
RESEARCH ARTICLE Open Access

Detection of small RNAs in Bordetella pertussis and
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Abstract

Background: Small bacterial RNAs (sRNAs) have been shown to participate in the regulation of gene expression
and have been identified in numerous prokaryotic species. Some of them are involved in the regulation of
virulence in pathogenic bacteria. So far, little is known about sRNAs in Bordetella, and only very few sRNAs have
been identified in the genome of Bordetella pertussis, the causative agent of whooping cough.

Results: An in silico approach was used to predict sRNAs genes in intergenic regions of the B. pertussis genome.
The genome sequences of B. pertussis, Bordetella parapertussis, Bordetella bronchiseptica and Bordetella avium were
compared using a Blast, and significant hits were analyzed using RNAz. Twenty-three candidate regions were
obtained, including regions encoding the already documented 6S RNA, and the GCVT and FMN riboswitches. The
existence of sRNAs was verified by Northern blot analyses, and transcripts were detected for 13 out of the 20
additional candidates. These new sRNAs were named Bordetella pertussis RNAs, bpr. The expression of 4 of them
differed between the early, exponential and late growth phases, and one of them, bprJ2, was found to be under
the control of BvgA/BvgS two-component regulatory system of Bordetella virulence. A phylogenetic study of the
bprJ sequence revealed a novel, so far undocumented repeat of ~90 bp, found in numerous copies in the
Bordetella genomes and in that of other Betaproteobacteria. This repeat exhibits certain features of mobile
elements.

Conclusion: We shown here that B. pertussis, like other pathogens, expresses sRNAs, and that the expression of
one of them is controlled by the BvgA/BvgS system, similarly to most virulence genes, suggesting that it is
involved in virulence of B. pertussis.

Background
Small bacterial RNAs (sRNAs) have recently been shown
to participate in the regulation of gene expression, and
have been identified in numerous prokaryotic species
[1-4]. They act mainly by antisense base pairing with
their target mRNAs, often within a complex comprising
the Sm-like RNA chaperone Hfq [5-7] or by direct bind-
ing to proteins resulting in the modulation of their activ-
ity [8,9]. Some sRNAs are involved in the regulation of
virulence in several pathogenic bacteria [10-16]. These
sRNAs function either directly on virulence genes or on
their regulators. They act in parallel with protein regula-
tory systems in order to fine-tune the expression of

virulence genes. For example, the Staphylococcus aureus
RNAIII regulatory RNA is the effector molecule of
the quorum sensing system arg, composed of a two-
component system (ArgA/C) sensing a small autoindu-
cing peptide, which binds and activates ArgC. This auto-
inducing peptide is processed from the propeptide
(ArgD) by the peptidase (ArgB) [17].
In this work we focused on the pathogenic bacterium

Bordetella pertussis, the causative agent of whooping
cough, which remains an important global health problem,
with up to 300,000 annual deaths and approximately 45
million cases each year [18,19]. Most deaths occur in
young, unvaccinated children, but the incidence is also
increasing in vaccinated populations, with regular epi-
demic outbreaks since the 1990 s [20-22]. Several causes
have been attributed to this resurgence, including
increased awareness and improved diagnostics of the
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disease, waning of vaccine-induced immunity and patho-
gen adaptation [19,22].
A large proportion of Bordetella genes undergo a

change in their expression during the infectious cycle
[23-25] some of which correspond to phenotypic modu-
lation under the control of a two-component system
named BvgA/BvgS (reviewed in [26]). In this system BvgS
acts as a sensor anchored in the inner membrane and
BvgA as the transcriptional activator [27,28]. So far, little
is known about sRNAs in Bordetella and their potential
role in virulence or adaptation. Only three Bordetella
sRNAs have been identified, the 6S RNA [29], the
tmRNA [30] and a sRNA discovered by serendipity and
lying in the opposite direction of the bvgA/S mRNA 5’
untranslated region (UTR) [31,32]. The aim of this study
was to scan the B. pertussis genome in order to identify
potential sRNAs and to investigate whether some of
them might be related to bacterial virulence. We used a
general bioinformatics approach [33] and predicted 20
locations putatively bearing sRNA genes in intergenic
regions (IGR) of the B. pertussis genome. Transcription
was confirmed by Northern blot analyses for 13 of these
locations. We further studied the expression of these new
sRNAs under phenotypic modulation and showed that
one of them is under the control of the BvgA/BvgS sys-
tem, suggesting its role in virulence.

