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Abstract

Background: Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency
for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However,
methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with
map information for the identification of deletions and duplications in targeted sequence data.

Results: Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data
between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint.
With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for
sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be
identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing
technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low
false-positive rate.

Conclusions: Application of this method allows for identification of gains and losses in targeted sequence data,
providing comprehensive mutation screening when combined with a short read aligner.

Background
Massively parallel sequencing technology can be used to
efficiently interrogate multiple targeted genomic regions
for clinically relevant mutations [1]. The use of short
unique sequence indexes, or barcodes, increases sequen-
cing throughput and allows analysis of multiple samples
in a single sequencing run. Application of this technol-
ogy will allow cost-efficient screening of genes known or
suspected to harbor clinically relevant pathogenic muta-
tions. While small mutations are readily detectable with
current analysis platforms [2,3], methods for the identifi-
cation of copy-number variants (CNVs) are not well
established for targeted data. The ability to detect the
full spectrum of mutations is critical to the success of
targeted sequencing projects.
Current methods for detecting structural variation

from massively parallel data use either paired-end map-
ping or depth of coverage methods (see [4] for a recent
review). Paired-end mapping methods perform well for

mate-pair sequence data and have the advantage of
identifying both balanced (e.g. translocations or inver-
sions) and unbalanced (deletions and duplications)
structural variation. Comprehensive CNV scanning
using paired-end mapping requires mulitple insert sizes
and the presence of paired tags that bridge the break-
point of the event. This approach is widely used in the
assembly of whole genomes but cannot be applied to
targeted enrichment protocols, as hybridization-based
capture methods for massively parallel sequencing typi-
cally require small insert fragments (200 bp) [5] and
breakpoints of structural variants may lie outside of tar-
geted regions.
Depth of coverage methods do not require breakpoint

capture or have specific size restrictions, yet such meth-
ods are hampered by low signal to noise ratio due to
sparse sampling (a product of low overall coverage) and
sampling bias based on sequence GC-content, bait cov-
erage, and other factors affecting capture efficiency.
Further, depth of coverage methods require cross-sam-
ple normalization and comparison in order to deal with
variation in coverage across genomic regions and sam-
ples. We previously showed that a basic depth of

* Correspondence: nordalex@u.washington.edu; twalsh@u.washington.edu
1Department of Genome Sciences, University of Washington, 1959 NE Pacific
Street, Seattle, WA, 98195-7720, USA
Full list of author information is available at the end of the article

Nord et al. BMC Genomics 2011, 12:184
http://www.biomedcentral.com/1471-2164/12/184

© 2011 Nord et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:nordalex@u.washington.edu
mailto:twalsh@u.washington.edu
http://creativecommons.org/licenses/by/2.0


coverage approach performs well to identify CNVs from
high-coverage (~1000×) targeted sequence data[1].
Depth of coverage methods have achieved higher signal
to noise by averaging data across a genomic region[6-8],
however, doing so results in a loss of the ability to
detect smaller mutations. In addition, depth of coverage
methods are poor at localizing breakpoints [4].
Here we describe a method that combines CNV detec-

tion through high-resolution depth of coverage analysis
with call confirmation through partially-mapped reads.
This allows for the identification of DNA gain or loss
even where breakpoints are outside the targeted regions,
and exact breakpoint characterization where breakpoints
are within the targeted regions. By combining these
orthologous approaches, CNVs of any size can be identi-
fied from targeted high-throughput sequence data with a
low false-positive rate.

Results
Our method uses two independent approaches, depth of
coverage and a scan for partially-mapped reads at CNV
edges. We implemented a straightforward depth of cov-
erage algorithm and internally validated CNV calls by
looking for a signature of partially-mapped reads that
confirm the CNV breakpoints where possible. Partially-
mapped reads are defined as high-quality full length (76
bp) reads where the best alignment to targeted regions
is a perfect match less than 76 bases in length. A mini-
mum match length of 30 bp was used for this analysis.
Where partially-mapped reads match to a CNV edge, it
is assumed that the unaligned portion of the read maps
to sequence flanking the other breakpoint and the par-
tially-mapping reads can be aligned to each other to
form a consensus sequence that flanks the breakpoint.
For example, in the case of a deletion, the partially
mapped reads will correspond to sequence flanking the
deleted region, giving the exact breakpoints of the CNV.
Partially-mapped reads map to the reference sequence
differently for gains and losses, as described for paired-
end mapping methods of CNV detection [4]. Where
CNV breakpoints lie within non-targeted sequence, par-
tially-mapped reads are unavailable and depth of cover-
age is the only evidence used for CNV calling.
Figure 1 outlines the method we describe here for

