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Abstract

Background: Cassava (Manihot esculenta Crantz) can produce cyanide, a toxic compound, without self-injury. That
ability was called the cyanogenic potential (CN). This project aimed to identify quantitative trait loci (QTL)
associated with the CN in an outbred population derived from ‘Hanatee’ × ‘Huay Bong 60’, two contrasting
cultivars. CN was evaluated in 2008 and in 2009 at Rayong province, and in 2009 at Lop Buri province, Thailand.
CN was measured using a picrate paper kit. QTL analysis affecting CN was performed with 303 SSR markers.

Results: The phenotypic values showed continuous variation with transgressive segregation events with more
(115 ppm) and less CN (15 ppm) than either parent (’Hanatee’ had 33 ppm and ‘Huay Bong 60’ had 95 ppm). The
linkage map consisted of 303 SSR markers, on 27 linkage groups with a map that encompassed 1,328 cM. The
average marker interval was 5.8 cM. Five QTL underlying CN were detected. CN08R1from 2008 at Rayong, CN09R1and
CN09R2 from 2009 at Rayong, and CN09L1 and CN09L2 from 2009 at Lop Buri were mapped on linkage group 2, 5, 10
and 11, respectively. Among all the identified QTL, CN09R1 was the most significantly associated with the CN trait
with LOD score 5.75 and explained the greatest percentage of phenotypic variation (%Expl.) of 26%.

Conclusions: Five new QTL affecting CN were successfully identified from 4 linkage groups. Discovery of these
QTL can provide useful markers to assist in cassava breeding and studying genes affecting the trait.

Background
Throughout the world, cassava (Manihot esculenta
Crantz) has been cultivated as an important food source
and industrial feedstock since agriculture was developed.
Accordingly, it ranked fourth among all crops in world-
wide production. Thailand was the world’s leading
exporter [1]. As a cyanogenic crop, cassava has the abil-
ity to release hydrogen cyanide (HCN) during cell
damage [2,3]. Variation among cultivars in their cyano-
genic potential (CN), causes concerns about their possi-
ble health effects such as acute intoxication, manifested
as vomiting, dizziness, etc. [4] and environmental toxi-
city [5]. Improved cassava cultivars with low CN and an
improved understanding of genes affecting CN were of
considerable interest.

CN was reported to be a quantitative trait [5]. Since
conventional breeding was not effective or efficient with
quantitative trait loci (QTL) of moderate to low herit-
ability, molecular breeding was expected to be an effi-
cient, reliable and cost effective breeding approach [6,7].
For molecular breeding, QTL analysis was often used to
identify trait-linked markers in order to facilitate mar-
ker-assisted selection (MAS). QTL identification was not
only used to assist breeding program, but also to gain
understanding of the loci and underlying genes and
their effects [6,7].
In the present study, an F1 outbred population was

chosen for QTL analysis because that population struc-
ture required the least time to generate. The population
provided the significant segregation of both genotype and
phenotype as required for QTL discovery [8-10]. A large
number of SSR markers for cassava have been developed
[11-14]. These markers were used to construct a genetic
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linkage map in order to apply for identification of QTL
underlying CN trait.

Results and Discussion
Phenotypic measurement
Variation in the CN in an outbred population derived
from ‘Hanatee’ × ‘Huay Bong 60’ and its parents are
shown in Table 1. In all evaluated years and locations,
the CN of ‘Hanatee’ was approximately two folds lower
than ‘Huay Bong 60’.
The distribution of the CN in the population showed

continuous variation, across a wide range (Table 1), typical
of quantitative traits. That implied that CN would be
underlain by polygenes. Transgressive variation was
observed that may have resulted from cooperation or
interaction among the loci and genes present in the two
parental types. In addition, over-dominance and epitasis
may also have contributed to the transgressive segregation
[15]. The correlation coefficients (r) among years and loca-
tions ranked from 0.308 to 0.487 and showed significance
at P < 0.01 (Table 2). Therefore, the phenotypic data were
appropriate for QTL analysis but mean data might be less
informative than individual environments.