Methods
Bacterial strains and growth conditions
The genome sequences of B. pertussis TohamaI, Bordetella
parapertussis 12822, Bordetella bronchesipteca RB50 [34]
and Bordetella avium N197 [35] were used in the compu-
tational analyses.
B. pertussis BPSM, a streptomycin-resistant derivative of

TohamaI [36], and BPLOW, an avirulent bvgAS deletion
mutant [37], were grown as previously described [24]
at 37°C in modified Stainer-Scholte medium, containing
100 μg/ml streptomycin (Sigma Chemicals). Cultures were
stopped either at early (OD600 nm ~ 0.9), exponential
(OD600 nm ~ 1.8) or stationary phase (OD600 nm ~ 3.8) by
adding 2 ml of 5:95 (v:v) phenol/ethanol to 8 ml of culture
medium. After centrifugation for 8 min. at 2800 × g the
pellets were stored at -80°C until further use.
For phenotypic modulation a 630-ml culture was grown

in the same conditions until an OD600 nm of approximately
0.7. The culture was then split into three, and phenotypic
modulation was induced by adding 40 ml of a pre-warmed
125 mM nicotinic acid (20 mM final concentration) or
40 ml of pre-warmed 300 mM MgSO4 (48 mM final con-
centration) in the two first sub-cultures. The third sub-
culture served as control and received 40 ml of sterile
water pre-warmed at 37°C. Culturing was then continued
at 37°C, and samples were taken for RNA extraction, just

before induction (t = 0) and at t = 1 min., 10 min., 1 h,
2 h, 6 h, 10 h and 30 h post-induction.

In silico search of sRNAs
The bacterial genome sequences and annotation files
were obtained from the NCBI databases [38] and from
the Sanger Institute [39]. Gene coordinates were used to
extract IGRs using a parser in Perl. Homologous regions
of these IGR sequences were searched in different bac-
terial genomes using local BLAST. Hits presenting more
than 60% sequence identity over at least 70 nucleotides
were analyzed further. A multiple alignment of these
homologous regions was then obtained using ClustalW.
These alignments were used to evaluate secondary
structure conservation and thermodynamic stability
using the software “RNAz” developed by Washietl et al.
[33,40].

RNA extraction and Northern blot analyses
The bacterial pellets were resuspended in 200 μl of
1 mg/ml Lysozyme (Sigma Aldrisch). Total RNA was
then extracted using the TRI Reagent kit (Ambion), fol-
lowing the recommendations of the supplier. The RNA
quality was checked using Bioanalyzer 2100 (Agilent Tech-
nologies) before denaturation and electrophoresis (10 μg
per lane) on a 10% acrylamide:bis-acrylamide (37.5:1)
denaturing gel in 0.5 × TBE buffer in the presence of 8 M
urea. The RNA was then transferred onto BrightStar Plus
(Ambion) nylon membranes and UV-crosslinked. Biotiny-
lated oligonucleotides (see Additional file 1, table S1),
designed using FastPCR [41], were then used for hybridi-
zation in Northern Max buffer (Ambion), and the blots
were developed by chemiluminescent detection using the
BrightStar Biodetect kit (Ambion).

Local DNA alignment
Homology searches were performed with the program
YASS [42] in local using the default parameters.
For the similarity search of the bprJ1 sequence, the pro-

gram YASS was used on the web server [43] using the
default parameters, except for the ‘Hit criterion strategy’,
which was set on ‘double hit’. The sequence of the IGR
containing bprJ1 (between positions 3605200 and 3605405)
was searched for homology in the B. pertussis genome. The
homologous regions were then aligned using ClustalW,
and the sequence closest to the consensus sequence (i.e.
the sequence from position 2208359 to 2208448) was used
as a query for the search in all bacterial genome sequences.
For the global sequence similarity search, the B. per-

tussis IGR sequences longer than 140 nucleotides and
not containing tRNA or rRNA genes were compared
using YASS with all complete bacterial genome
sequences available in GenBank, except those of the
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Bordetella genus. Hits with a score >50 and with >70%
identity were considered further.