calling CNVs and identifying exact breakpoints using
sequence map data. The analysis schema is shown on
the left side of the figure. The right side depicts the pro-
cesses using a hemizygous deletion with one breakpoint
in targeted sequence and the other in flanking non-tar-
geted sequence as an example. For each sample, raw
coverage counts are generated and then normalized to
the median of the other samples in the lane using invar-
iant set methods5. Normalized coverage is further cor-
rected for sample-specific capture bias due to GC-

content and bait probe hybridization likelihood. Sample
versus median ratio is then derived, and CNVs are
called using a sliding window method to identify regions
with ratio values below 0.6 or above 1.4 (Figure 1, Panel
A). Depth of coverage CNV calls are confirmed where
possible by examining CNV edges for a signature of par-
tially-mapped reads (Figure 1, Panel B). Partially-
mapped reads that capture a breakpoint in unique tar-
geted sequence are aligned to form a consensus
sequence which is then mapped back to the genome to
identify exact breakpoints (Figure 1, Panel C).
Our data were massively parallel sequence reads from

a capture design that targets genomic sequence across
21 genes which are known to predispose to high risks of
breast and ovarian cancer[1]. A total of 909 kbp
sequence was targeted in 96 samples concurrently, run-
ning 12 samples per lane on an Illumina GAIIx instru-
ment. Sequencing was performed with a standard
multiplex 2 × 76 paired-end reads using TruSeq SBS
chemistry and analyzed with Illumina SCS2.8/RTA 1.8
and the demultiplexing script within CASAVA http://
www.illumina.com. Single base coverage was calculated
based on the number of tags for each sample overlap-
ping each base across targeted regions. Figure 2 illus-
trates the regional variation in raw coverage and the
increase in signal-to-noise ratio after cross-sample nor-
malization for a representative diploid region of BRCA1,
resulting in ratio values that closely cluster around one
in a region with no CNVs in the samples analyzed.
We obtained median raw coverage of 350× across the

909 kbp of targeted sequence (Additional file 1, Figure
S1). Low coverage regions were primarily GC-rich, con-
sistent with other targeted sequence data[9], and
account for the majority of bases excluded from screen-
ing for structural variation. 99.8% of targeted bases had
median coverage of at least 10×, permitting high-confi-
dence detection of single base and short indels for
nearly all sequence assayed. In order to estimate the
effect of random noise on the false-negative rate, we
simulated data where one CNV of 50 bp, 100 bp, 200
bp, 500 bp, or 1000 bp was present within 1 mb of
sequence and tested for detection of the CNV across
varying signal-to-noise ratios (Additional file 2, Figure
S2). This analysis indicated that our methods can detect
a 200 bp CNV with 87% sensitivity at a signal-to-noise
ratio of 6, a criteria met by >92.3% of the bases targeted
in this experiment, and a 100 bp CNV with 80% sensi-
tivity at signal-to-noise ratio of 8, a criteria met by
75.8% of the bases.
In the samples that passed quality control (94/96), we

identified a total of 10 CNVs (5 gains and 5 losses) in
four genes through depth of coverage analysis that
passed minimum coverage and z-score requirements
and were confirmed by Sanger sequencing or MLPA
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Figure 1 Analysis Schema. The left side of the figure shows a flow chart summarizing our methods. The right panels illustrate specific processes in
the identification of a hemizygous deletion where one edge of the CNV is within targeted sequence. a) Targeted region with short reads aligned to
the reference sequence, ratio of normalized coverage for sample versus lane median, and CNV call based on depth of coverage analysis. b) Sequence
reads that align to the CNV edge shown in a). Black reads align across the complete 76 bp. Red reads are shorter segments of 76 bp reads that align
perfectly to the region and indicate presence of mutation. c) Reads that partially-map to the CNV edge will also align to sequence flanking the other
edge and can be used for exact breakpoint characterization, despite the one edge being in non-targeted sequence. The gap in the alignments
represents the deleted sequence.

