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Abstract

Background: Next-generation sequencing technologies can effectively detect the entire spectrum of genomic
variation and provide a powerful tool for systematic exploration of the universe of common, low frequency and
rare variants in the entire genome. However, the current paradigm for genome-wide association studies (GWAS) is
to catalogue and genotype common variants (5% < MAF). The methods and study design for testing the
association of low frequency (0.5% < MAF ≤ 5%) and rare variation (MAF ≤ 0.5%) have not been thoroughly
investigated. The 1000 Genomes Project represents one such endeavour to characterize the human genetic
variation pattern at the MAF = 1% level as a foundation for association studies. In this report, we explore different
strategies and study designs for the near future GWAS in the post-era, based on both low coverage pilot data and
exon pilot data in 1000 Genomes Project.

Results: We investigated the linkage disequilibrium (LD) pattern among common and low frequency SNPs and its
implication for association studies. We found that the LD between low frequency alleles and low frequency alleles,
and low frequency alleles and common alleles are much weaker than the LD between common and common
alleles. We examined various tagging designs with and without statistical imputation approaches and compare
their power against de novo resequencing in mapping causal variants under various disease models. We used the
low coverage pilot data which contain ~14 M SNPs as a hypothetical genotype-array platform (Pilot 14 M) to
interrogate its impact on the selection of tag SNPs, mapping coverage and power of association tests. We found
that even after imputation we still observed 45.4% of low frequency SNPs which were untaggable and only 67.7%
of the low frequency variation was covered by the Pilot 14 M array.

Conclusions: This suggested GWAS based on SNP arrays would be ill-suited for association studies of low
frequency variation.

Background
Next-generation DNA sequencing platforms can effec-
tively detect the entire spectrum of genomic variation
and provide a powerful tool for systematic exploration
of the universe of variants and interactions in the entire
genome, and hence largely improve our ability to
explore the remaining genetic variance which has not
been identified by GWAS [1]. However, our knowledge
of genetic variation is mainly limited to common DNA
variants (i.e. minor allele frequency, 5% < MAF) and the
current genetic studies of complex diseases have focused
on testing associations of common alleles with common

diseases. Since low frequency variants (0.5% < MAF ≤
5%) have their inherent features that are largely different
from the common genetic variants, the current strate-
gies for association studies are well developed for identi-
fying the association of common variants with common
diseases, but may be ill-suited for large amounts of alle-
lic heterogeneity present in sequence data [2]. To test
for association of both common and low frequency
alleles with the disease and the task of moving from
confirmed association signal to complete enumeration
of the pattern of causal variants at a given locus pre-
sents great challenges [3]. To meet these challenges, two
approaches to the next wave of GWAS have been pro-
posed [4]. One approach is to extend the current para-
digm for GWAS which catalogues common variants and
genotype them using chips to including low frequency
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variants. Companies such as Illumina and Affymetrix
have already designed chips including both common
and low frequency variants discovered in the 1000 Gen-
omes Project [5]. The next wave of GWAS is to use
these chips for genotyping millions of common and low
frequency variants. Another approach is to conduct
whole-genome and whole-exome sequencing of indivi-
duals instead of genotyping a catalogue of variants to
capture both common and rare variants. To provide
information for next generation GWAS which will test
for association of the entire allele frequency spectrum of
genomic variation with the diseases, we use the1000
Genomes Project data, including both the low coverage
data (i.e. low coverage pilot) and exome capture-sequen-
cing data (i.e. exon pilot), to study the pattern of linkage
disequilibrium (LD) between common and common,
common and low frequency, low frequency and low fre-
quency variants, to assess the coverage performance of
tagging designs with and without statistical imputation
approaches and evaluate the power of the current widely
used methods for association studies under different dis-
ease models and study designs. To evaluate the perfor-
mance of DNA chips for next generation GWAS, we
use the low coverage pilot data which contain ~14 M
SNPs as a hypothetical genotype-array platform (Pilot
14 M) to interrogate its impact on selection of tag
SNPs, mapping coverage and power of association tests.

Results
Allele Frequency Spectrum and Linkage Disequilibrium
Pattern
We first analyze the low coverage pilot with whole gen-
ome sequencing of 179 individuals from four populations

and the exon pilot with exon-targeted sequencing of 697
individuals from seven populations in the 1000 Genomes
Project to examine the allele frequency spectrum and
linkage disequilibrium (LD) pattern in humans.
We observed that the proportion of the low frequency

SNPs in the exon pilot dataset was much larger than that
in the low coverage pilot dataset, which implied that when
the number of typed individual’s increases, the proportion
of the low frequency SNPs dramatically increases (Addi-
tional file 1, Figure S1). This observation is consistent with
the early report of Hedges et al. (2009) [6]. We can expect
that when thousands of individuals are studied, the major-
ity of SNPs will have low frequency. Figure 1 further
plotted allele frequency distribution for low coverage pilot
and exon pilot autosomal SNPs in CEU, YRI, CHB+JPT,
CEU+TSI, YRI+LWK, and CHB+CHD+JPT, respectively.
Consistent with previous studies [7], the observed fre-
quency distribution of common alleles were much closer
to the expected for the standard neutral population model,
however, the proportion of SNPs with low frequency
alleles is smaller than the expected for the standard neu-
tral population model in all three populations. We
observed fewer low frequency variants in CEU and CHB
+JPT samples than that in YRI samples (Additional file 2,
Table S1). We also observed that the distribution of allele
frequency for the non-synonymous SNPs in CEU coin-
cides well with the expected distribution of allele fre-
quency for the standard neutral population model. Using
the exon pilot data (697 individuals) the proportion of
SNPs with the low frequency alleles will also increase
(Figure 1). We noted the allele frequency distributions for
all observed variants and non-synonymous variants in the
exon pilot dataset were almost indistinguishable.

