matured (IVM) oocytes in cattle [37] and in mice
[38] reported the absence of over-expressed transcripts
during oocyte maturation. Given these apparently con-
flicting observations, and the opportunity to benefit
from the increased coverage (more than 92%) of the
bovine genome sequence [39], we examined transcrip-
tional activities during bovine oocyte maturation and
present a dataset that provides a unique reference
resource for studies concerned with the molecular
mechanisms controlling oocyte meiotic maturation in
cattle. These data have been superficially referred to in a
previous review paper [2] but a thorough analysis of the
gene lists and associated ontologies has not yet been
published.

Results

Experiment 1 Global oocyte transcriptome analysis
revealed differentially regulated transcripts

The hybridized slides were scanned and MIAME-com-
pliant (FGED; http://www.mged.org) gene expression
data have been submitted to the Gene Expression
Omnibus (GEO) database (GSE23449).

The established Affymetrix linear amplification proce-
dures using the GeneChip® Expression 3’-Amplification
Two-Cycle cDNA Synthesis kit yielded closely similar
profiles between the five replicates of the same treat-
ment (Pearson’s correlation coefficients of the range
0.914 to 0.949), indicating a highly reproducible proce-
dure. Moreover, hierarchical clustering and principal
component analysis revealed sufficient differences
between the transcriptomes of immature and IVM
oocytes that allowed them to cluster separately into two
groups based on maturation status with a high degree of
reproducibility and small variability between samples of
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each treatment (Additional file 1, Figure S1 and Addi-
tional file 2, Figures S2A and S2B). The first principal
component (PCA1l) accounts for 95.12% of the
variability.

By comparing multiple probes matching a target
mRNA and evaluating the signal-to-noise ratio, the
FARMS http://www-stat.stanford.edu/~tibs/SAM/sam.
pdf microarray processing algorithm detected a total of
9178 informative Bos taurus probes corresponding to
8489 annotated genes. 2117 transcripts were found to
be differentially expressed between immature and IVM
oocytes, corresponding to 1528 transcripts that were sig-
nificantly lower and 589 that were significantly higher in
abundance in IVM oocytes compared to their immature
counterparts. The list of differentially expressed tran-
scripts was further analyzed using the DAVID Bioinfor-
matic Resource http://david.abcc.ncifcrf.gov/home.jsp
and was found to correspond to 1836 annotated tran-
scripts with NCBI Entrez-Gene IDs, of which 1413 were
under-expressed and 423 were over-expressed in the
IVM oocytes. The summary and details of differentially
expressed transcripts are described in Table 1, Addi-
tional file 3, Table S1 and Additional file 4, Table S2.
Transcripts were classified according to their gene
ontology (GO): molecular function, cellular component
and biological process, and the results of overrepresen-
tation analysis are presented in Figure 1.

Biological processes enriched with differentially regu-
lated genes included regulation of various cellular pro-
cesses, cell communication and intracellular transport,
metabolism and translational regulation (Figure la and
1b). The majority of over expressed transcripts were
associated with cell communication and various cellular
processes including homeostasis (Figure 1a) while the
metabolic and intracellular transport processes (Figure
1b) were primarily enriched by transcripts which were
under expressed in [IVM oocytes. This finding is sup-
ported by the results of an earlier study in mouse which
showed that chemical inhibition of some metabolic
pathways induced oocyte maturation [40]. Pathway ana-
lysis of the differentially expressed genes using the Inge-
nuity Pathway Analysis tool detected five major

Table 1 Summary of the global oocyte transcriptome
analysis showing the differentially regulated transcripts
during bovine oocyte maturation

Category Probe sets  Transcripts Unique annotated
Transcripts

Oocyte 9178 8489 6586

Transcriptome

Differentailly 2244 2117 1836

expressed

Increased in Ml 613 589 423

Increased in GV 1631 1528 1413
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networks, preferentially populated with genes that have
important biological functions relevant to development,
including cellular growth and development, Molecular
transport, Protein synthesis and embryo development
(Table 2). Moreover, the detected networks were sup-
portive of the above listed GO results.

Experiment 2 Quantitative PCR (qPCR) validation of
microarray results

A panel of 25 differentially expressed genes mostly asso-
ciated with cell cycle functions, and a reference gene
(H2AFZ) (Table 3) was selected for validation in inde-
pendently prepared immature and IVM oocyte samples
using qPCR. All but one of the genes (24/25) showed a
similar expression pattern to the microarray data and 22
of the 25 genes were significantly differentially expressed
(P < 0.05) (Figures 2 and 3).

Experiment 3 Effect of a-amanitin on transcript
abundances

o-amanitin is known as a transcription inhibitor and
used in various oocyte and embryo development studies
[41,42]. Following incubation with the transcription
inhibitor, a.-amanitin, the expression of selected genes
over-expressed in the microarray analysis (LUM, MX1,
SERPINAI14, STCI1, PLAU, SERPINEI, and RBPI) was
analyzed with qPCR, and transcript abundances were
compared. Treatment with a-amanitin for either 21 or
24 h significantly reduced transcript abundances for all
genes studied, compared to oocytes matured for 24 h in
the absence of the inhibitor (Figure 4). Furthermore, for
many of the transcripts analyzed, the expression profile
of the a.-amanitin-treated oocytes was similar to that of
the immature oocytes.