Nord et al. BMC Genomics 2011, 12:184
http://www.biomedcentral.com/1471-2164/12/184

Page 3 of 10



(Figure 3 and Table 1). For losses, one homozygous
deletion and four hemizygous deletions were detected,
with no reads from the homozygous deletion and med-
ian ratio across hemizygous deletion regions between
0.49 and 0.51. For single copy gains, median duplication
ratios were between 1.44 and 1.62. A triplication was
also observed with a ratio of 1.90, demonstrating that
ratio accurately reflects copy number. All samples were
previously tested for CNVs in BRCA1 and BRCA2, and
we correctly identified all known mutations and gener-
ated no false positive calls in these genes.
After applying depth of coverage methods to detect

CNV regions, we mapped sequence reads at the edges of
the events to confirm the calls and identify exact break-
points. This process requires that at least one breakpoint
be within unique targeted sequence, as targeted capture
generates sequences only over targeted regions and non-
unique short sequence tags are difficult or impossible to
map accurately. Of the 10 CNVS, four deletions were

predicted to have at least one breakpoint in unique
sequence. Using a signature of partially-mapped reads,
we confirmed these calls and identified exact breakpoints
for all four events (Figure 4). While we identified no
duplications with edges in unique sequence, duplications
will produce a similar signature to deletions and can be
confirmed using the same process.
The first deletion, of 510 bp, removes an exon of

BRCA1 (chr17:41,200,740-41,201,249). We confirmed a
31 bp homozygous deletion in BRCA2 (chr13:32,960,705-
32,960,735) that matches a known indel (rs56213495),
indicating that our method is sensitive to small CNVs.
The final two deletions mapped to the same PTEN coor-
dinates and overlap with a known CNV previously identi-
fied by array comparative genomic hybridization (aCGH)
(DGV ID: 657536[10]). In comparison to aCGH methods,
we were able to resolve exact breakpoints for this 899 bp
polymorphic deletion (chr10:89,652,824-89,653,723).
Importantly, mapping sequence tags to the breakpoints
allowed exclusion of a large number of false positive
calls. All seven CNVs with breakpoints predicted to be
within repetitive non-targeted sequence were validated
by Sanger sequencing or MLPA. In the 909 kbp in 94
samples there was one CNV called that could not be con-
firmed. This 109 bp duplication could not be verified
through sequence mapping or Sanger sequencing and is
a likely false positive. Breakpoint resolution via partial
read mapping reduced the number of false positives to a
single duplication across 94 samples and 909 kbp.

Discussion
Targeted high-thoughput sequencing data is used to
produce high-coverage (often >50×) sequence data on
specific regions of the genome. Targeted regions are
often non-contiguous, as in the case of coding sequence
capture or interruptions due to repeat sequences. We
created a method that is specific to high-coverage, non-
contiguous sequence data for robust CNV detection
from targeted sequence data. Our method does not
require sequencing across CNV breakpoints (as paired-
end methods do), but leverages sequence level data for
exact CNV characterization where breakpoints are
within targeted regions. Using a test dataset of regions
that contribute to inherited breast and ovarian cancer
susceptibility, we identified 10 mutations (7 known to
be pathogenic and 3 benign), localizing 4 mutations to
exact genomic breakpoints. The minimum size for a
CNV that we detected was 31 bp, and there was only
one suspected false positive among all samples that
passed quality control.
Our method has several advantages over previous

methods used to detect CNVs from high-throughput
sequencing. While sequence-based CNV signal (e.g.
partially-mapped reads or split paired-end reads) is