Results and discussion
In silico prediction of sRNAs and validation by Northern
blot analysis
Except for the 6S RNA [29], the tmRNA [30] and a small
RNA transcribed in antisense to the bvgA mRNA [31,32],
no sRNA has been identified so far in Bordetella. We used
the ‘RNAz’ algorithm [33], which is based on a search for
structure conservation between closely related bacterial
genomes. Predictions using different combinations of beta-
proteobacteria genomes resulted in various numbers of
candidates. We choose to work on a prediction obtained
comparing genomes of B. pertussis Tohama I, B. bronchi-
seprica RB50, B. parapertussis 12822 and B. avium 197N.
This search resulted in the prediction of 23 sequences for
potential sRNAs in the B. pertussis genome (see Additional
file 1, table S2 for the detailed list of predictions). The
same search strategy using only B. pertussis Tohama I,
B. bronchiseprica RB50 and B. parapertussis 12822
resulted in 657 predictions. Among the 23 predicted
sequences, the position of the 6S RNA gene was correctly
designated (predicted coordinates from 3246822 to
3246972, real coordinates from 3246812 to 3246993), as
well as the position of 2 riboswitches already described in
the Rfam database [44]. The first, GCVT, is selectively
triggered by glycine [45] and controls the translation of
the aminomethyltransferase mRNA (BP0195). The second
riboswitch belongs to the flavin mononucleotide (FMN)
class [46] and regulates the translation of ribB (BP0471).

Validation by Northern blot analysis
All 23 predicted regions, except the ones of the GCVT
riboswitch, the FMN riboswitch and the 6S RNA, were
tested for transcription of small-size RNA by Northern
blot analyses. Biotinylated oligonucleotide probes were
designed for both strands of the 20 predicted regions (see
probe sequences in Additional file 1, table S1) and used to
test the presence and orientation of short transcripts in
Northern blot analyses. As a positive control, an additional
probe was designed that corresponds to the sRNA charac-
terized by Scarlato et al. [31,32]. When total RNA
extracted from B. pertussis cultures stopped at an ODs600
nm of 0.9, 1.8 or 3.6 was analyzed, 13 positions in addition
to the positive control showed evidence of transcription
(see Additional file 1, figure S1). The transcription profile
of these 14 genomic regions was further analyzed for the
kinetics of expression over 30 h of culture [from OD600 nm

~0.7 to ~7.9] (Figure 1). All the bands clearly detected in
the Northern blots in the validation experiments (Figure 1
and Additional file 1, figure S1) and in the phenotypic

modulation experiments (see below) were considered as
transcripts. Each detected transcript was labeled with a
capital letter. A number was added after the letter to dis-
criminate transcripts in case of multiple bands (e.g. Tran-
scriptA1, TranscriptA2). Locations for which transcription
was detected on both strands were distinguished with an
apostrophe, e.g. TranscriptM, TranscriptM’ (Figure 1 and
Table 1).
The analysis of five genomic positions resulted in the

detection of 2 bands (transcripts A1 and A2, D1 and
D3, E1 and E2, L1 and L2, N1 and N2), indicating the
presence of two overlapping transcripts of different
lengths, as has been seen for several sRNAs of Pseudo-
monas aeroginosa[47] and for Escherichia coli IstR1 and
IstR2, which have each a specific function and are gen-
erated from separate promoters but share a common 5’
end [48]. Alternatively, these bands could be the result
of a post-transcriptional processing of a single RNA
transcript [47].
Some transcripts were only produced during the expo-

nential phase (transcripts A1, A2 and F). Transcript D1
was expressed at higher levels during exponential phase
compared to the early and stationary phases, whereas
Transcript D2 did not show any significant modification
of expression during growth. This observation rules out
the possibility that Transcript D1 is the precursor of
Transcript D2, and argues that the two transcripts are
independent and under the control of different factors.
In contrast, Transcripts A1, A2 and Transcripts F1, F2,
are expressed at similar levels during the different
growth phases. They may therefore each be produced
from a unique RNA and subsequently processed into a
shorter version. Finally, two regions gave rise to a tran-
script from both strands. Transcripts L1 and L’ are tran-
scribed respectively from the lagging and leading strand
template of predicted region 3811548-3811699. Tran-
scripts M and M’ are transcribed respectively from the
lagging and leading strand template of predicted region
3896371-3896457. In both cases, the two transcripts had
the same apparent size (~80 nucleotides for transcripts
L1 and L’ and ~190 nucleotides for transcripts M and
M’). For these two pairs of transcripts, the biotinylated
probes used to detect transcription on both strands
were designed approximately at the same coordinates,
indicating that the observed transcripts are complimen-
tary to each other for most of their lengths (Figures 1
and 2B).
Most regulatory sRNAs are synthesized as discrete

transcripts under the control of dedicated promoter and
terminator sequences. However, some bacterial regula-
tory elements correspond to sequences at the 5’ or 3’
UTRs of mRNAs that can adopt different conformations

