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Abstract

Background: There are large differences between the sexes at the genetic level; these differences include
heterogametic sex chromosomes and/or differences in expression of genes between the sexes. In rainbow trout
(Oncorhynchus mykiss) gRT-PCR studies have found significant differences in expression of several candidate sex
determining genes. However, these genes represent a very small fraction of the genome and research in other
species suggests there are large portions of the transcriptome that are differentially expressed between the sexes.
These differences are especially noticeable once gonad differentiation and maturation has occurred, but less is
known at earlier stages of development. Here we use data from a microarray and gRT-PCR to identify genes
differentially expressed between the sexes at three time points in pre-hatch embryos, prior to the known timing of
sexual differentiation in this species.

Results: The microarray study revealed 883 differentially expressed features between the sexes with roughly equal
numbers of male and female upregulated features across time points. Most of the differentially expressed genes on
the microarray were not related to sex function, suggesting large scale differences in gene expression between the
sexes are present early in development. Candidate gene analysis revealed sox9, DMRTI, Nr5al and wtl were
upregulated in males at some time points and foxI2, ovoll, fst and cyp19ala were upregulated in females at some

time points.

gonadogenesis.

Conclusion: This is the first study to identify sexual dimorphism in expression of the genome during
embryogenesis in any fish and demonstrates that transcriptional differences are present before the completion of
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Background

Genetic differences between the sexes can broadly be
separated into two groups: differences in the transcrip-
tion level, where the abundance of a particular gene
transcript(s) differs between the sexes (a phenomenon
known as sex-biased expression), and heterogametic sex
chromosomes that are present in one sex and absent in
the other. These two mechanisms can occur together,
and often species that lack differentiated sex chromo-
somes exhibit sex specific gene expression [1,2]. Many
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studies have shown that sex-biased differences in gene
expression are present after sex determination and dif-
ferentiation has taken place; sex bias in gene expression
has been documented in multiple species including fruit
flies (Drosophila sp) [3-5], the worm (Caenorhabditis
elegans) [6], the mouse (Mus mus) [7], chicken (Gallus
gallus) [8,9], the flour beetle (Tribolium castaneum) [10]
and zebra fish (Danio rerio) [11,2] (See [12] for review).
Most (but by no means all) studies have found male
bias in gene expression, with more genes upregulated in
mature males than mature females [e.g. [5,7,2]]. This is
hypothesized to be due to strong sexual selection in
males in the form of female choice, and/or sperm com-
petition [12,13].
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Patterns of sex-biased gene expression are extremely
variable both within and between species, and there are
marked differences in the proportion, number, and iden-
tity of genes that are differentially expressed depending
on the tissue type and developmental stage examined.
For example 4% of the adult whole-body transcriptome
exhibited sex-biased expression in mice [14] to as high
as 88% in Drosophila [15]. Sex-biased expression also
varies within different tissues of the same individual. For
example, Yang et al. [7] studied sex-biased expression in
Mus and found that brain tissue exhibits fewer sex-
biased genes (13%) than muscle (55%), adipose (68%)
and liver (72%) tissue. Other studies (on model organ-
isms like Drosophila and zebra fish) report similar dif-
ferences with the greatest percentage of sex-biased
expression frequently being in the gonad transcriptome
of sexually mature adults [e.g. [16,7,2]].

Although sex-bias in expression seems to be a com-
mon phenomenon in many different species, most stu-
dies have used sexually mature specimens or individuals
(i.e. juveniles) that have already undergone differentia-
tion of the gonads (either whole individuals or tissue
specific transcriptomes). However, substantially less
information is available on the level of sex-biased
expression in un-differentiated embryos. Studies in the
pre-implantation stage of embryogenesis in mouse
found that roughly 3% of the transcriptome is differen-
tially expressed between the sexes [17,18]. In chicken,
levels of sex-biased expression in embryos after differen-
tiation have been compared with adults, and unsurpris-
ingly found far less sex-biased expression in embryos
[9]. This suggests that the amount of sex-biased expres-
sion in the transcriptome changes throughout develop-
ment through the juvenile and adult stages, and that
sex-biased expression patterns may be present very early
in development. The extent to which biases in gene
expression occur prior to gonad differentiation, however,
have not been fully explored.