Figure 2 Raw and normalized coverage data. Data for region of
BRCA1 on chr17 where all samples represented are diploid. Mean
and standard deviation (SD) for raw coverage across one lane (12
subjects) shown in top two panels. The third and fourth panels
show signal-to-noise ratio for the raw and normalized data. Signal-
to-noise was calculated as mean/SD for each base. The final panel
shows mean and standard deviation for the ratio data from the 12
individuals across the region.
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Figure 3 Ratio of sample to median corrected depth of coverage indicates variant regions. Each subplot shows ratio across one targeted
region (PTEN, BRCA2, BRCA1, and CHEK2), with CNVs shown as colored datapoints. Using depth of coverage with map confirmation, we identified
10 CNVs (5 deletions (one homozygous), 4 duplications, and 1 triplication) across 21 targeted regions (909 kbp) for 96 barcoded samples. CNV
size ranged from 31 bp to 26560 bp. Ratio calculated by comparing corrected normalized sample coverage to median coverage within one flow
cell lane. Diploid bases are plotted in grey, while colored datapoints indicate copy-number variant bases for one sample. Non-targeted repeat
sequence is shown in black at bottom of each plot.
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preferable over relative coverage, sequence data is una-
vailable in targeted data whenever the CNV break-
points are not in the targeted region. This introduces a
major issue for methods that rely on sequence-based
data for CNV detection (e.g. [11,12]). Additionally, as
described earlier, paired-end mapping strategies are
not currently applicable when targeted enrichment is
used. In comparison, relative depth of coverage is pro-
blematic due to local variation in coverage within sam-
ples and variation in coverage across samples. This
leads to problems with false-positive signal when scan-
ning for regions that depart from expected diploid cov-
erage. This issue can be partially addressed by
averaging read depth across a genomic region (e.g.
[6-8]), however, doing so reduces the ability to detect
small mutations. By combining ortholgous algorithms,
we eliminated from consideration a large number of
false-positive CNVs called by depth of coverage meth-
ods where no signal of partially-mapped reads was pre-
sent. The ability to computationally resolve the
majority of false-positive calls permitted us to use
high-resolution analysis even where signal-to-noise
ratio was intermediate. In addition, depth of coverage
analysis has the benefit of producing a quantitative
estimate of copy-count, as demonstrated by the clear
distinction between duplication and triplication ratios.
The major limitation of depth of coverage methods

arises in duplicated genomic regions, such as segmental
duplications or smaller regions of homology between

genomic regions. Within such regions, the expected
ratio for deletions and duplications is relative to the
copy count in the genome. For depth of coverage, a
copy number change from two to one (hemizygous dele-
tion) or two to three (duplication) produces a strong
signal, however, copy number changes in duplicated
regions of the genome produce weaker signal that can
be easily overwhelmed by noise. For example, variation
between samples will overwhelm the signal of a change
from six copies to five, where the expected ratio would
be 0.83. As such, we limit analysis to unique regions of
the genome. In addition, depth of coverage methods do
not detect balanced structural variation.
The methods we describe here were optimized for

multiplexed high-coverage data, but we expect the fun-
damental approach will be applicable to experiments
with a larger volume of targeted sequence, such as
exome capture. While we used multiplexed data from a
relatively small number of targeted bases, the method
we describe is scalable and could be used on any dataset
where signal-to-noise ratio allows reliable depth of cov-
erage CNV calling. Where local variation is too high or
coverage too low, average coverage across a genomic
window can be used instead of single base coverage,
although this lowers resolution to the size of the win-
dow used. However, scanning across the window for
partially-mapped reads as we do here would still permit
exact CNV breakpoint characterization when break-
points are in targeted sequence.

Table 1 CNVs identified in 94 subjects across ~1 Mb targeted sequence

Sample_ID Region Chr Start End Class Size Call Targeted
bases

Median
Ratio

Median
Z-score

Median
S:N

Median
Sample
Coverage

Median
Lane

Coverage

CF175_01 PTEN chr10 89652825 89653723 Deletion 899 DoC
+
Seq

281 0.45 -8.58 15.58 196 519

CF682_01 PTEN chr10 89652825 89653723 Deletion 899 DoC
+
Seq

281 0.51 -8.63 17.04 148 522

CF1815_01 BRCA2 chr13 32928730 32955289 Triplication 26560a DoC 10560 1.90 11.16 12.11 649 359

CF804_17 BRCA2 chr13 32940522 32945860 Duplication 5339a DoC 1702 1.63 6.13 10.15 318.5 272