Linkage map construction
A total of 1,732 available SSRs consisting of 667 primer
pairs provided from the International Center for Tropi-
cal Agriculture (CIAT) [16], 425 primer pairs from 640
primer pairs from Sraphet et al. (2011) [12] and Kun-
keaw et al. (2011) [14] were tested for informative mar-
kers between the parental lines. Of these, 507 markers
(28.9%) were informative and successfully genotyped
within the population. From genotypic data using 507
loci, the results showed that 151 markers (~30%) had
distorted segregation ratios. Eleven markers (~2%) were
100% identical to other marker loci. Therefore, those
162 total DNA markers were excluded. The highly dis-
torted segregation ratios found in this study were com-
mon among out-crossing species like cassava [17]
The linkage map (Figures 1, 2, 3, 4 and 5) consisted of

303 markers located on 27 linkage groups. The map

covered 1,328 cM with average spacing between markers
of 5.8 cM, smaller than the 10 cM desirable for QTL
detection by interval mapping (IM) [18-20]. Although the
derived map had good potential to identify QTL, it was
not yet a saturated map. More markers or inclusion of
markers with distorted segregation ratios maybe
required, to bring the number of linkage groups equal to
the number of haploid genome (n = 18).
The cassava genome database contained a draft

sequence in late 2010 [21], in which there were 11,243
scaffolds spanning 416 Mb. The SSR loci used in the
map were identified in the scaffolds. A total of 220 scaf-
folds were placed on the map. Of these, 50 scaffolds
containing more than one marker locus from the same
linkage group. However, 13 of 50 scaffolds were sepa-
rated by markers from other scaffolds. For example, on
the LG1, there were 44 loci which can be located on 31
scaffolds of the cassava genome sequences (Figures 1, 2,
3, 4 and 5). Within the region between EME162 to
CA226, scaffold11181 was separated by scaffold00476.
The lack of correspondence of some marker orders in
our genetic map with the physical order in the sequence
of cassava may have resulted from inaccurate estima-
tions of genetic distance based on recombination fre-
quency. Errors might be found in both genetic maps
and preliminary scaffold assemblies. Alternately, the dif-
ference in genetic background of the cassava used in the
two studies may underlie the differences.

QTL discovery
Based on multiple-QTL models (MQM) analysis, only 5
QTL were detected across 4 linkage groups, 1-2 from

Table 1 Phenotypic values of outbred population and their parents

Cyanogenic potential (ppm)*

2008 at Rayong 2009 at Rayong 2009 at Lop Buri Mean

Hanatee 40.8 ± 11.0 22.8 ± 11.0 35.7 ± 16.6 33.3

Mean Huay Bong 60 106.1 ± 40.7 57.9 ± 32.9 131.4 ± 39.7 95.0

F1 progenies 80.3 ± 24.4 35.0 ± 15.5 48.9 ± 21.5 55.2

Maximum 146.9 83.9 104.2 115

Minimum 38.4 10.8 14.3 25

Mean values of cyanogenic potential plus or minius SEMs in the parents (’Hanatee’ and ‘Huay Bong 60’) and their progenies from 2008 at Rayong, 2009 at
Rayong and 2009 at Lop Buri, and maximum and minimum trait values of the progeny population

* mg HCN equivalents kg-1 fresh weight (ppm)

Table 2 The correlation coefficients

2008, Rayong 2009, Rayong 2009, Lop Buri

2008, Rayong 1

2009, Rayong 0.413 (**) 1

2009, Lop Buri 0.308 (**) 0.487 (**) 1

The correlation coefficients of cyanogenic potential among the lines of the
population derived from ‘Hanatee’ × ‘Huay Bong 60’ in 2008 at Rayong, in
2009 at Rayong and in 2009 at Lop Buri.

** = Significant at P < 0.01.
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Figure 1 Genetic linkage map of cassava based on SSR marker (LG1-3). The numbers above each bar indicated linkage group name. To the
left hand side of each bar the number indicated interval distance in cM. To the right hand side of each bar the number indicated locus name
and scaffold of cassava genome that was anchored.
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Figure 2 Genetic linkage map of cassava based on SSR marker (LG4-6). The numbers above each bar indicated linkage group name. To the
left hand side of each bar the number indicated interval distance in cM. To the right hand side of each bar the number indicated locus name
and scaffold of cassava genome that was anchored.
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each environment (Table 3). Each QTL showed LOD
scores that were higher than the chromosome wide sig-
nificant threshold. The LOD scores of the QTL identi-
fied ranged from 3.77-5.75. The QTL with the largest
effect had a LOD score higher than both chromosome
and genome wide significant thresholds. CN09R1 was
located on linkage group 10 associated with marker
locus CA141. In addition, CN09R1 also explained the
largest portion of variation at 26.