Hot et al. BMC Genomics 2011, 12:207
http://www.biomedcentral.com/1471-2164/12/207

Page 3 of 13



TranscriptE TranscriptF

TranscriptG TranscriptH TranscriptI

100-

200-
300-

500
400

100-

200-
300-

500
400

100-

200-
300-

500
400 2

1

100-

200-
300-

500
400

2

1
100-

200-
300-

500
400

2
1

100-

200-
300-

500
400

2

1

100-

200-
300-

500
400

100-

200-
300-

500
400

100-

200-
300-

500
400

TranscriptD

TranscriptCTranscriptBTranscriptA
L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

100-

200-
300-

500
400

100-

200-
300-

500
400

TranscriptJ TranscriptK TranscriptL

TranscriptL’ TranscriptM TranscriptM’

TranscriptN 5S
500

100-

200-
300-
400

100-

200-
300-

500
400

2

1

100-

200-
300-

500
400

100-

200-
300-

500
400

100-

200-
300-

500
400

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

100-

200-
300-

500
400

L 0’ 1’ 10’ 1h 2h 6h 10h 30h

1

2

Figure 1 Detection of transcripts by Northern blot analyses. Total RNA was extracted from B. pertussis Tohama I at indicated times after sub-
culturing, and 10 μg total RNA per lane was used for Northern blot analyses. The detected transcripts are indicated by arrow heads (and
numbers in case of multiple bands). L, RNA size ladder. RNA sizes are indicated in nucleotides in the left margins of each panel. The detection of
5S rRNA was used as loading control.
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in response to environmental signals. This is the case
for autoregulatory motifs and riboswitches [49]. Some of
these regulatory elements can, under specific conditions,
cause transcriptional arrest (reviewed in [50]). In order
to test whether some of the transcripts detected in this
study are abortive, processed or degraded forms of the
5’UTR or 3’UTR of their neighboring genes, a control
RT-PCR was carried out on transcripts which were in
close vicinity of and in the same orientation as their
neighboring 5’ or 3’ ORF (see Additional file 2, figure S2
and table S3). All detected transcripts were found to
result from independent transcription, except for Tran-
script B, which was linked to the transcription of the
downstream gene rpsB (BP1419), encoding the 30S ribo-
somal protein S2. The function of S2 is still uncertain. It
may potentially act as a bridge between the 16S RNA
and ribosomal protein S1 [51]. The ORF of rpsB genes
have recently been shown to be preceded by a conserved
specific motif in the 5’UTR, which could be a cis-

regulatory element binding to the S2 protein for an
autoregulatory control of its own synthesis [52]. The
existence of Transcript B suggests that in B. pertussis
the 5’UTR of rpsB contains a cis-regulatory element
inhibiting the full-length transcription of the mRNA, as
it has been demonstrated for other ribosomal protein
genes [53,54].
Finally, the coding potential of all transcripts was

evaluated by a search for potential coding sequences in
their genomic regions using the program ‘ORF Finder’
of the NCBI [55] (data not shown). As the B. pertussis
genome appears to be under-annotated when the Easy-
Gene prediction is compared to the RefSeq annotation
[56], we also looked for predicted coding sequences or
neighboring genes with alternative start codons in
these genomic regions, using the prokaryotic gene-fin-
der algorithm EasyGene. No coding sequences were
predicted in the transcribed regions, even for the long-
est ones.