Genetic differences between the sexes also occur due
to the presence of heteromorphic sex chromosomes.
Genetic sex determination (GSD) is most often thought
of as being initiated by a switch in one sex that begins
the gonad differentiation cascade [see [19] for review].
However, despite the widespread importance of genetic
sex determination across taxonomic groups, surprisingly
little is known about the genes involved in the cascade
in fishes [see [20-23] for review]. Unlike mammals (for
which the gene SRY is the primary switch that initiates
the cascade [24]), fish species with GSD appear to use a
range of different loci, with DMY in medaka the only
known example of a primary switch [25,26]. Karyotype
and inheritance studies have shown there are a number
of fish species that have GSD, but the loci responsible
have yet to be determined. Sex can also be determined
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by a set of genes presumably on both the sex chromo-
somes and the autosomes that act in concert to deter-
mine sex, e.g. many species of livebearers including the
platyfish Xiphophorus maculatus [[27]; reviewed in [21]].
Rainbow trout (Oncorhynchus mykiss) are known to
have GSD, but the mechanisms triggering the differen-
tiation of testes and ovaries during development have
not yet been revealed. However, a number of studies
have identified candidate sex determination genes that
are differentially expressed as early as the onset of exo-
genous feeding, and presumably during the differentia-
tion process [28,29], but no studies have yet identified
the sex determination gene on the Y chromosome.
Moreover, these studies evaluated candidate genes
known to be important for sex determination in other
species. A whole-transcriptome approach may be better
suited for determining as-yet unidentified sex determi-
nation genes, while also revealing the patterns of sex
bias in gene expression at the earliest time points in
development.

Our aims here were twofold: 1) to evaluate differences
in gene expression between the sexes in pre-hatch
embryos of rainbow trout on a genome-wide level using
a microarray analysis to: a) determine how much of the
transcriptome appears to be differentially expressed
between the sexes early on in development (i.e. identify
sex bias in gene expression on a global level), and b)
identify genes which are known to be involved in the
sex differentiation cascade in model organisms, and 2)
to characterize the expression profiles of a set of candi-
date sex genes that are known to be differentially
expressed at the onset of exogenous feeding (swim up)
in an attempt to ascertain the time point earlier in
development when these genes are being turned on.
This study focuses on three development time points:
15 days post-fertilization (dpf; eyed stage; 165 degree
days), 19 dpf (caudal flexing stage; 209 degree days) and
28 dpf (beginning of hatch stage; 308 degree days). This
combination of approaches identifies sex bias in gene
expression at some of the earliest time points in devel-
opment on a genome-wide level, even before the onset
of sex determination and phenotypic sex differentiation,
while also evaluating the timing of genes known for
their role in the sex determination cascade in other
species.

Results

Samples used in this experiment were from a fourth
generation backcross between two clonal lines of rain-
bow trout (Oncorhynchus mykiss), as described in Xu et
al. [30]. One line (Clearwater, CW, YY male) possessed
alleles for fast development, and the other line (Oregon
State University, OSU, XX female) possessed alleles for
slower development at a major QTL for embryonic
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development rate. Here we use samples from this cross
to investigate sex differences in the expression in the
early stages of development of O. mykiss.

Microarray data results of differential expression between
the sexes

Microarray data from the experiments have been sub-
mitted to the Gene Expression Omnibus database
http://www.ncbinlm.nih.gov/geo/ according to MIAME
guidelines. The series accession number is GSE13570.
Controlling for the false discovery rate in multiple tests,
883 features were identified as differentially expressed
between female and male embryos in at least one com-
parison. More features were differentially expressed
between the sexes in samples from OSU/CW than
OSU/OSU; these included 208 features from OSU/CW
in 15 dpf embryos compared to 163 from OSU/OSU,
507 features in 19 dpf embryos from OSU/CW com-
pared to 202 features from OSU/OSU, and 138 features
in 28 dpf embryos from OSU/CW compared to 98 from
OSU/OSU.