Figure 1 Allele frequency distribution for low coverage pilot and exon pilot autosomal SNPs. Figure 1 shows the MAF distribution from
0.5% to 5%. The red dashed line shows the MAF distribution expected for the standard neutral population model with constant population size
and random mating, the blue solid line shows the MAF distribution for the all observed variants, and the green dotted line shows the MAF
distribution for the observed non-synonymous alleles.
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LD, the nonrandom association of alleles at different loci
provides insight into evolutionary history of populations
and lays the basis for association studies of complex dis-
eases [8,9]. The LD between common SNPs has been
well studied; there are few genome-wide surveys of LD
between common and low frequency SNPs, and between
low frequency and low frequency SNPs. Large-scale sur-
veys of genome-wide LD patterns using data generated
in 1000 Genomes Project will reveal the full complexity
of empirical patterns of LD and facilitate research in
evolutionary biology and association studies of complex
diseases. A simplified view of LD is the squared correla-
tion coefficient r2 between the two SNPs which will be
used to measure the levels of pair-wise LD in this
report. If r2 between two SNPs is larger than or equal to
0.8, then the LD between two SNPs is viewed as strong.
We used inter-marker distance of 50 kb, 100 kb and
200 kb to calculate LD between SNPs. The proportions
of pair-wise SNPs with r2 in five intervals for the inter-
marker distance of 50 kb, 100 kb and 200 kb based on a
low coverage pilot dataset and HapMap phase II (r22)
dataset are shown in Figure 2, and Additional file 3,
Figure S2 respectively. Several remarkable features
emerge from these figures. First, the LD patterns
between common and common SNPs in the low cover-
age pilot dataset was consistent with that for the Hap-
Map II, but the LD levels between common SNPs in the
low coverage pilot dataset were smaller than that in the
HapMap II dataset. This may be due to the fact that the
distribution of the MAF in the low coverage pilot data-
set was shifted to the left toward the low frequencies
compared to the distribution of MAF in the HapMap II
dataset. Second, the LD between common and common
SNPs is much stronger than that between low frequency
and low frequency SNPs, and low frequency and com-
mon SNPs. Third, in general, we observed only less than
10% of the pair-wise low frequency SNPs have strong
LD. Fourth, we observed less than 2% of the pairs of

low frequency and common SNPs with r2 larger than
0.2. This demonstrated that it is difficult to use common
SNPs for indirectly testing for association of low fre-
quency variants.
Association studies are still limited by the cost of geno-

typing the tremendous number of SNPs. To identify a set
of informative SNPs which are called tag SNPs by exploit-
ing redundancies among nearby SNPs due to LD may be a
choice for genome-wide association studies in practice. It
is well known that the tagging approach may substantially
improve the genotyping efficiency of common SNPs
through the selection of tag SNPs. However, it is unknown
if the tagging approach can still dramatically improve the
genotyping efficiency of low frequency SNPs. To evaluate
the genotyping efficiency of the tagging approach to both
common and low frequency SNPs, we used pair-wise
methods in which every allele was captured by a single tag
at the prescribed r2 threshold [10] to select tag SNPs from
the low coverage pilot dataset. The results were summar-
ized in Figures 3A-3D which showed the proportion of the
tag SNPs with 5% < MAF, the tag SNPs with 0.5% < MAF
≤ 5% and the untaggable SNPs as a function of r2 cut off
values for the low coverage pilot dataset, respectively. We
observed that between 26.1% and 40.5% of the common
SNPs used for tag SNPs can capture all common SNPs
and between 53.7% and 67.2% of the low frequency SNPs
used for tag SNP can capture all low frequency SNPs at
r2 ≥ 0.8 in the CEU, CHB+JPT and YRI samples. Due to
greater genetic diversity and weaker LD among low fre-
quency SNPs, more tag SNPs will be required for captur-
ing rare variation in the population. We mark SNPs as
untaggable SNPs, if no other SNP within 200 kb has a r2

value that is greater than some prespecified threshold.
Despite the high density of SNPs in the low coverage pilot
dataset, we observed a large proportion of SNPs ranging
from 16.2% to 26.9% for common SNPs, and from 39.2%
to 56.6% for low frequency SNPs, for which no tag can be
identified. The proportion of untaggble low frequency