Experiment 4 Effects of analysis parameters on the
transcript abundances

4a Contribution of RNA conversion methods to differential
expression data

The aim of this experiment was to examine whether the
primers used during cDNA synthesis have contributed
to the conflicting data on transcription during mamma-
lian oocyte maturation. Primers used during the reverse
transcription reaction are known to influence the cDNA
quality and yield. Unlike random primers, oligo (dT) pri-
mers tend to show a bias towards the 3’ end of tran-
scripts with poly (A) tails. In order to investigate the
effect of the primer used during cDNA synthesis on
qPCR analysis data, we compared the transcript abun-
dances of a panel of genes in two cDNA preparations
obtained from reverse transcription using either random
or oligo (dT)-based primers. The transcripts were quan-
tified and normalized to the quantity of an exogenous
reference (luciferase), and reported as fold change
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Figure 1 Classification of the differentially expressed transcripts based on gene ontology. (A) Biological process (a and b); (B) Molecular
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differences relative to the immature oocyte transcript
abundance.

Generally for an equal quantity of cDNA input, tran-
scripts of the same gene were more abundant in random-
primed cDNA preparations compared to oligo (dT)-

primed preparations, as manifested by an earlier Cq value
for the former compared to the latter. The expression
patterns were similar for both random- or oligo (dT)-
based priming. However, the calculated ratios for the
oligo (dT)- primed cDNA showed a tendency for higher
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Table 2 Top network functions detected during Ingenuity
Pathway Analysis

Associated Network Functions Score
1. Cellular assembly and organization, Molecular transport, 42
Protein Trafficking

2. Protein synthesis, Cellular function and Maintenance, Small 35
molecule Biochemistry

3. Post-Translational Modification, Developmental Disorder, 35

Embryonic Development

4. Genetic disorder, neurological disease, Cell-to-Cell Signalling 35
and interaction

5. Cancer, Neurological disease, Renal and Urological Disease 35

fold change differences for most genes compared to the
random hexamer primed cDNA, but differences were not
significant (Additional file 5, Figure S3). Moreover, there
was no significant difference in the results generated by
the use of primers for longer amplicons (Table 4) com-
pared to those for shorter amplicons (Table 3), indicating
no bias due to product size in the current study.

4b Chronological analysis of candidate gene abundance
during in vitro oocyte maturation

To avoid the possibility of preferential amplification due
to poly (A) tail length, we standardized the cDNA
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synthesis procedures by using random primers that can
account for transcript abundances, irrespective of the
poly (A) tail status.

In order to characterize in more detail the chronology
of the divergence in transcript abundance between
immature and IVM oocytes, oocytes were collected at 0
(GV), 3, 6, 12 and 24 (MII) h after initiation of IVM.
The expression profiles of the over-expressed transcripts
across the 24 h maturation window are presented in
Figure 5. The relative abundance of four genes (MAOA,
STCI, SERPINEI and PLAT) was significantly (p < 0.05)
reduced after 3 h maturation and gradually increased
thereafter to peak either at 12 h (STCI and SERPINEI)
or 24 h (PLAT and MAOA). The expression levels of
(ANXA1, PLAU and LUM) did not change after 3 h
maturation, but increased thereafter to peak significantly
(p < 0.05) at 12 h (ANXAI and PLAU) or 24 h (LUM).
The results also indicated that expression levels of SER-
PINEI, STCI, PLAU, and ANXA1I) were peaked at 12 h
post initiation of IVM and values were significantly (p <
0.05) higher than those observed at all other time
points. Although abundance of these transcripts tended
to increase in 24 h IVM oocytes, compared to 0 h, only
expression of LUM and STCI1 were significantly higher

Table 3 Sequences and GenBank accession numbers of primers used for qPCR analysis during experiment 2 and 3