Table 1 Summary of identified sRNA features

Transcript
name

Gene
name

Predicted 5’
coordinatea

Predicted 3’
coordinatea

Predicted
lengthb

Approx.
obs. lengthc

sRNA
orientationd

IGR
lengthe

5’ gene name and
orientationf

3’ gene name and
orientationf

TranscriptA1 bprA1 488504 488654 150 250 < 522 BP0475 < BP0477 >

TranscriptA2 bprA2 488504 488654 150 300 < 522 BP0475 < BP0477 >

TranscriptB bprB 1494130 1494207 77 80 > 726 BP1418 < BP1419 >

TranscriptC bprC 1968374 1968529 155 190 > 425 BP1878 < BP1879 >

TranscriptD1 bprD1 2624007 2624157 150 90 < 783 BP2479 < BP2480 >

TranscriptD2 bprD2 2624007 2624157 150 110 < 783 BP2479 < BP2480 >

TranscriptE1 bprE1 2699394 2699487 93 70 > 239 BP2546 < BP2547 >

TranscriptE2 bprE2 2699394 2699487 93 80 > 239 BP2546 < BP2547 >

TranscriptF1 bprF1 3099570 3099720 150 80 < 256 BP2908 < BP2909 <

TranscriptF2 bprF2 3099570 3099720 150 150 < 256 BP2908 < BP2909 <

TranscriptG bprG 3173584 3173734 150 70 < 305 BP2982 > BP2983 >

TranscriptH bprH 3178090 3178331 241 70 > 318 BP2984 > BP2985 >

TranscriptI bprI 3263729 3263815 86 450 < 277 BP3061 > BP3062 >

TranscriptJ bprJ 3605317 3605397 80 70 > 206 BP3395 < BP3396 <

TranscriptK bprK 3619230 3619365 135 200 < 316 BP3410 < BP3411 >

TranscriptL1 bprL1 3811548 3811699 151 80 < 336 BP3594 < BP3595 >

TranscriptL2 bprL2 3811548 3811699 151 350 < 336 BP3594 < BP3595 >

TranscriptL’ bprL’ 3811548 3811699 151 80 > 336 BP3594 < BP3595 >

TranscriptM bprM 3896371 3896457 86 190 < 281 BP3686 > BP3687 >

TranscriptM’ bprM’ 3896371 3896457 86 190 > 281 BP3686 > BP3687 >

TranscriptN1 bprN1 3956837 3956934 97 80 < 393 BP3747 > BP3748 <

TranscriptN2 bprN2 3956837 3956934 97 110 < 393 BP3747 > BP3748 <
aGenomic coordinates as predicted by RNAz.
bIn nucleotides.
csRNA length, in nucleotides, determined from apparent sizes on Northern blots.
dGenomic orientation of sRNA transcripts. ‘>’ = on positive strand: the strand given in the GenBank genome database (NC_002929); ‘<’ = on negative strand: the
complementary strand.
eLength, in nucleotides, of the IGRs containing sRNA genes (according to the annotation).
fGenomic orientation of flanking mRNAs. ‘>’ = on positive strand: the strand given in the GenBank genome database (NC_002929); ‘<’ = on negative strand: the
complementary strand.
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In view of these observations we conclude that all
detected transcripts are genuine sRNAs and were there-
fore named Bordetella pertussis RNAs (BprA1, A2, B, C,
...). The rpsB gene probably contains in its 5’UTR an
autoregulatory element, and BprB most likely results
from the inhibition of transcription of the rpsB mRNA.
The validated sRNA genes are scattered throughout the
B. pertussis chromosome (Figure 2A). The location of
these sRNA genes relatively to their neighboring genes
was determined by the biotinylated probe coordinates
and the apparent sizes on the Northern blots (Figure 2B).

Features of the B. pertussis sRNAs
Specific and general features of the B. pertussis sRNAs
were further analyzed and compared with those of other
bacterial sRNAs. The genes of the B. pertussis sRNAs

are located in IGR of various lengths, comprised
between 206 bp and 783 bp. They have no apparent
preference for lagging or leading strand templates, but
they are preferentially located on one of the two repli-
chores (79%) (See Figure 2A). These characteristics are
similar to those of the E. coli sRNA genes [57].
Some of the B. pertussis sRNA genes (BprC, I and N)

are very close to or overlap adjacent ORFs in the oppo-
site orientation and thus are likely to act on their
mRNA, whereas others are more distant from the adja-
cent ORFs and/or in the same orientation (See Figure
2B). The potential mRNA targets of all sRNAs were pre-
dicted using TargetRNA algorithm [58]. The predicted
gene targets were compared to documented targets of
sRNAs from other bacteria. However, none of the
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predicted B. pertussis mRNA targets was orthologous to
a sRNA target from another bacterium (data not
shown). Similarly, orthologous genes of the B. pertussis
sRNA-flanking genes were searched in the Rfam and
Noncode databases, as some sRNAs are cis-encoded
antisense or cis-acting elements. The only product men-
tioned in these databases is the ribonuclease E gene
(ortholog to BP0475), which flanks bprA and is in the
same orientation. BprA might therefore be the 5’UTR
cis-acting element of the ribonuclease E gene (rne
5’UTR), which codes for a key enzyme in the mRNA
degradation pathway, including its own. This rne 5’UTR
element acts as a sensor of the cellular RNase E concen-
tration and allows for auto-regulation of its mRNA
degradation [59].