Figure 2 LD pattern among low frequency alleles and common alleles. The proportions of pair-wise SNPs with r2 between common and
common SNPs (cc), low frequency and common SNPs (rc), and low frequency and low frequency SNPs (rr) in five intervals of r2 within each
category of the MAF of SNPs (i.e., cc, rc and rr categories) for low coverage pilot dataset. We plotted graphs under three inter-marker distances,
A) 50 kb, B) 100 kb and C) 200 kb where r2 between the target SNP and its all nearby SNPs within the distance was calculated.
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Figure 3 Proportion of tagged SNPs and untaggable SNPs for the low coverage pilot and imputed dataset. We assumed the inter-
marker distance to be 200 kb and calculated r2 between the tag SNP and all nearby SNPs within the distance, and then we plotted the
proportions as a function of the r2 cut off values for the low coverage pilot dataset in A, B, C and D, and for the imputed CEU dataset in the
regions of 382 genes covered by exon pilot project in E,F,G and H, respectively. A) Proportion of tagged common SNPs with 5% < MAF. B)
Proportion of tagged low frequency SNPs with 0.5% < MAF ≤ 5%. C) Proportion of untaggable common SNPs with 5% < MAF. D) Proportion of
untaggable low frequency SNPs with 0.5% < MAF ≤ 5%. E) Proportion of tagged common SNPs with 5% < MAF. F) Proportion of tagged low
frequency SNPs with 0.5% < MAF ≤ 5%. G) Proportion of untaggable common SNPs with 5% < MAF. H) Proportion of untaggable low frequency
SNPs with 0.5% < MAF ≤ 5%.
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SNPs is approximately twice as high as that of untaggble
common SNPs. The proportion of untaggable SNP in the
YRI sample is lower than that in the CEU and CHB+JPT
samples which may be due to the fact that there are more
SNPs with low MAF in the YRI samples than that in the
CEU and CHB+JPT samples were removed in the phasing
process (Additional file 4, Figure S3).
Next we study the selection of tag SNPs in the regions

covered by the exon pilot dataset. To save space we only
consider CEU samples. After SNP filtering and removing
genes that contained less than 4 called SNPs, a total of
382 genes that contain 2,254 SNPs were remained for
data analysis (Additional file 5, Table S2). Since all
introns in the 382 genes have not been sequenced, three
reference panels: low coverage pilot data in 55 CEU sam-
ples (P1.MACH), HapMap 3 unphased (H3.MACH) and
phased (H3.PHASE) data [11] in 55 CEU samples were
used to impute untyped variants of 85,458 introns as well
as 2,254 exons in the regions of 382 genes covered by the
exon pilot in 55 CEU samples. All 55 CEU samples were
shared by both the low coverage dataset and HapMap 3
dataset. Exon pilot data in the 55 CEU samples without
imputation for tag SNP analysis was denoted by EXON.
Program MACH was used to impute untyped variants.
The results of tag SNP analysis for the exon pilot dataset
in the 1000 Genomes Project with imputation from the
low coverage pilot dataset in the 1000 Genomes Project
and HapMap 3 dataset were summarized in Figure 3E-
3H, respectively. These figures showed the proportion of
the tag SNPs and untaggable SNPs as a function of r2 cut
off values. We observe that under imputation by low cov-
erage pilot dataset, 30.7% of the common SNPs used for
tag SNPs can capture all common SNPs and 59.6% of the
low frequency SNPs used for tag SNP can capture all low
frequency SNPs at r2 ≥ 0.8 in the CEU samples. If the
phased and unphased HapMap 3 datasets were used as
reference panels then between 41.5% and 44.1% of the
common SNPs used for tag SNPs can capture all com-
mon SNPs and between 68.6% and 69.8% of the low fre-
quency SNPs used for tag SNP can capture all low
frequency SNPs at r2 ≥ 0.8 in the CEU samples. We also
observe that without imputation as high as 74.8% of the
common SNPs and 93.0% of the low frequency SNPs
used for tag SNPs can capture all common SNPs and low
frequency SNPs at r2 ≥ 0.8 in the CEU samples, respec-
tively. For tag SNP analysis of the exon pilot dataset, we
mark SNPs as untaggable SNPs, if no other SNP within
the same gene has a r2 value that is greater than some
prespecified threshold. We found that under imputation
with a low coverage pilot as the reference panel, 16.9% of
the common SNPs and 45.4% of the low frequency SNPs
were untaggable. If the phased and unphased HapMap 3
datasets were used for the reference panel, between
23.0% and 25.1% of the common SNPs and between

54.0% and 56.7% of the low frequency SNPs were untag-
gable. Without imputation, we observe as high as 58.8%
of the common SNPs and 87.8% of the low frequency
SNPs, for which no tag SNPs within the same gene can
be identified. We also observe that even if the data were
imputed the large proportion of low frequency SNPs was
untaggable, which will have deep implications for the effi-
ciency of genotyping low frequency tag SNPs.