Gene Forward 5'-3' Reverse 5'-3' Product size (bp)  GenBank
ANXAT GAGGAAGTTGTTTTGGCTCTATTGA TGGCAGCACGGAGCTCTT 67 NM_175784
CDK1 TGGACAGTCAAATTAAGAAGATGTAGCT GTACAATTATCTGCTCTTGACACAACAC 72 NM_174016
CDK5 CCTGCTCATCAACAGGAATGG AAA GGC GCG AGC CAAAC 61 NM_174017
CDK8 CCCAGCAGCCTCCACAGTA TGT CCG ACG CAG CTC AGT AC 57 XM_583707
CHMPITA CAGCCCTGGGACTCTTCTTCT ACTCACCCTGTAGGGCACAGA 62 NM_001037584
H2AFZ TCCGGAAAGGCCAAGACA GAACTGCAAACCGGCTCTCT 57 NM_174809
HSPA2 AGAACCAGGTGGCCATGAAC TCCGACCAATCAGCCTCTTG 63 NM_174344
LUM TTCAAAGCATTCGCCAAAATG CCGCCAATTAATGCCAAGAG 62 NM_173934
MAD2L2 GTCTACCCGGTGGGCATCT CAT CTG GAC AGG CAC GTT GT 57 NM_001045946
MAOA GGGCCAGATGTTCGACGTAGT AGCTAAGAGTTTCGCAGCAGATAA 69 NM_181014
MAPK14 GCT GTC GAC CTG CTG GAG AAG ATG TCG TCG TCA GGA TCG TGG TAC TGG 110 NM_001102
MLH1 TCCGGGAGATGCTGCATAA CAA GGC CCA CTG AGG ATT CA 59 NM_001075994
MX1 GAGCAGTATGACTCCCGACTGTTT TTCTCAACCACAGCACTCCATTT 71 NM_173940
NUDC CCCCAGATCAAAGAACTGACTGA GGC ATC CTT TTT CTG GTC AATT 72 NM_001075607
PLAU CGCCACACACTGCTTCATTG GCCGTGACTGACCCAAGTAGAC 68 NM_174147
PPP3CA CCTCATCCATACTGGCTTCC AATCCATCTTCTTCTGACCC 140 NM_174787
RBP1 TGCGCGCGCTGGAT GCTTCAGCAAGTTGGCGATT 54 NM_001025343
SERPINET GGACTTCTCCAGTTTTTCAGATCAAG CAGCGTGCCGCTCTCATT 91 NM_174137
SERPINA 14 ACCCTGAGGACCTGAAACTTGAG CGTGGACCAGAGGCTGTAAGTACT 69 NM_174797
SIPAT GCCCATTATTCGGTGACACAGT GAAGTCCCCTTTTCTCCACAGA 72 NM_001101895
SSSCAT TGACTGCGGGACGATCCT TGA CAA GCC ACG CAG TAG ATT T 60 NM_001038528
STCI TTTGCAATGGCGGCATT TCCCGAGGAGAGGCATAGAG 60 NM_176669
TFDP2 GGTGCCACCTTGTCCCAAT CTA AGG CCA CTT CAG CAT CCA 64 NM_001075241
TGFB2 TCTCCAACCCAGCGCTACA TTCACCCTCTGCTCTGGTTTTC 57 NM_001113252
7SC2 CAGAGGGCAAACAGACTGAGTTTAT GCG ATT ATT GAG GCC ACA TTC 80 XM_581197
TXNL4B TGGTAATCGTGATGCATGGAA GGC TGG TTG CCT CAT GGT 58 NM_001014897
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Figure 2 gPCR analysis of selected genes from the list of over-
expressed transcripts. Expression of Mil oocytes (black bars) was
compared to GV oocytes (white bars). All expression levels are
relative to the level of expression in GV oocytes (white bars) which
has been arbitrarily set to one-fold. Stars denote statistical difference
*=p <005 *=p < 001, **=p < 0.001.

(p < 0.05). In general, the expression levels observed at
24 h were similar (but not identical) with the earlier
profile for the same gene at this time point following
normalization using luciferase. This similarity reinforced
our approach to use validated reference genes for this
and other subsequent experiments.

4c Candidate gene expression in oocytes matured in vivo
The aim of this experiment was to verify if the gene
expression changes observed in the IVM oocytes
(Experiment 4b above) are also observed in oocytes
matured in vivo.

The expression profiles of five transcripts (LUM,
PLAT, SERPINEI, STCI1 and PLAU) that were over-
expressed in oocytes matured in vitro were quantified in
in vivo derived bovine oocytes. The results revealed a
similar tendency of increased abundance after matura-
tion for all examined genes (PLAT, SERPINEI, STC1
and PLAU); the differences were significant in the case
of STC1 (p < 0.01) and LUM (p < 0.00001) (Figure 6).
The significant over-expression of these genes (STCI
and LUM) in mature oocytes was similarly noted in in
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Figure 3 qPCR analysis of selected genes from the list of
under-expressed transcripts. Expression of MIl oocytes (black bars)
was compared to GV oocytes (white bars). All expression levels are
relative to the level of expression in MIl oocytes (black bars) which
has been arbitrarily set to one-fold. Stars denote statistical difference

Relative expression levels

Figure 4 Relative abundance of specific transcripts in bovine
oocyte matured with or without a-amanitin. The figure shows
GV (white), Ml (black), MIl cocytes matured in the presence of a-
amanitin after 3hr of culture (line spotted), MIl cocytes matured in
a-amanitin for 24 hr (dot spotted). All expression levels are relative
to the level of expression in MIl cocytes (black bars) which has

* = p <005 *=p < 001, = p < 0001,

been arbitrarily set to one-fold.

vitro samples (Figure 5). Due to the negligible expres-
sion of LUM in immature oocytes an arbitrary Cq value
of 40 was assigned for the expression in immature
oocytes, in order to calculate the relative abundances.