Phenotypic modulation of B. pertussis sRNAs
To investigate whether some of the new sRNAs genes
may potentially be under the control of the two-compo-
nent system BvgA/S and therefore potentially be

involved in Bordetella virulence regulation, phenotypic
modulation was induced by adding nicotinic acid or
MgSO4 in the growth medium in order to switch the
bacteria from the virulent (Bvg+ phase) to the non-viru-
lent phase (Bvg- phase) [60,61]. The modulation of
expression was monitored by Northern blot analyses for
up to 30 h after induction (data not shown) and the
expression profiles were compared to those of the non-
induced culture. One sRNA, BprJ, showed a change in
its expression compared to the control culture. The 80-
nucleotides band detected in the non-modulated culture
did not change after phenotypic modulation, but a sec-
ond band of approximately 200 nucleotides appeared 6
h and 10 h after induction of phenotypic modulation by
MgSO4 and nicotinic acid, respectively (Figure 3). This
new band is indicative of longer transcript overlapping
the 80-nucleotide transcript and appears to be specific
for the non-virulent phase (Bvg- phase). According to
the nomenclature adopted above, this second transcript
was named BprJ2 to distinguish it from the 80-nucleo-
tides transcript, which was named BprJ1.
To confirm that this new transcript is under the con-

trol of the BvgA/BvgS system, its expression was moni-
tored by Northern blot analysis in the avirulent BPLOW
mutant in which part of the bvgA-bvgS operon had been
deleted [37]. BprJ2 was also detected in the BPLOW
RNA (Figure 4), confirming its vrg (virulence repressed
gene) feature. The other vrgs of B. pertussis mainly
encode cell-envelope, small-molecule degradation or
hypothetical proteins [23,24] and include the previously

L 1 2 3 4

100-

200-

300-
400-
500-

-BprJ1

-BprJ2

5S
100-

Figure 4 Expression of bprJ2 in BPLOW. RNA was extracted at t
= 10 h from a non-modulated B. pertussis culture (lane 1), from a
MgSO4 modulated culture (lame 2), from a nicotinic acid modulated
culture (lane 3) and from a BPLOW culture (lane 4). BprJ1 and BprJ2
transcript positions are indicated. L, RNA size ladder. RNA sizes are
indicated in nucleotides in the left margins of each panel. The
detection of 5S rRNA was used as loading control.

Table 2 Number of BRE detected in different bacterial
strains

Nbr. of
repeats

Strain Familly Acc.number

8 Bordetella avium 197N Alcaligenaceae NC_001064

22 Bordetella bronchiseptica
RB50

Alcaligenaceae NC_002927

10 Bordetella parapertussis
18822

Alcaligenaceae NC_002928

8 Bordetella pertussis
Tohama I

Alcaligenaceae NC_002929

1 Azoarcus sp. EbN1 Rhodocyclaceae NC_006513.1

4 Rhodoferax ferrireducens
T118

Comamonadaceae NC_007908.1

29 Polaromonas sp. JS666 Comamonadaceae NC_007948.1

4 Acidovorax avenae subsp.
citrulli AAC00-1

Comamonadaceae NC_008752.1

4 Polaromonas
naphthalenivorans CJ2

Comamonadaceae NC_008781.1

1 Acidovorax sp. JS42 Comamonadaceae NC_008782.1

1 Verminephrobacter
eiseniae EF01-2

Comamonadaceae NC_008786.1

13 Delftia acidovorans SPH-1 Comamonadaceae NC_010002.1
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described but uncharacterized vrg6, vrg18, vrg24 and
vrg73 genes [62].

Identification of a novel Betaproteobacteria repeated
element
A local DNA sequence analysis using YASS showed that
the bprJ1 and bprJ2 genomic region contains a
sequence, from coordinates 3605317 to 3605401, highly
repeated in the Bordetella (see Additional file 1, list S1)
and in several other Beta-proteobacteria genomes (Table
2). We named it therefore Beta-proteobacterial repeat
element (BRE). This repeated element is found as a full-
length sequence of ~90 bp or as partial but conserved
sequence (between ~60 and ~40 bp) with a maximum
number of 29 repeats (with scores > 50 and > 70% iden-
tity) in the genome of Polaromonas sp. JS666 (see Addi-
tional file 1, table S4). All identified repeated elements
were located in chromosomal DNA, usually in IGRs,
although some overlap ORFs at their 5’ or 3’ ends by a
few bases. Surprisingly, some of the repeats are located
entirely within coding sequences.
Some IGRs and ORFs contain more than one BRE (a