The LOD scores of some QTL were lower than gen-
ome wide significant threshold as expected for sparse
maps (maps with marker density > 1 cM) [22,23]. How-
ever, for all QTL, the phenotype means indicated that
one allele combination was markedly better at each
location although the differences were not all significant.
Therefore, many QTL were dependent on the environ-
ment. Equally, the large variation in CN found among
environments showed a strong environmental effect
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Figure 3 Genetic linkage map of cassava based on SSR marker (LG7-9). The numbers above each bar indicated linkage group name. To the
left hand side of each bar the number indicated interval distance in cM. To the right hand side of each bar the number indicated locus name
and scaffold of cassava genome that was anchored.
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Figure 4 Genetic linkage map of cassava based on SSR marker (LG10-15). The numbers above each bar indicated linkage group name. To
the left hand side of each bar the number indicated interval distance in cM. To the right hand side of each bar the number indicated locus
name and scaffold of cassava genome that was anchored.
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Figure 5 Genetic linkage map of cassava based on SSR marker (LG16-27). The numbers above each bar indicated linkage group name. To
the left hand side of each bar the number indicated interval distance in cM. To the right hand side of each bar the number indicated locus
name and scaffold of cassava genome that was anchored.
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(Table 2). The percentage of phenotypic variation
explained (%Expl.) from all detected QTL ranged from
15.9-26.0% (Table 3).
Although MQM showed the highest precision to iden-

tify and map QTL, Kruskal-Willis (KW) analysis was
used for single marker analysis to avoid type 2 errors.
Except for CN08R1, all identified QTL showed signifi-
cance by KW analyses (Figure 6). Even though CN08R1
did not show significance by KW analysis, loci flanking
this QTL showed strong significance. That suggested
that all loci detected were the real QTL not type 1
errors [6,24]. No common QTL was found across all
environments (Table 3), which may be because the CN
was highly sensitive to environment [4]. However, KW
analysis of CN09R2 showed significant association with
CN across all environments.
In a previous study by Kizito et al. (2007) [25] two

QTL for CN were found linked to loci SSRY105 and
SSRY242. The locus SSRY105 was not polymorphic in
the current map, but SSRY242 was found on linkage
group 2 as was CN09L1. However, SSRY242 was 34.4
cM far from the position of CN09L1. It should be kept
in mind that QTL analysis is based on statistical analysis
and there is a strong environmental effect on CN [4].
Therefore, individual QTL may not be found only in
specific populations or environments. However, this
study helped develop markers to assist in cassava
improvement, and for the study of genes affecting to
CN and for comparative mapping in other related
species.
In addition, functional gene annotation of the regions

within 2-LOD support of each QTL was performed. A
total of 159 annotated genes, consisting of 4, 18, 19, 106
and 12 predicted genes underlying the regions of
CN08R1, CN09R1, CN09R2, CN09L1 and CN09L2,

respectively were identified (Additional file 1). Interest-
ingly, three annotated genes at the QTL peaks have
been predicted including; a nucleotide-binding protein
of 35 kDa (Nbp35; EC 3.6.1.15), b-1,3-N-acetylglucosa-
minyl transferase (EC 2.4.1.149) and an adenosine/gua-
nosine diphosphatase (EC 3.6.1.6) within intervals that
contained QTL CN09R2, CN09L1 and CN09L2, respec-
tively (Table 3). Nbp35 belongs to subgroup of the
P loop NTPases which perform a wide variety of cellular
functions such as signal transduction, signal-sequence
recognition, protein transport and localization, chromo-
some partitioning, etc. [26]. Nbp35 was an iron-sulfur
protein with a dual localization in the cytosol and
nucleus. It played a direct role in biogenesis and was
essential for eukaryotic metal ion insertion in proteins
and membrane transport [27].
Adenosine/guanosine diphosphatases were nucleoside

diphosphatase acting on hydrolysis of phosphoric ester.
One of the substrates for this enzyme was nucleoside
diphosphate which is generated by glycosyltransferase in
the fungal, plant, and mammalian cell secretory path-
ways [28]. The conversion of nucleoside diphosphate by
nucleoside diphosphatase yields monophosphates which
relieve inhibition of the transfer enzymes and provide
substrates for antiport transport systems by which the
entrance of nucleotide sugars from the cytosol into the
secretory pathway lumen was mediated. However, the
absence of diphosphatase activity does not end glycosy-
lation or the entrance of nucleotide sugars into lumen
[29].
b-1,3-N-Acetylglucosaminyl transferase belongs to the

glycosyltransferase family of enzymes. They act to cata-
lyze the transfer of a sugar (monosaccharide) unit from
a sugar nucleotide derivative to a sugar or amino acid
acceptor (EC2.4.-) [30]. Cyanogenic glycosides are