CF815_02 BRCA2 chr13 32960705 32960735 Homozygous
Deletion

31 DoC
+
Seq

31 0b na 11.94 0 249

CF605_01 BRCA1 chr17 41200740 41201249 Deletion 510 DoC
+
Seq

419 0.49 -7.79 14.98 119 312

CF456_01 BRCA1 chr17 41214000 41218359 Duplication 4360a DoC 2332 1.47 7.06 15.45 277 368

CF163_02 BRCA1 chr17 41219555 41219794 Duplication 240a DoC 240 0.43 -5.26 9.11 77 264

CF499_01 BRCA1 chr17 41230471 41235875 Duplication 5405a DoC 4000 1.55 8.35 15.93 391 429

CF682_01 CHEK2 chr22 29092633 29099332 Deletion 6700a DoC 2570 0.50 -8.16 16.21 108 388
a Size reflects minimum size, as breakpoints are located within flanking repetetive sequence.
b For homozygous deletion, no reads are present within region.

CNVs identified within high-risk breast and ovarian cancer genes targeted by this experiment. Calls were made via depth of coverage (DoC) and confirmed with
partially-mapped read analysis (Seq) where possible.
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Conclusions
Targeted massively parallel sequencing permits screen-
ing of genomic regions for multiple samples simulta-
neously, and thus is a powerful and cost-effective tool
for characterizing mutations in contexts where multiple
genes or pathways are involved[1,13-15]. We demon-
strate that a combination of depth of coverage and ana-
lysis of partially-mapped reads allows detection with
high-confidence of CNVs within unique sequence, to a
resolution of 31 bp. Furthermore, we demonstrate that
ratio can be used to estimate absolute copy number and
that depth of coverage alone is sufficient for CNVs
where breakpoints are not represented within targeted

regions. The method we describe here is robust, yet
simple to implement; while we employ specific mapping
and segmentation algorithms, the overall framework is
amenable to improvement and variation in the algo-
rithms as massively parallel sequencing technology
progresses.

Methods
Sample selection and DNA extraction were as described
previously[1]. Library preparation, sequencing, and map-
ping of reads to the genome performed as described per
Illumina and Agilent protocols http://www.illumina.com
and http://www.agilent.com. Three micrograms of high

Figure 4 Use of mapped partial reads to confirm calls and identify exact breakpoints. We tested for over-representation of tag start or
end across predicted CNV breakpoint, and then mapped partial reads to identify exact breakpoints. We confirmed an 899 bp PTEN deletion
present in two samples, a 510 bp deletion in BRCA1, and a 31 bp homozygous deletion in BRCA2 using this method. a) Unique breakpoint
region for each CNV with sequence tags plotted by start and end position. Tags where all 76 bases align are shown in black, and tags where
less than 76 bases align are shown in red. Z-scores generated based on the number of reads that start or end at each base are shown below
the mapped reads with red indicating breakpoint(s). b) Each read that partially maps to the breakpoint aligns to sequence flanking the other
side of the CNV, allowing exact breakpoint identification. Partial reads are shown in red, with a line connecting the two segments of each read.
Length for all reads shown is 76 bp.
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quality genomic DNA was sonicated on a Covaris S2 to
a peak size of 150-200 bp. DNA was end-repaired, A-
tailed, ligated to standard Illumina adapters and ampli-
fied with flanking primers. 500 ng of paired-end library
was hybridized individually to a custom design of cRNA
oligonucleotides ([9]Agilent, ELID:0279281, BED file
available upon request) and amplified with index speci-
fic primers from the Illumina Mutiplex Oligonucleotide
kit. Equal concentrations (1.3 pM) of 12 paired end
indexed libraries were pooled per lane on a v4 flow cell
and subjected to cluster amplification on a cBot instru-
ment. Raw sequence coverage was determined by tabu-
lating the number of tags that overlapped each targeted
base as mapped by the standard Illumina GAIIx bioin-
formatics pipeline with the demultiplexing script http://
www.illumina.com. Coverage data for the targeted
regions is shown in Additional file 3, Table S1.
The computational methods described here can be

separated into four steps: raw coverage normalization,
correction for sample-specific coverage biases, CNV call-
ing, and partially-mapped read analysis. All analysis was
done using the R platform http://www.r-project.org with
custom scripts, which are available at request. We
emphasize that the methods described below are one
specific implementation within a general framework.
The approach we describe is amenable to alternative
normalization methods, application of any segmentation
algorithm that can employ ratio data, and use of other
sequence mapping algorithms suitable for short read
data.