maximum of 8 repeats was observed in B. bronchiseptica
between BB2301 (sphB3) and BB3202) organized in tan-
dem with no or only a few nucleotides between each
repeat. The complete and partial BRE sequences are
scattered around the chromosomes of B. pertussis, B.
bronchiseptica, B. parapertussis and B. avium (Figure 5).
An analysis of the Bordetella BRE sequences revealed 44
full-length repeats, ranging from 75 to 91 bp in length,
and 1 partial repeat of 50 bp. They exhibit an average
GC-content of 69.0% (ranging from 63.7% to 78.9%),
which is higher than the average GC-content of IGR
sequences (62.9% for IGRs ≥ 10 bp) and slightly higher
than the average GC-content of the complete genome
sequences (67.7%). The orientations of the repeats,
inferred by the transcriptional orientation of bprJ1 and
bprJ2, are not co-orientated with the direction of the
replication fork.
The genetic context, i.e. the nature and orientation of

the BRE flanking genes, is only moderately conserved
between B. pertussis, B. bronchiseptica and B. paraper-
tussis (see table 3). For instance, only 4 (#1, 3, 4 and 6)
out of the 9 loci from B. pertussis, B. bronchiseptica or
B. parapertussis show conservation of the genetic con-
text in the 3 genomes (table 3). None of the genetic
contexts is conserved in the B. avium genome (loci #10
to 13).
For some loci the numbers of tandem repeats vary

between the different genomes. For example, locus #3
contains 2 repeats in B. pertussis (between BP1793
and BP1794, lexA), 4 in B. parapertussis (between

BPP2022 and BPP2023, lexA) and 3 in B. bronchisep-
tica (between BB2270 and BB2271, lexA) (table 3, Fig-
ure 5). Locus #2 is conserved only in B. pertussis and
B. bronchiseptica . It has 2 repeats in B. pertussis
(between BP1110, sphB3, and BP1111) and 8 in B.
bronchiseptica (between BB2301, sphB3, and BB2302).
Two out of 8 loci in B. bronchiseptica (loci #7 and 8)
have no homologous locus in the other genomes, and
1 out of 5 loci in the B. parapertussis genome (locus
9) has no homologous locus in the other genomes. A
multiple alignment analysis on the Bordetella repeats
shows a high level of conservation within the genus,
as well as more widely within the all Betaproteobac-
teria class (Figure 6).
Several small repeats have been documented over the

years in other prokaryotic species, including ERICs in
enterobacteria [63-65], NEMIS in Neisseria spp.
[66-68], the BOX and RUP elements in Streptococcus
pneumoniae[69-71], MIRUs in Mycobacterium tubercu-
losis[72] and the bcr1 element of Bacillus cereus
[73,74]. These repeats often feature characteristics of
mobile elements and have a role in mRNA stabiliza-
tion, transcription termination or promoter activity.
BRE, described for the first time in this study, needs
further investigation before we can suggest any poten-
tial function. Its heterogeneous chromosomal distribu-
tion and the fact that it is sometimes found in
multiple copies at a same locus might imply a mobility
or a past-mobility property. A preliminary search for
BRE in sequences of other strains of B. pertussis,
B. bronchiseptica and B. parapertussis revealed the pre-
sence of variable numbers of the repeat at the same
locus among different strains (data not shown). This
qualifies BREs as Variable Number Tandem Repeats
(VNTR). This feature was verified using a VNTR ana-
lysis program [75], and most of identified loci were
correctly predicted as VNTR, except for locus 3 in B.
pertussis and B. bronchiseptica, and for locus 4 in B.
bronchiseptica (data not shown). Additional investiga-
tions are under progress to assess BRE as potential
genotyping markers.

Conclusion
B. pertussis and B. parapertussis, the second agent of
whooping cough-like disease, have evolved relatively
recently from a B. bronchiseptica-like ancestor, but
these species have remained clonal, with a very limited
number of B. pertussis-specific genes [76,77]. It is estab-
lished that B. pertussis evolution and adaptation to
humans occurred mainly through gene loss and recom-
bination of the chromosome rather than through acqui-
sition of new genes that would promote human
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infection [34]. It has also been suggested that certain
genes are expressed differently in B. pertussis and in
B. bronchiseptica, and that this difference might be
responsible in part for infection in humans [78]. Such
differences in expression may rely on classical base sub-
stitutions or indels in promoter regions of these genes
but perhaps also on the specific action of unidentified
regulatory molecules, such as sRNAs. In this study we

have shown that B. pertussis, like other pathogens,
expresses sRNAs and that the expression of one of
them, BprJ2, is under the control of the BvgA/BvgS sys-
tem. This sRNA and others, identified in this study or
yet to be identified, could be important regulators for
B. pertussis virulence acting either under the control of
BvgA/BvgS as co-regulators or as independent virulence
regulators.