Table 3 Description of five QTL for cyanogenic potential in cassava and their functional annotation

Environments ag QTLs Loci LG ac LOD %
expl

Phenotype mean
(ppm)*

Location on physical
map

Functional annotation

ac ad bc bd

Rayong, 2008 4.4 CN08R1 CA227 5 3.0 3.77 16.1 92.0 72.2 70.4 88.3 Scaffold08093 at 10.8 kbp Unknown

Rayong, 2009 4.5 CN09R1 CA141 10 2.8 5.75 26.0 23.4 29.6 26.5 45.6 Scaffold00399 at 564.7
kbp

Unknown

CN09R2 CA344 11 2.4 4.05 15.9 23.4 31.2 20.1 36.5 Scaffold10276 at 15 kbp Nucleotide-binding protein of 35
kDa

Lop Buri, 2009 4.4 CN09L1 CA18 2 3.0 4.58 23.0 62.3 50.4 80.3 61.9 Scaffold10261 at 564 kbp b-1,3-N-Acetylglucosaminyl
transferase

CN09L2 CA76 5 3.2 4.22 18.5 62.3 38.2 41.6 51.9 Scaffold02810 at 207.3
kbp

Adenosine/Guanosine
diphosphatase

Genetic metrics for each QTL: Detail of each QTL affecting cyanogenic potential from evaluating in 2008 at Rayong (RY08), 2009 at Rayong (RY09) and 2009 at
Lop Buri (LB09).

ac Chromosome wide significance threshold.

ag Genome wide significance threshold.

%expl Percentage of phenotypic variation explain.

* mg HCN equivalents kg-1 fresh weight (ppm).
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precursors of HCN in cyanogenesis pathway [31]. To
produce linamarin and lotaustralin, which are cyano-
genic glycosides in cassava, the glcosyltransferase must
catalyze L-valine and L-isoleucine [32], and thus the
gene encoding this b-1,3-N-acetylglucosaminyl transfer-
ase might be involved in this process.
There is no report to link Nbp35 and Adenosine/Gua-

nosine diphosphatase directly to the cyanogenesis path-
way, however these two enzymes were involved in
common biogenesis. In addition, sequences of linamar-
ase (EC 3.2.1.21) and hydroxynitrile lyase (4.1.2.11)
which are key enzymes involved in the cyanogenesis
pathway were found on scaffold09743 and scaf-
fold01206, respectively. However, these scaffolds were
not anchored by any of the markers in this study linkage

map. Thus, it would be useful to identify additional
markers to link these enzymes to the map.

Conclusions
In this study, an SSR based genetic linkage map of cas-
sava was constructed using an F1 population of a cross
between ‘Hanatee’ and ‘Huay Bong 60’. The map was
used for analysis of QTL underlying CN, and five poten-
tial QTL were detected. Among all the QTL, CN09R1,
which was located on linkage group 10 was the stron-
gest with the LOD value of 5.75 and it explained 26.0%
of the variation in CN. In addition, all loci on the
genetic map were compared with the data from cassava
genome sequence. The anchor markers common to
both could help the organizing and completion of
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Figure 6 Locations of 5 QTL underlying cyanogenic potential. Box-bars with extending lines at the right side of the linkage group indicated
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chromosome sized scaffolds. The loci found in this
study will be useful for identification of genes control-
ling the traits as well as establishing MAS of cassava in
the future.