Discussion

The issue of transcript regulation during oocyte matura-
tion is a controversial topic in developmental biology.
Various previous efforts [32,36-38] to decipher the tran-
scriptional changes during oocyte maturation have been
masked by contradictory outcomes. In the current
study, we established the global changes in transcrip-
tomic profile during meiotic maturation in bovine
oocytes. Moreover, in an effort to examine the possible
sources of conflicting reports, we further investigated
transcription in the presence of transcription inhibitor,
effects of primers, amplified product sizes, reference
genes and sample types (in vitro and in vitro) on tran-
script abundance. Here we (1) report the existence of
transcription activities during bovine oocyte maturation,
(2) show suppression of over-expressed genes when
oocytes were matured in the presence of an inhibitor of
transcription suggesting that the observed transcript
changes were newly synthesized, (3) report that the new
transcription was not sample type (in vitro or in vivo)
-specific, (4) report primers used during cDNA synthesis
and reference genes used for normalization have an
impact on the interpretation of the gene expression
data, but not the amplified product sizes.

The genome-wide interrogation of immature and in
vitro matured bovine oocytes on the Affymetrix Gene-
Chip bovine array identified a number of differentially
expressed genes, the vast majority (~75%) of which were
over-expressed in immature oocytes (Table 1). It is well
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Table 4 Sequences and GenBank accession numbers of re-designed primers used for qPCR analysis during

experiment 4

Gene Forward 5’-3' Reverse 5'-3' Product size (bp) GenBank
ANXAT ATGGTATCTGAATTCCTCAAGCAG TGCAAGGCCTCAACATCC 149 NM_175784
H2AFZ CGGAAAGGCCAAGACAAAG CTGAAATCTAGGACGACTAGCCAT 103 NM_174809
Luciferase TCCTCCAGGGATACGACAAG GGTATCCAGATCCACAACCTTC 139 EU684088
LuM CGAAAGCAGGGTCAAGACAG TGATGACCTCCCATACAGTGC 158 NM_173934
MAOA TGGCGGACCATGGATAAC AAACTGCCGAGCAGTCTTTG 138 NM_181014
PLAT TGTGGAGCTGTCTTCACGTC CGTGTTGGCGGTACGTC 118 NM_174146
PLAU CTGTGCCCTGGTCGTGAG GCAACTGCATCGCTGAATG 136 XM_174147
PPIA CCACCGTGTTCTTCGACATC CCAAATCCTTTCTCTCCAGTGC 130 NM_178320
SDHA GGGAGGACTTCAAGGAGAGG TCAACGTAGGAGAGCGTGTG 12 NM_174178
SERPINET CAGGCGGACTTCTCCAGTT CATTCGGGCTGAGACTACAAG 135 NM_174137
STCI GTGACACAGATGGGATGTACGAC CGAATGGCCAGGAAGACC 142 NM_176669
TGFB2 AGGCCGAGTTCAGAGTCTTTC TGTAGCGCTGGGTTGGAG 117 NM_001113252
YWHAZ GCAGATGGCTCGAGAATACAG GAAGCGTTGGGGATCAAG 102 NM_174814

accepted that mammalian oocytes have already accumu-
lated the majority of their transcripts at the fully grown
immature (GV) stage that will drive subsequent develop-
ment through degradation, translation and post-tran-
scriptional modifications [33,34] up to embryonic
genome activation. Therefore, the observation of a mas-
sive reduction of the initial transcript stock in our study
was in line with the current understanding of events
during oocyte maturation. On the other hand, the detec-
tion and confirmation of certain over-expressed tran-
scripts during bovine oocyte maturation suggests the
existence of transcription, perhaps to complement the
depleting transcriptional stock.

Despite the multiple roles of a particular gene [43],
Ingenuity Pathway Analysis classified the differentially
regulated genes into various associated functional net-
work groups (Table 2). These include cellular assembly,
molecular transport, post-translational modification and
cell to cell signaling, all of which occur during oocyte
maturation. For example, cell-to-cell signaling between
oocytes and their surrounding somatic cells is important
for oocyte cytoplasmic maturation and the acquisition of
developmental competence. This is a bidirectional com-
munication mediated through the transport of various
growth factors, such as GDF9 and BMP15, from oocytes
to their surrounding cumulus cells [44-46], and cyclic
adenosine monophosphate (cAMP) from somatic cells
to the oocyte [47] via gap junctions.

Generally, the sequence of events leading to the
GVBD (Germinal Vesicle Breakdown) and the require-
ments for transcription and/or protein synthesis differs
markedly between species [12,48]. For example, in frog,
mouse, rat and fish oocytes, high levels of cAMP pre-
vent oocyte maturation in vitro, while a decrease in
oocyte cCAMP is associated with the resumption of meio-
sis [49,50]. In contrast, maturing oocytes from pig,

sheep, cattle and rabbit exhibit a transient increase
rather than a decrease in cAMP levels, and treatments
that increase cAMP levels can induce oocyte maturation
[49,51-53]. Similarly, an earlier study [12] confirmed the
requirements of transcription and protein synthesis as
requirements for GVBD in domestic animals (sheep, cat-
tle and pigs) while neither event is required for the
initiation of maturation in mouse oocytes. Generally our
finding is in line with earlier studies in bovine [54-56]
that observed various over-expressed transcripts during
oocyte maturation.