To focus on features with large expression differences,
there were 276 (32% of differentially expressed genes)
features with a minimum of a 3-fold change expression
difference between the sexes in at least one comparison.
The top 15 features with the greatest differences in
expression at 15, 19 and 28 dpf are shown in Tables 1,
2 and 3 (see Additional File 1 for complete list of
genes). Of the features differentially expressed at 15 dpf,
48 features were higher expressed in males, and 51 were
greater expressed in females. The most common GO
terms associated with these features were cell cycle reg-
ulation (36.8%), muscle contraction and development
(13.2%) and transport (9.2). In the 19 dpf samples 85
features were higher expressed in males, and 45 were
higher expressed in females. The most common GO
terms were cell cycle regulation (30.1%), protein meta-
bolism (11.7%) and lipid metabolism (10.7%). In the 28
dpf samples 26 features were upregulated in males and
21 features were upregulated in females. The most com-
mon GO terms were cell cycle regulation (35.5%), pro-
tein synthesis (12.9%) and transport (12.9%).

Only a limited number of differentially expressed fea-
tures between the sexes were shared between different
time points; 17 out of 608 (3%) features in OSU/CW
samples and 8 out of 325 (2.5%) in OSU samples (Fig-
ures la and 1b). (Note that there is overlap between fea-
tures that were upregulated at different time points and
between the two genotypes. In other words the 883 fea-
tures is a non-redundant total). A small number of sex-
biased features were shared between genotypes at the
same time point with 11 out of 263 (4%) at 15dpf (Fig-
ure 1c), 30 out of 504 (6%) at 19 dpf (Figure 1d) and 10
out of 138 (7.2%) at 28 dpf (Figure le). These results
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indicate that very few differentially expressed genes are
shared between genotypes, or between developmental
time points, suggesting that expression patterns are
rapidly changing during early stages of development,
and that the individuals with the different QTL geno-
types are developing at different rates [30]. Cluster ana-
lysis grouped the 883 features into 10 discrete clusters
(Figure 2). Most of these clusters had only a few fea-
tures, but clusters 2 and 6 had 164 and 133 features
respectively. Cluster 2 grouped those features that were
upregulated in OSU/CW females at 28 dpf, and features
within cluster 6 showing upregulation in OSU/CW
males at 28 dpf. Clustering analysis suggests that sam-
ples from the same developmental time point show
more similar expression profiles than samples from dif-
ferent time points from the same genotype. For exam-
ple, OSU/CW samples at 28 dpf are more similar to
samples from to OSU/OSU at 28 dpf than OSU/CW
samples from either 15 or 19 dpf. This trend is similar
in samples from all three time points.

As mentioned, previous studies have documented a bias
in the number of differentially expressed featured between
the sexes [[12] for review]. We compared fold change
values of differentially expressed features between the
sexes to determine if there was bias in the directionality of
differentially regulated genes between the sexes (Figure 3a
and 3b). For each gene the fold change represents the
magnitude and direction of differential expression between
the sexes. There appears to be little difference in the num-
ber of genes differentially expressed between the sexes at
15 dpf in both genotypes, with marginally more female
expressed genes than male expressed genes in OSU/CW
(26 and 8 features in females, compared to 16 in males)
(Figure 3a and 3b). There is a similar difference in the
opposite direction in samples from OSU/OSU where 19
features have a three-fold upregulation in females com-
pared to 28 in males. Samples from later developmental
time points seem to show higher differences in fold
expression between the sexes. At 19 dpf there are more
features from both OSU/CW and OSU/OSU that exhibit
male bias expression with 49 features with a three-fold dif-
ference from OSU/CW (compared to 28 from females)
and 21 features with a three-fold difference from male
OSU/OSU samples (compared to 16 from females). Very
similar patterns were seen in samples from 28 dpf with
males from both OSU/CW and OSU/OSU showing a
greater number of three-fold difference genes than females
(Figure 3a and 3b). The majority of the 883 sex-biased
genes did not show big differences in expression between
the sexes, and showed ratios less than 2:1.