Coverage Evaluation
To provide information for designing association studies,
we evaluate coverage of the genome in the exon pilot
dataset by different marker selection strategies including
the set of SNPs discovered in the low coverage pilot pro-
ject (about 14 millions of SNPs) which is referred to as
the Pilot 14 M panel, and a commercially available chip,
Illumina 1 M. Coverage was evaluated by pair-wise corre-
lation (r2) between a member of the tag set and its cap-
tured SNP [10,12,13]. Figure 4 showed coverage of
genomic regions in the exon pilot dataset by six sets of
SNP panels. We observed a considerable difference
between the coverage for the common and low frequency
variation. As expected, 99.0%, 95.1%, 99.7%, 99.1%,
98.9%, 98.5%, and 98.3% of the common variation, in
YRI, LWK, CEU, TSI, CHB, CHD and JPT, respectively,
were covered by the Pilot 14 M panel even if the coverage
was measure by r2 ≥ 0.8. The SNPs with high frequency
which were in the strong LD with the SNPs in the Pilot
14 M panel could be captured indirectly. Although cover-
age of the common variation by the Pilot 14 M panel is
very high, its coverage of low frequency variants was
poor. We observed that at r2 ≥ 0.8, coverage of the low
frequency variation in YRI, LWK, CEU, TSI, CHB, CHD
and JPT were 43.1%, 35.7%, 49.8%, 43.0%, 28.2%, 24.9%
and 32.0%, respectively. This demonstrated that as the
number of newly sampled individuals increases, a large
proportion of the low frequency variants in the new data-
set cannot be captured by any fixed set of selected tag
SNPs.
In general, Illumuna 1 M could still capture high pro-

portion of the common variation. The coverage of com-
mon variation in YRI, LWK, CEU, TSI, CHB, CHD and
JPT by Illumina 1 M was 55.6%, 55.5%, 79.1%, 75.1%,
75.5%, 75.0%, and 74.6%, respectively. However, in con-
trast to the coverage of the common variation, the major-
ity of the low frequency variation could not be captured
by Illumina 1 M. Less than 10% of the low frequency var-
iation in YRI, LWK and CHD samples were covered by
Illumina 1 M.
To evaluate the impact of imputation on coverage, we

plotted Additional file 6, Figure S4 showing the impact of
imputation on the coverage of variation by the Pilot
14 M panel and Illumina 1 M panel, respectively, within
the regions of 382 genes (exon pilot) for the CEU
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samples. We used low frequency pilot data as a reference
panel to impute SNPs in the regions of 382 genes (exon
pilot) for the CEU samples. We observed few changes in
coverage of the common variation by the Pilot 14 M
panel in the CEU samples after imputation. However, the
coverage of common variation by the Illumina 1 M panel
increased from 80% to 87% after imputation. The impact
of imputation on the coverage of low frequency variation
is significant. We observed that the coverage of low fre-
quency variation by the Pilot 14 M and Illumina 1 M
panels was, respectively, increased from 50% and 17% to
67% to 21% after imputation.

Power Evaluation
The previous power evaluation of association studies has
mainly focused on common variation. With the comple-
tion of the whole genome sequencing, now it is time to
evaluate the power for testing the association of both
common and low frequency alleles with the disease
under different study designs and disease scenarios. The
power of association studies depends on the allele fre-
quencies, penetrance, underlying disease model and the
patterns of LD among SNPs. Since the pattern of LD is
well modeled by population-genetic simulations [14], we
directly use the exon pilot data in the 1000 Genomes
Project to carry out power evaluation by simulation (For
details, see Methods).
Power was calculated at the significance level a = 0.05.

We evaluate four whole-genome products: the set of all
SNPs in the exon pilot dataset, the set of all SNPs except
for the putative causal SNP, low coverage Pilot 14 M, and
Illumina 1 M. The power was averaged for each allele fre-
quency across 382 genes in the exon pilot dataset. The
estimates of power for testing association of the low fre-
quency allele under the dominant, additive, multiplicative
and recessive disease models in the CEU was shown in
Figure 5 (n = 5000) and Additional file 7, Figure S5 (n =

3000), respectively, where the first number in parenthesis
was the heterozygous relative risk and the second num-
ber was the homozygous relative risk. We observed sev-
eral remarkable features. First, using data from all SNPs
in the exon pilot dataset achieved the greatest power, and
followed by the set of all SNPs except for the putative
causal SNP, Pilot 14 M and Illumina 1 M. The power
curves using the set of all SNPs except for the putative
causal SNP and using Pilot 14 M were similar. Second,
power under the dominant disease models was the lar-
gest and power under the receive models was the smal-
lest. Third, the risk allele frequency and genotype relative
risks markedly affected the power. We observed that
when the MAF was 0.01, even if the sample size was
increased to 5,000, both heterozygous and homozygous
relative risks were increased to 1.8, the power using data
from all SNPs still could not be higher than 0.5 except
for dominant disease models. Fourth, differences in
power between using the data from all SNPs and low
coverage Pilot 14 M was remarkable. When minor allele
frequency was 0.01, the power using the Pilot 14 M for
association studies was extremely low. Indeed, the power
of the Pilot 14 M for the dominant (both heterozygous
and homozygous relative risks were 1.8), additive (hetero-
zygous relative risk 1.4 and homozygous relative risk 1.8),
multiplicative (heterozygous relative risk 1.34 and homo-
zygous relative risk 1.8) and recessive models (heterozy-
gous relative risk 1 and homozygous relative risk 3.2)
with sample size 5000 was 0.054, 0.016, 0.015 and 0.022,
respectively. The power of Pilot 14 M under the above
four disease models for the MAF of 0.02 was 0.45, 0.058,
0.031 and 0.018, respectively. The only difference
between these two datasets was that the samples in the
exon pilot dataset were 90 individuals and samples in the
low coverage Pilot 14 M was 60 individuals. Here we
should emphasize that the allele frequency spectrum for
the 60 sampled individuals will be largely different from