In order to verify if the over-expressed transcripts
were transcribed following submission of oocytes to
IVM, oocytes were matured in the presence of the RNA
polymerase II inhibitor, o.-amanitin for 24 h. The result-
ing transcript profile was similar to that of the immature
oocytes, which is consistent with the notion that 24 h
exposure to a-amanitin prevents meiotic resumption in
most oocytes [57]. This study [57] also reported that
addition of o.-amanitin after 3 h of culture had no effect
on meiotic maturation. However, in the current study
exposure of the oocytes to the o.-amanitin treatment fol-
lowing an initial 3 h culture in a-amanitin-free medium
resulted in a similar level of expression to that observed
when the inhibitor was present throughout. These find-
ings suggest that some de novo transcription is occur-
ring in bovine oocytes following the resumption of
meiosis.

In order to examine the contributions of some down-
stream analysis procedures on the final transcript data,
we further examined the implications of primer choices
during cDNA synthesis. Although not significant, there
was a tendency for higher expression fold change (ratio)
for oligo (dT)-based cDNA preparations compared to
random-based cDNAs. This suggests the preferential
amplification of oligo (dT)-based primers, and the
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Figure 5 Relative gene expression profiles of in vitro mature bovine oocytes at different time points. In all cases the expression at time 0
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Figure 6 Relative gene expression profiles of bovine oocytes,
before (GV) and after (MIl) in vivo maturation. In all cases the
expression at time immature (GV) stage was taken as calibrator
against which the relative levels of other time points were
calculated. ** indicates significance (p < 0.01) and *** indicates
significance (p < 0.0001). Due to the insignificant levels of LUM in
immature oocytes an arbitrary 40 Cq values were assigned to
calculate the relative fold change.

finding is in agreement with most other previous obser-
vations [54,58-61], although another study [19]
reported an identical results irrespective of the primers
used. The fact that anchored oligo (dT) was used in
our study may have narrowed the difference. It has
been shown previously that anchored oligo (dT) pri-
mers are better than the conventional oligo (dT) pri-
mers in maintaining the fidelity of the probes, as the
latter generates a high frequency of truncated cDNA
through internal poly (A) priming [62]. This observa-
tion further signifies the contribution of primers to the
final conclusions, and the need to select appropriate
primers commensurate with the sample type for analy-
sis. Therefore, it is possible to speculate that this may
have also contributed to the earlier contradictory
reports on the occurrence of transcription during
meiotic maturation [32,36-38].

Increasing stringency by controlling primers for cDNA
synthesis, designing intron-spanning primers for amplifi-
cation and the use of alternative validated reference
genes during the analysis appears to reduce the number
of significant genes at 24 h. Interestingly, when we ana-
lysed the kinetics of transcript expression during
maturation the abundance of several transcripts was sig-
nificantly higher at 12 h compared to 0 h. The kinetics
of bovine oocyte maturation has been well described
[63-66]. In most oocytes GVBD occurs between 4 and 8
h after initiation of maturation, and has occurred in the
majority of oocytes by 8 h. By 12 h the majority of
oocytes have reached metaphase I. Progression from
GVBD through the subsequent stages of meiosis is
under the control of the anaphase promoting complex
(APC) which is mainly regulated through sequential
polyadenylation and deadenylation of transcripts [67]
and the increased abundance of these transcripts at this
time may reflect their association with APC. These
genes are implicated in various developmental activities
including cell signaling, apoptosis and membrane
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trafficking (ANXA1I) [68], and cumulus cell expansion
(PLAU) (reviewed in [55]).

Irrespective of the introduction of increased stringency
measures, the abundance of STCI and LUM was signifi-
cantly higher in both in vivo and in vitro matured
oocytes compared to 0 h (GV stage oocytes) (Figure 5
and Figure 6). Furthermore, transcript abundances were
maintained at 0 h levels when oocytes were matured in
the presence of o.-amanitin. Taken together, these find-
ings strongly suggest de novo transcription of STCI and
LUM following the resumption of meiosis. Analysis of
various studies suggests STCI has effects on metabo-
lism, reproduction, and developmental processes in
addition to affecting mineral homeostasis (reviewed in
[69]. STCI expression was highest in mouse ovary, with
lower but detectable levels in most other tissues [70].
Based on this result and the initial implication of the
gene in mineral metabolism, it was suggested that STC1
may have acquired an important function in reproduc-
tion during its evolution in mammals [70]. Similarly,
increasing evidence suggests that LUM may also serve
as a regulatory molecule of several cellular functions
[71,72]. Previous study in mice using Northern and In
situ hybridization indicated that, in early stages of
embryonic development before day 7 post-coitus, the
embryo does not express LUM or expresses only very
low amounts [73]. This is the first study to examine and
reveal the expression of these two genes (LUM and
STCI) during oocyte maturation. Based on the consis-
tent expression pattern in repeated experiments of in
vitro and in vivo derived oocytes, it is plausible to specu-
late that these two genes (LUM and STCI) may be
potential molecular markers of oocyte maturation and
may contribute to the early events of embryo
development.