Coverage normalization
Single sample coverage was normalized to the other ele-
ven samples run in the same lane. Normalization was
performed using invariant set methods[16]. Briefly, bases
that had a similar coverage rank in the sample and med-
ian data were selected and a line was fit using a smooth
spline function across the range of coverage counts.
Normalization reduced the median standard deviation
from 85.7 for raw coverage to 27.1 after normalization
(Additional file 1, Figure S1).

Correction for GC-content and bait capture bias
Normalized coverage was further corrected for capture
bias associated with GC-content and bait probe capture
likelihood. GC-based effects on capture efficiency may
differ across samples, as has been observed for array
based hybridization methods[17]. After testing multiple
window sizes (25 bp, 50 bp, 100 bp, 200 bp, and 500
bp), we found the strongest association between the
range of coverage variation and GC-content in the 100
bp surrounding each targeted base. In preliminary data,
we observed a parabolic relationship between GC-con-
tent and coverage with an apex around .4. This analysis

applies to the specific sequencing platforms used for
this experiment and GC-based parameters and strength
of effect are likely platform dependent. In order to
address GC-based bias in our data, we transformed GC-
content using the equation:

y = −(gc− 0.4)2

where gc is the proportion of G/C bases within the 100
bp window surrounding a given base. Bait capture likeli-
hood is associated with the chance of stable hybridization
of the library insert (150-200 bp for our experiment) to
bait probes targeting the insert. Our capture design used
3× coverage tiled every 40 bp with 120 bp bait probes. Use
of a 40 bp tiling step resulted in true 3× coverage from
base 80 to n-80, where n is the length of each contiguous
targeted region. Bases 1 to 40 and n-40 to n had 1× tiling
and 40-80 and n-80 to n-40 had 2× coverage. Coverage
increases logarithmically from the first captured base to
the middle of the contiguous targeted region. The first
captured base can be outside the region of bait-probe
hybridization. Based on preliminary data, we used a simple
logarithmic transformation to account for this:

z = log(d + 10)

where d is the distance from the first targeted base
and the constant 10 is used to account for off-target
capture where the first captured base is outside of the
region of hybridization.
Normalized coverage was corrected using simple lin-

ear regression with the transformed GC-content and
bait capture likelihood terms as the independent vari-
ables and log(normalized coverage) as the dependent
variable. Bases with coverage < 50 were excluded from
contributing during curve fitting, as these bases show
high levels of variation due to sparse sampling effects.
Signal to noise ratio (mean/standard deviation) went
from 12.3 for uncorrected normalized coverage, to 13.2
after correction (Additional file 1, Figure S1). 99% of
bases had corrected coverage signal to noise ratio > 5
and 83% had signal to noise ratio > 10. Bases with signal
to noise < 2 were excluded from CNV analysis.

Depth of coverage CNV calling
Ratio data was calculated by comparing sample cor-
rected coverage to the median corrected coverage of the
other 11 samples in the lane. We used a sliding window
to identify regions where the majority of bases had a
ratio < = 0.6, indicating copy number loss, or > = 1.4,
indicating copy number gain. Window size was 20 bp,
with a minimum of 18 bp required to meet the criteria
for either gain or loss. Copy-number variant regions
were generated by extending variant windows and mer-
ging neighboring variant regions. The median z-score
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across the CNV region was calculated by comparing
sample ratio to mean and standard deviation of the
remaining 11 samples in the lane. Z-scores closer to
zero could reflect either diploid regions with high varia-
tion in coverage across samples or regions with an
underlying common copy number polymorphism. As we
were interested in rare mutations, CNV regions were
required to meet the criteria of median absolute z-score
> = 5 and signal to noise ratio > = 9 for acceptance.
These values were set based on the minimum z-score
and signal to noise ratio for CNVs that could be con-
firmed with Sanger sequencing.
Across diploid regions (where no CNV was both