Methods
Plant materials and field experiment
Cassava variety ‘Hanatee’ (Thai local variety), exhibited
low CN and ‘Huay Bong 60’ (commercial variety) [33],
displayed high CN. They were used as female and male
parent, respectively. A hundred of their progeny were
used for the mapping population.
All samples were planted in May during years 2007-

2008. In 2007, the population and its parents were sepa-
rately cultivated at Rayong province, Thailand. Ten cut-
ting stems per genotype were planted with ten rows at a
space of 1 × 1.5 m. In 2008, they were cultivated at
Rayong and Lop Buri provinces, Thailand. Each geno-
type was replicated two times in 10 × 10 simple lattice
designs at a space of 0.8 × 1 m. Fertilizer (N:P:K;
15:15:15), 312.5 kg/Hectare and chicken manure, 3,100
kg/Hectare were applied at one month after planting.
Pest management was applied as necessary. Roots were
harvested for CN evaluation at one year after planting.
The climate at both locations was warm and humid all
year round with an average temperature of 28°C. The
average rainfall at Rayong and Lop Buri was 1,339.4 and
1,211.9 mm per year [34], respectively. There were dif-
ferent soil types at Rayong (clayey loam soil) and Lop
Buri (clay soil) [35]. There was no evidence of pests and
diseases that occurred in the planted areas.

Monitoring the CN
The CN was evaluated in roots as mg HCN equivalents
kg-1 fresh weight (ppm) using picrate paper kit as
described by Bradbury et al. (1999) [36]. The roots of
the population and its parents were harvested in 2008 at
Rayong, and in 2009 at Rayong and at Lop Buri. In 2008
at Rayong, three plants of each genotype were selected,
and three roots of each plant were collected. In 2009 at
Rayong and Lop Buri, two plants of each genotype of
each replication were used.

SSR analysis
Genomic DNA of the population and its parents was
extracted from young leaves based on CTAB selective
precipitation of DNA, modified according to Fulton et
al. (1995) [37]. A total of 1,732 SSRs were used consist-
ing of 667 SSRs provided by CIAT, 640 SSRs from Sra-
phet et al. (2011) [12] and 425 SSRs from Kunkeaw et
al. (2011) [14]. They were screened against the parents
to find informative markers used to genotyped the F1
population. The PCR reactions were carried out in 20 μl
final volume containing 50 ng of genomic DNA, 1 ×

PCR buffer (Promega, Madison WI, USA) with 1.5 mM
MgCl2, 0.2 μM of each PCR primer, 200 mM of each
dNTP and one unit of DNA-polymerase (Promega). The
PCR program for SSR amplification consisted of the fol-
lowing steps: 94°C for 2 min followed by 35 cycles of
94°C for 30 s, 55°C for 45 s and 72°C for 1 min, then a
final step of 72°C for 5 min (modified from Tangphat-
sornruang et al. (2008) [13]). Products were analyzed
using 5% denaturing polyacrylamide gel electrophoresis
and were visualized by silver staining according to Ben-
bouza et al. (2006) [38]. The amplicon band patterns
were scored according CP codes (eg. <abxcd>, <efxeg>,
<lmxll>, <nnxnp> and <hkxhk>) and missing data was
replaced by “–” as described by Ooijen and Voorrips
(2001) [39].

Linkage map construction
For linkage map construction, all genotypic data were
loaded into JoinMap® 3.0 program software [39]. The
program first tested the segregation ratio of each marker
using chi-square (c2) test. Statistically, significant mar-
kers at P < 0.05 were excluded from further analysis.
The similarity of loci was then tested and markers
showing 100% similarity were also excluded. The
remaining markers were mapped into linkage groups
based on the LOD threshold of 6.0 and maximum
recombination threshold of 0.4. The genetic distance in
a unit of recombinant frequency or centimorgan (cM)
was calculated using Kosambi mapping function.

QTL analysis
As a first step, the data file containing the marker obser-
vations, the mean trait values and the genetic linkage
map (output from JoinMap® 3.0) were loaded into
MapQTL® 4.0 program [9]. IM analysis was performed
followed by permutation tests in order to determine the
significance threshold of LOD score. The markers that
showed LOD scores from IM higher than the chromo-
some wide threshold with P < 0.05 from the 1,000 per-
mutations were selected as the cofactor. The automatic
cofactor selection tool was used for selection of cofac-
tors. They were selected by user before performed
MQM mapping analysis. The markers that showed LOD
score higher than the chromosome wide threshold with
P < 0.05 from the 1,000 permutations were identified as
QTL. KW analysis, a single marker analysis, was also
analyzed based on one way ANOVA.

Blast analysis and functional annotation
On-line BLAST against the cassava genome with primer
sequences located on linkage map was performed on
Phytozome [21]. Functional annotation of each QTL
was identified based on the Panther classification system
[30].
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Additional material

Additional file 1: List of annotated genes within 2-LOD support
regions of the QTL.
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