Conclusions

We have used global microarray analysis to establish the
molecular transcriptome blueprint of immature and
matured oocytes and to identify and validate genes that
are unique to and predominantly expressed in bovine
immature and IVM oocytes. The genes identified will be
invaluable in further studies examining the processes of
oocyte maturation in addition to addressing the existing
conflicting issue of transcription during meiotic matura-
tion. Moreover, it will enable the comparisons across
many species and contributes to the goal of improving
assisted reproductive technology.

Methods

All chemicals, unless stated otherwise, were purchased
from Sigma-Aldrich Chemical Inc. (St. Louis, MO,
USA). All experimental procedures involving animals
were licensed by the Department of Health and
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Children, Ireland, in accordance with the Cruelty to
Animals Act (Ireland 1897) and the European Commu-
nity Directive 86/609/EC and were sanctioned by the
Animal Research Ethics Committee of University Col-
lege Dublin. Four experiments each with different objec-
tives and methodologies were carried out, as described
separately in the result sections.

Collection of immature and in vitro matured oocytes
Immature cumulus oocyte complexes (COCs) were
obtained by aspirating 3 to 8 mm follicles on the ovaries
collected from cows slaughtered at a local abattoir.
Good quality COCs, judged morphologically with multi-
ple cumulus layers and homogenous cytoplasm, were
selected under the stereo microscope and washed
repeatedly in modified phosphate-buffered saline (PBS,
supplemented with 36 mg mL™" pyruvate, 50 mg mL™"
gentamycin, and 0.5 mg mL™" bovine serum albumin
fraction V). Following washing, half of the COCs were
immediately denuded by repeated pippeting in PBS.
After carefully evaluating the oocytes under a stereomi-
croscope, intact oocytes with no cumulus traces were
pooled in groups of 10 oocytes per tube and immedi-
ately snap frozen in liquid nitrogen. The remaining half
COCs were incubated in maturation medium [TCM-199
supplemented with 10% (v/v) fetal calf serum and 10
ng/ml epidermal growth factor] in 4-well dishes (Nunc,
Roskilde, Denmark) at 39°C for 24 h under an atmo-
sphere of 5% CO, in air with maximum humidity. At 24
h, in vitro matured (IVM) COCs were denuded and
snap frozen as described above. Five replicates (= days
of ovary collection) were carried out, and all samples
were stored at -80°C until analysis.

Collection of immature and in vivo matured oocytes

The collection of immature and in vivo matured oocytes
was carried out as previously described [26,74,75].
Briefly, ten crossbred beef heifers were synchronized
using an 8-day CIDR treatment with administration of a
prostaglandin F2a analogue (PG), the day before CIDR
removal, to ensure complete regression of the corpus
luteum. Animals were checked for standing estrus (=
Day 0) and starting on Day 10 of the estrous cycle, ani-
mals were superovulated with FSH given as twice daily
injections over four days. Luteolysis was induced with a
second PG injection given on Day 12. To collect imma-
ture COCs, five cows were slaughtered 40 h after PG,
equivalent to the expected time of the LH surge, and
therefore just before resumption of meiosis. The
remaining five cows received GnRH at 40 h post PG to
induce an LH surge [15,76], and were slaughtered 20 h
later (i.e. 60 h after PG) to collect in vivo matured
COCs. 32 good quality in vivo derived immature and 22
good quality in vivo matured oocytes were collected,
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COC’s were denuded as described above, snap frozen
and stored at -80°C until analysis.

Experiment 1 Microarray analysis of oocyte transcripts

a. RNA Extraction, cRNA Preparation, Microarray
Hybridization and Processing

5 replicate pools (= days of oocyte collection) each of
100 denuded immature and IVM oocytes were pro-
cessed for Affymetrix GeneChip analysis. Total RNA
was extracted simultaneously from all replicate pools of
immature and IVM oocytes using the PicoPure RNA
Isolation kit (Arcturus Bioscience, Mountain View, CA,
USA), by incorporating a DNase treatment step using
RNase-free DNase set (Qiagen, West Sussex, UK),
according to the manufacturer’s instructions. Quality of
the extracted total RNA and concentration (ng/ul) were
assessed using the Agilent Bioanalyzer 2100 with RNA
6000 Nano Chip kit (Agilent Technologies, Santa Clara,
USA) and Quant-iT™ RiboGreen®™ RNA assay kit (Invi-
trogen, Carlsbad, CA), respectively following the manu-
facturer’s instructions. 100 ng of total RNA was
subjected to two rounds of linear amplification using
the GeneChip® Expression 3’-Amplification Two-Cycle
c¢DNA Synthesis kit (Affymetrix Inc., Santa Clara, CA)
according to the manufacturer’s instructions. cDNA was
synthesized during the first cycle and biotin-labeled
nucleotides were incorporated during the second in
vitro transcription reaction. The resulting labeled anti-
sense RNA samples were fragmented and 15 pg each
per array was hybridized to five GeneChip Bovine Gen-
ome Arrays (Affymetrix) for 16 h at 45°C. Once com-
pleted, arrays were processed according to the
manufacturer’s protocol and scanned using the Gene-
Chip® Scanner 3000 (Affymetrix).