B. pertussis
Tohama I

4086189 bp

B. bronchiseptica
RB50

5339179 bp�

�

��

�

�

�

��

�

�

�

�

�

� 	
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B. parapertussis
12822

4773551 bp

B. avium
N197

3732255 bp
�

�

�

� 


Figure 5 Distribution of BRE throughout the genomes of B. pertussis, B. bronchiseptica, B. parapertussis and B. avium. Repeats in the
positive orientation (on the strand given in the GenBank genome database) are represented by a tick on the outside of the outer circles, and
those in the negative orientation (on the complementary strand) are represented by a tick on the inside of the outer circles. The ticks in black
are full-length repeats and ticks in grey are partial-length repeats. The number of ticks at each locus corresponds to the numbers of repeats. The
inner circles give a chromosome graduation in kbp. Numbers on the outer circle indicate the locus number as defined in table 4.
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Table 3 BRE loci genetic context in Bordetella genomes

B. pertussis genetic contexte B. bronchiseptica genetic contexte B. pararpertussis genetic contexte B. avium genetic contexte

Locus # Rpts. nbr.a 5’ gene Std.b 3’ gene Std.b Rpts. nbr.a 5’ gene Std.b 3’ gene Std.b Rpts. nbr.a 5’ gene Std.b 3’ gene Std.b Rpts. nbr.a 5’ gene Std.b 3’ gene Std.b

1 1 BP1052 > BP1053 > 3 BB1365 > BB1366 > 1 BPP1149 > BPP1150 > - - - - -

2 2 BP1110 > BP1111 > 8 BB2301 > BB2302 > - - - - - - - - - -

3 2 BP1793 > BP1794 < 3 BB2270 > BB2271 < 4 BPP2022 > BPP2023 < - - - - -

4 1 BP2085 > BP2086 > 2 BB3338 < BB3339 < 1 BPP1769 > BPP1770 > - - - - -

5 1 BP2549 > BP2550 < 1 BB2072 > BB2073 < - - - - - - - - - -

6 1 BP3395 < BP3396 < 2 BB3983 < BB3984 < 1 BPP3548 < BPP3549 < - - - - -

7 - - - - - 1 BB1410 > BB1411 > - - - - - - - - - -

8 - - - - - 2 BB2091 > BB2092 > - - - - - - - - - -

9 - - - - - - - - - - 3 BPP1903 > BPP1904 > - - - - -

10 - - - - - - - - - - - - - - - 1 BAV0696 > BAV0697 >

11 - - - - - - - - - - - - - - - 2 BAV2006 > BAV2007 >

12 - - - - - - - - - - - - - - - 3 BAV3179 > BAV3180 <

13 - - - - - - - - - - - - - - - 2 BAV3208 > BAV3209 <
a’Rpts. nbr.’ = Number of Repeats. Number of repeated BRE elements at the specific locus.
b’Std.’ = Strand. Genomic orientation of flanking mRNAs. ‘>’ = on positive strand: the strand given in the GenBank genome database; ‘<’ = on negative strand: the complementary strand.
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Figure 6 Multiple-alignment of Bordetella and betaproteobacteria BREs. The sequences were aligned using CLC Genomics Workbench 4.
The name code of the bacterial strain and the repeat coordinates on the genomes are indicated on the left. Indels are represented by dashes.
Upper panel: the 45 BREs from the 4 genomes B. pertussis, B. bronchiseptica, B. parapertussis, B. avium were aligned to evaluate conservation
within the Bordetella genus. Lower panel: The BREs with the smallest coordinate in each betaproteobacteria genome were aligned to evaluate
conservation within the all classes.
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- Additional list S1. Figure S1: Preliminary Northern blot analysis.
Detection of transcripts in early(E), exponential(Ex) and stationary(S)
phases. Table S1: Biotin probe sequences used in northern blot analysis.
Table S2: RNAz prediction details. Table S4: BRE details. List S1: Bordetelle
BRE sequences and positions.
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S2: Test for independent transcription between the putative sRNA
positions and the upstream or downstream ORF and RT-PCR primers.
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