Figure 4 Coverage of variation. Coverage of seven populations from the exon pilot between Illumina 1 M and Pilot 14 M when r2 ≥ 0.8. We
imputed two additional CEU populations under the low coverage pilot and HapMap III reference.
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the allele frequency spectrum for the 90 sampled indivi-
duals (60 previous sampled individuals plus additional 30
sampled individuals). In this case, we can expect that the
low coverage Pilot 14 M will definitely have no power to
detect association of low frequency alleles. Fifth, the
power of commercial arrays for testing association of low
frequency alleles in all cases was extremely low.
The patterns of power for the samples from the CHD

for testing association of low frequency variation were
similar to that for the samples from the CEU (Fig. S6).
The power for testing association of both common and
low frequency alleles in the CEU and CHD was plotted
in Additional file 8, Figure S6 and Additional file 9,
Figure S7. As expected, when the MAF increases, the
power will increase and using whole dataset or potential
low coverage Pilot 14 M array for testing the association
of common alleles can reach a high power for some dis-
ease models. When sample sizes were 5,000, the power of
using the whole exon pilots dataset and potential Pilot 14
M array in the CEU samples under the dominant, addi-
tive, multiplicative and recessive models with MAF = 5%
was 1, 0.997, 0.990, 0.162, and 1, 0.827, 0.612, 0.175,
respectively. The power of Pilot 14 M under the above
four disease models in the CHD was 1, 0.998, 0.987,
0.174, and 0.816, 0.643, 0.460 and 0.0815, respectively.

Except for the recessive models, the power of using the
potential low coverage Pilot 14 M array for testing asso-
ciation of alleles with MAF ≥ 7% in both CEU and CHD
samples were higher than 0.80. This demonstrates that
the potential low coverage Pilot 14 M array can be used
for whole genome association studies of common
variation.
Imputation can increase the power of the association

test. To save space, we only studied the impact of impu-
tation on the power for the CEU samples. However, the
pattern of improvement of the power by imputation for
other populations was similar. Imputation was performed
as before. The power for testing the association of low
frequency and common SNPs in the CEU samples after
imputation was shown in Figures 6 (n = 5000), Addi-
tional file 10, Figure S8 (n = 3000) and Additional file 11,
Figure S9 (n = 1000), respectively. From these Figures we
see that if the whole exon pilot dataset was used we
observed no improvements of imputation on the power.
However, if the low coverage Pilot 14 M array and Illui-
mina 1 M array were used for association studies, these
Figures showed that imputation can increase the power
of the statistics for testing association of both common
and low frequency variations. The effect of imputation
on the power depended on the relative risks, disease

Figure 5 Power estimations for testing association of low frequency alleles from the CEU population with simulated sample size n =
5000. The X axis represents allele frequency and the Y axis represents power. Solid line represents the power curve for the whole set of SNPs
from the CEU population in the exon pilot, the dashed line represent the power curve for the set of all SNPs from the CEU population in the
exon pilot except for the putative causal SNP. The dotted line represent the power curve for the low coverage Pilot 14 M dataset, and the solid
line with the star represents the power curve for the Illumina 1 M. Values in parentheses are the heterozygous and homozygous relative risk,
respectively. Only putative causal SNPs in the low frequency region are presented.
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susceptibility allele frequencies and disease models. We
observed that imputation had less impact on the power
of the test under the recessive models than that under
the other disease models.

Discussion
For the past several years, there have been debates on
what variants, common variants or rare variants cause
complex diseases. However, it is gaining common con-
sensus that wide the allelic spectrum of genetic variants
would underlie the development of diseases [15]. Emer-
ging ‘next-generation’ sequencing (NGS) technologies
enable sequencing individual genomes and have the
potential to discover the entire spectrum of sequence
variations in a sample of well-phenotyped individuals.
Advances in sequencing technologies are revolutionizing
genetic studies of complex diseases and provide unprece-
dented new opportunities to test for association of the
entire spectrum of genetic variants with the disease. The
challenge now is what paradigm for the next generation
GWAS which are based on NGS should be developed. At
least two distinct study designs: (1) chips for genotyping
variants and (2) sequencing genome for investigating var-
iants have been proposed for next generation GWAS.
The current chip-based GWAS paradigm which