called and confirmed), 98.9% of the ratio values were
between .6 and 1.4 (Additional file 1, Figure S1), com-
pared to only 9.3% for confirmed CNV regions. The
majority of bases that had ratio values < = 0.6 or > =
1.4 represented false positive signal, as no CNV could
be confirmed. However, these false positive bases
showed low signal to noise and z-scores were closer to
zero versus true positive bases (Additional file 4, Figure
S3). For ratio values for regions where a deletion was
present and ratio values were < 0.6, 89.2% had signal to
noise values > 10 and 91.1% had z-score values < -5.
For regions with a confirmed duplication and ratio
values > = 1.4, 78.6% had signal to noise values > 10
and 91% had z-scores > 5. The differences in signal to
noise and z-score between confirmed CNV bases and
false positive CNV bases indicates that ratio is a stron-
ger indicator of true copy number when signal variation
is taken into account.

Partial read mapping
CNVs identified using depth of coverage methods were
then examined for the presence of partially-mapped
reads within the predicted breakpoint region. This is
only possible for CNVs where at least one breakpoint is
within targeted sequence. CNVs where both breakpoints
appear to be in non-targeted regions (e.g. repeat
sequence or sequence outside the targeted region
boundaries) were excluded from this step. Repeat
regions often mediate CNV formation[18-20] and mini-
mum contiguous targeted region size was limited by
bait probe size to 80 bp in this experiment, the majority
of calls where both breakpoints are in repeats were con-
firmed by Sanger sequencing (7/8) and all calls were
>100 bp in length, indicating that such calls are likely to
be true positives. For calls where at least one breakpoint
is unique we used BLAST[21] to test for partial reads
that aligned to the specific breakpoint region. Partial
reads were 76 bp in length and mapped at least 30 bp
to the region. These parameters were selected as 76 bp
is a full length read, and 30 bp was set as minimum
cut-off to avoid mapping repeat sequence fragments.

These lengths are dependent on platform read length
and should change accordingly. Mean and standard
deviation were calculated for the number of partial
reads across the targeted breakpoint region, and z-score
for each base was calculated and used to detect break-
point based on over-representation of tags with the
same start/stop position. Where no over-representation
of start/end sites for partial reads was present, CNV
calls were considered to be false positives. If a signature
of partial reads was present, we mapped the consensus
sequence of aligned partial reads to the genome to iden-
tify the exact CNV breakpoints.

Additional material

Additional file 1: Figure S1. Histograms showing distributions for
count and variation of coverage and ratio data. A) Median raw
coverage: median coverage across samples for each base. B) SD raw
coverage: standard deviation for raw coverage generated for each lane
(8 samples), median SD across 8 lanes plotted. C) SD normalized
coverage: standard deviation for normalized coverage generated for each
lane (12 samples), median value across 8 lanes plotted. D) S:N
normalized coverage: signal to noise ratio (mean/SD) for normalized
coverage for each lane, median value across 8 lanes plotted. E) S:N
corrected coverage: signal to noise ratio (mean/SD) for normalized
coverage corrected for GC-content and bait capture bias for each lane,
median value across 8 lanes plotted. F) Ratio: sample compared to lane
median corrected normalized coverage for all bases, data from 10
representative samples plotted.

Additional file 2: Figure S2. Simulated sensitivity estimate based on
CNV size and signal-to-noise ratio of data. Data simulated for 1 mb of
sequence with one true CNV of length 50 bp, 100 bp, 200 bp, 500 bp, or
100 bp. Random noise introduced in sample coverage data at a level
corresponding with given signal-to-noise ratio. 100 replications run at
signal-to-noise ratios of one to ten for each CNV size. Sensitivity is the
proportion of runs in which the CNV was correctly identified. No false
positives were identified when signal-to-noise ratio was greater than two
(data not plotted).

Additional file 3: Supplemental table S1.

Additional file 4: Figure S3. Comparison of true positive signal and
false positive signal. True positive refers to bases within confirmed
CNVs, whereas false positive refers to bases with ratio values < 0.6 or
>1.4, but where no CNV could be confirmed. Histograms show
distribution of: A) S:N (signal to noise: mean/SD), and B) z-score ((value-
mean)/SD) for true positive versus false positive bases.
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