b. Microarray data, Pathway and Gene Ontology Analysis
The Affymetrix GeneChip Bovine Genome array con-
tains 24,027 probe sets corresponding to approximately
23,000 transcripts including assemblies from ~19,000
UniGene clusters. The arrays images were first quanti-
fied using Gene Chip Operating Software (GCOS, Affy-
metrix). The Affymetrix CEL files were loaded into an
AffyBatch object using R/Bioconductor [77]. The
FARMS algorithm with quantile normalization was used
to summarize the probes from the arrays [78]. The non-
informative probes were excluded using the informative/
non-informative calls from the enhanced-FARMS algo-
rithm [79]. The SAM algorithm [80] with a delta of 0.35
(standard cutoff used by SAM algorithm to determine
differentially expressed genes) and a very stringent cut-
off with the false discovery rate of 0.0001 were used to
identify differentially regulated probe sets between the
immature and IVM oocytes. To estimate similarity in
gene expression profiles of oocytes at immature and
after IVM, samples were subjected to hierarchical
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clustering. The average linkage clustering algorithm was
applied to the logged interpretation of the gene list. The
confidence levels were calculated using 100 datasets
(bootstrapping). Principal Component Analysis (PCA)
algorithm was applied to the gene list using GeneSpring
Software (Agilent Technologies). Automatic annotation
with standard lists was also performed. The expressed
differentially regulated genes were classified according
to their gene ontology (GO) [81]: Molecular function,
Cellular component and Biological process. In order to
understand the relationship between the differentially
regulated genes and their functional interaction assess-
ment, enrichment of pathway analysis was carried out
using DAVID [82,83] and Ingenuity Pathway Analysis
(IPA) software http://www.ingenuity.com.

Experiment 2 Validation of microarray data using qPCR
Four additional replicate pools, each of 10 immature and
IVM oocytes were prepared as described above. The
mRNA extraction was performed using the Dynabeads™
mRNA DIRECT™ Micro Kit (Invitrogen, Paisley, UK)
according to the manufacturer’s instructions. Following
extraction, cDNA was synthesized in a 40 pl reaction
volume using SuperScript® III reverse transcriptase kit
(Invitrogen) supplemented with 200 ng of random pri-
mers (Invitrogen) according to the manufacturer’s
instructions. The cDNA synthesis reaction conditions
were 70°C for 5 min, 25°C for 5 min, 50°C for 1 h, fol-
lowed by heat inactivation of the enzyme at 75°C for 15
min.

Relative transcript abundance of selected cell cycle-
associated genes was assessed by performing qPCR
using the ABI Prism 7300 Sequence Detection System
(Applied Biosystems Foster City, CA, USA). Primer
sequences and product sizes are described in Table 3.
Analysis of qPCR was performed in a 25 ul reaction
volume by adding 1.5 ul ¢cDNA (0.30 oocyte equivalent)
aliquot of each sample to the PCR mix containing gene
specific primers and 50% Power SYBR® Green PCR
Master mix (Applied Biosystems). qPCR conditions were
2 min at 50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C
and 1 min at 60°C for annealing and extension. At the
end of each qPCR reaction, melt curve analysis was per-
formed for all genes to check the specificity of the pro-
ducts. Samples were measured in duplicate for each
gene of interest and the reference gene H2AFZ [84] was
measured in all samples as normalizer.

Quantification of transcript (mRNA expression) levels
was carried out by using the comparative quantification
cycle (Cq) method (ABI Prism Sequence Detection Sys-
tem, User Bulletin No. 2 (Applied Biosystems) [85].
Normalization was carried out by subtracting the Cq
values of H2AFZ from the corresponding Cq values of
the target gene. Following normalization the relative
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abundance of mRNAs between the two populations was
calculated from the expression ratios of immature and
IVM oocytes to calculate a fold change value. Statistical
analysis of the expression values was carried out using
the student’s t-test.

Experiment 3 Effect of a-amanitin on transcript
abundances

The aim of this experiment was to assess the effect of
oocyte IVM in the presence of a-amanitin, a transcrip-
tion inhibitor acting through inhibition of RNA poly-
merase II [41,57], on transcript abundances. Immature
COCs (4 replicates of 200) were collected from slaugh-
terhouse ovaries as described above. On a given day (=
replicate) 50 COCs were denuded immediately and snap
frozen in pools of 10. The remaining 150 COCs were
randomly divided among the following three treatments
in groups of 50: (1) matured in vitro for 24 h as
described above (Control), (2) cultured for 24 h in IVM
medium supplemented with 25 pg/ml o.-amanitin, and
(3) cultured in o-amanitin-free IVM medium for 3 h
and then transferred to IVM medium supplemented
with 25 pg/ml a-amanitin for the remaining 21 h. Con-
centration of a-amanitin and length of culture were
based on previous publications [42,57]. After matura-
tion, COCs were denuded of their surrounding cumulus
cells, snap frozen in pools of 10 per treatment and
stored at -80°C until analysis. RNA extraction, cDNA
synthesis and qPCR analysis were carried out as
described for Experiment 2 above.