catalogue common variants with 5% < MAF and geno-
type them using chips is mainly designed for testing the
association of common SNPs with disease. Remarkable
features of common genetic variants are that LD between
common variants is strong and the full extent of com-
mon variants can be discovered with a limited number of
samples. The chip approach is to extend the current
GWAS for common variants to the low frequency var-
iants (0.5% < MAF ≤ 5%) and rare variants (MAF ≤
0.5%). However, the LD between rare variants and
between rare and common variants is often weak. The
number of novel rare variants increases when the number
of sampled individuals increases. Chip-based GWAS for
testing the association of rare variants with the disease
has serious limitations. Recently, the paradigm of associa-
tion studies is being shifted to sequence-based associa-
tion studies. Sequencing approach is to sequence the
whole exome or entire genome to capture low frequency
and rare variants instead of genotyping a catalogue of
variants [4]. The 1000 Genomes Project uses the next-
generation sequencing technologies to generate genome-
wide resources with a comprehensive survey of the entire
allelic spectrum of genetic variation. In this report we
used this rich resource to evaluate different study designs
for the next generation GWAS and addressed several

Figure 6 Power estimations for testing association of low frequency allele from the CEU population with simulated sample size n =
5000 after imputation. The X axis represents allele frequency and the Y axis represents power. The solid line represents the power curve for
the whole set of SNPs from 382 genes of the CEU population in the exon pilot, the dashed line represent the power curve for the set of all
SNPs from 382 genes of CEU population in the exon pilot except for the putative causal SNP. The dotted lines represent the power curve for
the low coverage Pilot 14 M dataset, and the solid line with the star represents the power curve for the Illumina 1 M. Values in parentheses are
the heterozygous and homozygous relative risk, respectively. Only putative causal SNPs in the low frequency region are presented.
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issues in the whole-genome and whole-exome sequen-
cing-based association studies.
First, we observed that when the number of typed indi-

viduals increases, the proportion of low frequency SNPs
dramatically increases. This implies that the 1000 Gen-
ome Project is not able to identify all low frequency and
rare genetic variants and catalogue them. Sampling dif-
ferent sets of individuals may have different set of low
frequency and rare variants. The newly presented low fre-
quency and rare variants in the samples may not be cov-
ered by any commercial arrays with the set of fixed SNPs.
This implies that through GWAS and imputation of the
1000 Genome Project variants we may still miss causal
variants in association studies. Second, we investigated
the pattern of LD. We found that the LD level between
the low frequency and low frequency alleles, particularly
low frequency and common alleles is low, which implies
that using variants in the chips has diminished power to
detect causal SNPs with low allele frequency which are
not printed in the Chips. The efficiency of tag SNPs that
represent all variants in the genomic regions of interest
depends on the level of LD between SNPs. With weak
LD among SNPs we need to select large proportions of
SNPs as tag SNPs to capture most of the genomic varia-
tion. In this case, the effect of using tag SNPs to reduce
genotyping cost is poor. Therefore, the tag SNP approach
which has been successfully used in the current GWAS
for testing association of common variants may be highly
inefficient for testing association of low frequency and
rare variants with the disease. Third, we found that
although coverage of common variation in the exon pilot
dataset by the variants in the low coverage pilot data is
very high, its coverage of low frequency variants by the
variants in the low coverage pilot dataset was very poor.
This showed that a large proportion of the novel variants
with low frequency generated by sequencing new indivi-
dual cannot be covered by the next generation genotyp-
ing arrays with a set of fixed variants discovered by the
1000 Genomes Project. Fourth, next generation genotyp-
ing arrays such as the potential Pilot 14 M array which
capture a considerable portion of genomic common var-
iation have high power to detect association of the com-
mon variants with the disease, but its power to identify
low frequency or rare variants which are associated with
the disease is low. Fifth, to test association of low fre-
quency or rare variants still raises great challenges. We
assessed the power of various strategies for genome-wide
exon association studies. Although using all the data gen-
erated by the exon pilot project has reasonable power to
detect association of low frequency variants under the
dominant, additive and multiplicative models with typical
genotype relative risks, the power of the potential Pilot
14 M array to detect association of low frequency var-
iants is low. When sample sizes increase, more and more

novel rare variants will not be included and captured by
the SNPs in the Pilot 14 M array. It is anticipated that
many causative low frequency and rare variants will be
missing in GWAS by the Pilot 14 M. This raises the con-
cern of feasibility of using next generation genotyping
arrays for association studies of low frequency and rare
variants. Imputation can improve coverage, reduce the
number of tag SNPs and increase the power. However,
the power increased by imputation is limited. Imputation
is highly unlikely to change the above statements. Our
results clearly demonstrate that only sequencing the
whole genome can identify all the causative variants
including both common and rare variants. NGS technol-
ogies represent a paradigm shift in association studies of
common diseases.
The 1000 Genomes Project dramatically expands the

genome-wide sources of all types of genetic variation. The
data generated by the 1000 Genomes Project provide rich
information for the evaluation of various strategies and
designs for association studies of the entire allelic spec-
trum of genetic variation. The results presented in this
report are preliminary. Systematic, definite and more
powerful evaluation of association study strategies and
designs awaits more expanded datasets including the com-
plete 1000 Genomes Project dataset and the results of
further studies. However, next generation sequencing
technologies open a new exciting avenue to decipher the
path from genomic information to phenotypes.

Conclusions
NGS technologies with faster, cheaper and more accurate
sequencing represent a paradigm shift in measuring geno-
mic variants. It will generate unprecedented massive data
and have the potential to discover the entire spectrum of
genetic variation. NGS offers a rich resource for dissecting
genetic structure of common diseases, but also presents
formidable challenges to data analysis. Systematic, definite
and more powerful evaluation of association study strate-
gies and designs awaits more expanded datasets including
the complete 1000 Genomes Project dataset and the
results of further studies.

Methods
Characterization of LD pattern
LD was measured by the squared correlation coefficient
r2 between pairs of SNPs. For each SNP within a chro-
mosome which was taken as a target SNP in turn, we
calculated the squared correlation coefficient r2 between
the target SNP and all its nearby SNPs within an inter-
marker distance of 50 kb, 100 kb and 200 kb. The total
number of pairs of SNPs across autosomal chromo-
somes was the summation of the number of all possible
pairs of SNPs within each chromosome. The LD pattern
was described as the proportion of pairs of SNPs with
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the r2 greater or less than the specified threshold. We
used the PHASE program [16] with 30 iterations and 30
burn-in to estimate the individual haplotype.

Selection of tag SNPs
First select a single SNP exceeding the r2 threshold with
the maximum number of other SNPs within a specified
inter-marker distance [17]. The selected SNP which is
referred to as a tag SNP and all other associated SNPs
(tagged SNPs) are grouped as a bin of associated SNPs.
Repeat the process for the remaining SNPs until all
SNPs are tagged.

Imputation
The MACH program [18] with the “mle” and “greedy”
options selected was used to impute untyped variants of
85,458 introns as well as 2,254 exons in the regions of
382 genes (Additional file 1, Table S1) covered by the
exon pilot data in 55 CEU samples. Iterations were per-
formed 100 times. The squared correlation between the
true genotype and the imputed genotype, averaged
across all imputed SNPs was selected as the criterion of
imputation merit. The low coverage pilot data in 55
CEU samples (P1.MACH) which were shared by both
the low coverage datasets and HapMap 3 dataset, Hap-
Map 3 unphased (H3.MACH) and phased (H3.PHASE)
data in 55 CEU samples were used as reference panels.

Coverage
The set of SNPs discovered in the low coverage pilot pro-
ject (about 14 millions of SNPs) which is referred to as
Pilot 14 M, and the set of SNPs in the commercially
available Illumina 1 M chip were used as a set of tag
SNPs. Coverage of the exon regions in the exon pilot
dataset (total 1.43 Mb) was evaluated by the pair-wise
correlation between a member of the tag set and its cap-
tured SNP and defined as the proportion of SNPs within
the exon regions in the exon pilot dataset, captured by
the set of tag SNPs at the specified threshold on the
value of r2. We estimated coverage of the exon regions
for seven populations by unimputed data and coverage
for the CEU samples by imputed data.

Power calculation
We used the simulation methods [19] for power calcula-
tion. Each SNP site in the exon regions in the exon pilot
dataset was taken as a causal SNP in turn. For every
causal SNP we simulated two case-control panels: (1)
3,000 cases and 3,000 controls and (2) 5,000 cases and
5,000 controls by resampling chromosomes with exon
pilot data from unrelated individuals in the CEU (n =
180) or in the CHD (n = 214). The Chi-square statistic
with two degrees of freedom was used to test associa-
tion of a single putative causal variant. We simulated

cases under four disease models: dominant, additive,
multiplicative and recessive models with prevalence of
0.01. To select appropriate relative risk for power simu-
lation we studied 1,256 common disease susceptibility
loci from website (http://www.genome.gov/gwastudies).
The average value and median relative risk for common
diseases were 1.5 and 1.183, and their square was 2.25
and 1.4, respectively. Therefore, we selected 1.4 and 1.8
as the relative risks for the homozygous genotype for
the common variants under all four disease models. To
increase the power, we selected 1.8 as the relative risks
for the homozygous genotype for the low frequency var-
iants under the dominant, additive and multiplicative
disease models, and 3.2 for the recessive disease model.
The power was calculated at the significance level of
0.05 and plotted as a function of the frequency of dis-
ease susceptibility allele.

Additional material

Additional file 1: Figure S1 - Proportion of low frequency and
common variants.

Additional file 2: Table S1 - The number of variants in the low
coverage and exon pilot datasets in 1000 Genomes Project.

Additional file 3: Figure S2 - Pattern of LD between common and
common variants based on the HapMap II (r22) dataset. The
proportions of pair-wise SNPs with r2 between common and common
SNPs in five intervals of r2 for the HapMap II (r22) dataset, and then we
plotted graphs under three inter-marker distances, A) 50 kb, B) 100 kb
and C) 200 kb where r2 between the target SNP and its all nearby SNPs
within the distance was calculated.