Experiment 4 Effects of analysis procedures on the
interpretation of oocyte transcriptional profiles

As mentioned above, there are conflicting reports in the
literature [32,36-38] on oocyte transcription profiles
during maturation. The aim of these experiments was
to examine the effects of certain transcript analysis pro-
cedures on the outcomes of the experiment, and if
these contributed to the conflicting conclusions. Specifi-
cally we examined (1) the type of primers used during
c¢DNA synthesis (Experiment 4a), (2) the expression
profiles of some over-expressed genes in in vitro
matured oocytes after normalization with validated
reference genes, (Experiment 4b), and (3) the expression
profiles of some over-expressed genes in in vivo
matured oocytes after normalization with validated
reference genes (Experiment 4c). In order to avoid
unintentional sources of variations, some modifications
were made to the Materials and Methods as described
below.

a. RNA isolation and reverse transcription

Four replicate (day or collection) pools of 10 oocytes
were prepared as described above and processed for
each developmental stage (immature and IVM oocytes).
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During Experiment 4a, 1 pg/oocyte of luciferase mRNA
was added, prior to RNA extraction as an exogenous
control. Total RNA was isolated using RNeasy Micro kit
(Qiagen) with on-column DNase digestion step using an
RNase-Free DNase set (Qiagen), according to the manu-
facturer’s instructions.

During Experiment 4a, the eluted total RNA was
mixed well and divided into two equal parts for cDNA
synthesis, using either random or anchored oligo (dT)
primers (Invitrogen). However, for Experiments 4b and
4c, random primers were used during cDNA synthesis.
All RNA samples in the same experiment were simulta-
neously reverse transcribed into cDNA using the Super-
Script® III reverse transcriptase kit (Invitrogen), in a
final 25-pl reaction volume, and reaction conditions
described above in Experiment 2. After cDNA synthesis,
1 pl of cDNA was taken from each sample as template
for PCR amplification to check the reverse transcription
success and cDNA quality with primers designed to
span intron sequences. This procedure was used as a
standard during cDNA synthesis for Experiment 4.

b. Optimization and qPCR analysis

Subsets of over-expressed genes from the microarray
analysis list and reference genes were selected for re-
analysis and comparison using qPCR. Bovine sequences
for these genes were retrieved from the NCBI Database
http://www.ncbi.nlm.nih.gov/ and used to re-design pri-
mers that can amplify longer product sizes compared to
primers in Experiment 2 and 3, using Primer 3 software
http://frodo.wi.mit.edu/primer3/. Intron spanning primer
sequences were preferentially selected, and produced as
HPSF (High Purity Salt Free) purified primers (MWG
Biotech, Ebersberg, Germany). Sources, primer
sequences and product sizes are listed in Table 2. Pri-
mers were optimized and specificity of amplicons was
confirmed by melt curve analysis and fragment sizes
were confirmed by agarose gel electrophoresis.

Detection and quantification of the transcripts was
assessed following qPCR procedures. Each qPCR reac-
tion consisted of 1.5 ul cDNA template (equivalent to
0.30 oocyte), 0.1-0.3 uM of each primer and 50% Power
SYBR®™ GREEN PCR Master mix (Applied Biosystems)
in a final 15-pl reaction volume. Forty five cycles of
qPCR was carried out employing the reaction conditions
described above. Data were normalized either to the
quantity of luciferase (Experiment 4a) or to the geo-
metric averages of three endogenous reference genes
(PPIA, SDHA, YWHAZ) that were validated in our
laboratory (Experiments 4b and 4c). Quantification was
carried out using the relative standard curve method
(User Bulletin #2, ABI Prism 7700 Sequence Detection
System) and the results were reported as relative expres-
sion levels (fold change) compared to the calibrator
(immature oocyte).
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Additional material

Additional file 1: Figure S1: Hierarchical clustering analysis of the
less stringent gene list. Gene Spring software was used to analyze
similarities among the 10 replicate samples (vertical bars) across the two
treatments. Colours correspond to the level of expression of the
detected genes each of which is represented by one horizontal bar.

Additional file 2: Figure S2: Data quality control analysis of GV
(yellow) and MII (red) array results showing how the expression
data of the ten replicates group together based on maturational
status using (A) PCA plots and (B) hierarchically clustering.

Additional file 3: Table S1: Transcripts over-expressed in IVM
oocytes compared to immature oocytes (GV).

Additional file 4: Table S2: Transcripts under-expressed in IVM
oocytes compared to immature oocytes (GV).

Additional file 5: Figure S3: Comparative gene expression profiles
of immature and in vitro mature oocytes after total RNA was
reverse transcribed with different primers. The total RNA from these
samples was reverse transcribed either with (A) random primer or (B)
anchored oligo (dT) primers. In all cases, expression at the immature (GV)
stage was taken as calibrator and relative expression levels were
described as fold change.
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