Additional file 4: Figure S3 - Allele frequency distribution for low
coverage pilot autosomal SNPs after PHASE. The MAF distribution
from 0 to 0.5 is shown. The red dashed line shows the MAF distribution
expected for the standard neutral population model with a constant
population size and random mating, the blue solid line shows the MAF
distribution for all the observed variants, and the green dotted line
shows the MAF distribution for the observed non-synonymous alleles.

Additional file 5: Table S2 - A total of 382 genes in the exon pilot
dataset.

Additional file 6: Figure S4 - Impact of imputation on the coverage.
A) Impact of imputation on the coverage of all variation by the Pilot 14
M panel within the regions of 382 genes (exon pilot) for the CEU
samples. B) Impact of imputation on the coverage of common variation
by the Pilot 14 M panel within the regions of 382 genes (exon pilot) for
the CEU samples. C) Impact of imputation on the coverage of low
frequency variation by Pilot the 14 M panel within the regions of 382
genes (exon pilot) for the CEU samples. D) Impact of imputation on the
coverage of all variation by the Illumina 1 M panel within the regions of
382 genes (exon pilot) for the CEU samples. E) Impact of imputation on
the coverage of common variation by the Illumina 1 M panel within the
regions of 382 genes (exon pilot) for the CEU samples. F) Impact of
imputation on the coverage of low frequency variation by the Illumina 1
M panel within the regions of 382 genes (exon pilot) for the CEU
samples.

Additional file 7: Figure S5 - Power estimations for testing
association of the low frequency allele from the CEU population
with simulated sample size n = 3000. The X axis represents allele
frequency and the Y axis represents power. The solid line represents the
power curve for the whole set of SNPs from the CEU population in the
exon pilot, the dashed line represent the power curve for the set of all
SNPs from the CEU population in the exon pilot except for the putative
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causal SNP, the dotted line represents the power curve for the low
coverage Pilot 14 M dataset, and the solid line with the star represents
the power curve for the Illumina 1 M. Values in parentheses are the
heterozygous and homozygous relative risk, respectively. All putative
causal SNPs in the low frequency region are presented.

Additional file 8: Figure S6 - Power estimations for testing
association of the whole frequency allele from the CEU population.
The X axis represents allele frequency and the Y axis represents power.
The solid line represents the power curve for the whole set of SNPs from
the CEU population in the exon pilot, the dashed line represents the
power curve for the set of all SNPs from the CEU population in the exon
pilot except for the putative causal SNP, the dotted line represents the
power curve for the low coverage Pilot 14 M dataset, and the solid line
with the star represents the power curve for the Illumina 1 M. Values in
parentheses are the heterozygous and homozygous relative risk,
respectively. All putative causal SNPs in the whole frequency region are
presented. A) Estimation under the recessive model. B) Estimation under
the dominant model. C) Estimation under the additive model. D)
Estimation under the multiplicative model.

Additional file 9: Figure S7 - Power estimations for testing
association of the whole frequency allele from the CHD population.
The X axis represents allele frequency and the Y axis represents power.
The solid line represents the power curve for the whole set of SNPs from
the CHD population in the exon pilot, the dashed line represent the
power curve for the set of all SNPs from the CHD population in the exon
pilot except for the putative causal SNP, the dotted line represents the
power curve for the low coverage Pilot 14 M dataset, and the solid line
with the star represents the power curve for the Illumina 1 M. Values in
parentheses are the heterozygous and homozygous relative risk,
respectively. All putative causal SNPs in whole frequency region are
presented. A) Estimation under the recessive model. B) Estimation under
the dominant model. C) Estimation under the additive model. D)
Estimation under the multiplicative model.

Additional file 10: Figure S8 - Power estimations for testing
association of the low frequency allele from the CEU population
with simulated sample size n = 3000 after imputation. The X axis
represents allele frequency and the Y axis represents power. The solid
line represents the power curve for the whole set of SNPs from 382
genes of the CEU population in the exon pilot, the dashed line
represents the power curve for the set of all SNPs from 382 genes of the
CEU population in the exon pilot except for the putative causal SNP, the
dotted line represents the power curve for the low coverage Pilot 14 M
dataset, and the solid line with the star represents the power curve for
the Illumina 1 M. Values in parentheses are the heterozygous and
homozygous relative risk, respectively. All putative causal SNPs in the low
frequency region are presented.

Additional file 11: Figure S9 - Power estimations for testing
association of whole frequency allele from CEU population after
imputation. The X axis represents allele frequency and the Y axis
represents power. The solid line represents the power curve for the
whole set of SNPs from 382 genes of the CEU population in the exon
pilot, the dashed line represents the power curve for the set of all SNPs
from 382 genes of the CEU population in the exon pilot except for the
putative causal SNP, the dotted line represents the power curve for the
low coverage Pilot 14 M dataset, and the solid line with the star
represents the power curve for the Illumina 1 M. Values in parentheses
are the heterozygous and homozygous relative risk, respectively. All
putative causal SNPs in whole frequency region are presented. A)
Estimation under the recessive model. B) Estimation under the dominant
model. C) Estimation under the additive model. D) Estimation under the
multiplicative model.
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