GO enrichment analyses
GO enrichment analyses determined that only 3 GO
terms identified from the 883 differentially expressed
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Table 1 Top 15 features with greatest difference in expression between the males and females rainbow trout embryos
(15 dpf), genes above the line are upregulated in females, below the line upregulated in males

ID Blast hit F/M P-value
Female-upregulated genes

CA044503 Small inducible cytokine B14 precursor 13.59 1.96E-03
CA063549 Apolipoprotein F precursor 10.15 3.23E-04
CB510226 Parvalbumin-2 7.51 9.16E-03
(CB493442 Sorcin 640 3.29E-03
(CB496453 Gap junction beta-4 protein 6.27 5.94E-03
CA039346 Ornithine aminotransferase, mitochondrial precursor 6.05 2.21E-05
CB509706 Parvalbumin-2 597 1.35E-02
(CB504468 Elastase-1 544 6.30E-04
CA060056 Ornithine decarboxylase antizyme 2 4.78 441E-03
CB510525 Guanine nucleotide-binding protein G(t) subunit alpha 436 1.13E-02
CA038163 Complement C3-1 4.34 243E-03
CB510736 DNA-binding protein inhibitor ID-2 4.20 4.08E-03
CK991090 Glycerol-3-phosphate dehydrogenase 1-like protein 402 7.79E-03
(CB496738 mRNA-binding protein expressed during iron starvation 3.80 548E-03
Male upregulated genes

CB517495 Nuclear pore complex protein Nup88 0.08 1.56E-03
CB510281 Parvalbumin beta 1 0.10 5.76E-03
CA038193 Fatty acid-binding protein, liver 0.14 9.81E-05
(CB498670 Proteasome maturation protein 0.16 6.17E-04
CA051876 60S ribosomal protein L19 0.16 3.03E-04
CK990989 Elongation factor 1-alpha, oocyte form 0.17 1.38E-02
(CB498109 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1-related 0.19 9.28E-03
CB515883 Sodium/potassium-transporting ATPase subunit beta-233 0.20 241803
CB503485 BTB/POZ domain-containing protein KCTD5 0.21 3.65E-04
CA051876 60S ribosomal protein L19 021 1.06E-02
CA045072 Staphylococcal nuclease domain-containing protein 1 0.22 3.10E-02
CB511669 Protein BCCIP homolog 0.22 2.02E-03
CA769320 Fatty acid-binding protein, intestinal 023 5.93E-03
CA047068 Sodium/potassium-transporting ATPase subunit beta-3 0.23 8.94E-03
CK990989 Elongation factor 1-alpha, oocyte form 023 4.85E-03

features between the sexes were upregulated compared
to the whole 16K GRASP chip. These GO functions
were cellular macromolecule metabolic process, (p =
0.003), macromolecule metabolic process (p = 0.01) and
cellular protein metabolic process (p = 0.02). When
comparing the features identified from one sex to the
total set of differentially expressed genes, 62 GO terms
were statistically different between the sexes (p = <
0.05). Of these 43 were differentially expressed in OSU/
CW samples (Table 4) and 19 were differentially
expressed in OSU/OSU samples (Table 5). For the
OSU/CW samples, 24 GO terms were upregulated in
males compared to 16 that were upregulated in females.
For the OSU/OSU samples, 17 GO terms were upregu-
lated in males compared to 2 GO terms in females.
These differences suggest that in addition to more fea-
tures being upregulated in males, more GO terms (and
therefore more functional processes) are also

upregulated in males compared to females. The ratio of
GO terms upregulated in males compared to females
changed between the three developmental time points.
For example, within OSU/CW samples there were 19
GO terms upregulated in males compared to 3 GO
terms in females at 15 dpf, 4 GO terms in males to 13
GO terms in females at 19 dpf and finally one GO term
being upregulated in males at 28 dpf and none in
females. These patterns suggest that the greatest differ-
ences in the functional categories differentially regulated
between the sexes were at 15 and 19 dpf. Numbers of
functional GO categories that were enriched from OSU/
OSU were generally low but again the ratio of male to
female upregulated genes varied between time points.
All six GO terms differentially expressed at 15 dpf were
upregulated in males, whereas the 2 GO terms differen-
tially expressed between the sexes at 19 dpf were upre-
gulated in females at 19 dpf. Some enriched GO
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Table 2 Top 15 annotated features with a three-fold difference in expression between female and male rainbow trout
embryos (19 dpf), genes above the line are upregulated in females, genes below the line are upregulated in males

ID Blast hit F/M P-value
Female upregulated genes

CA042004 High-affinity copper uptake protein 1 538 2.73E-04
CA051515 Cellular retinaldehyde-binding protein 532 247E-03
CK991151 Transcription factor HES-1 494 7.97E-02
(CB496523 15-hydroxyprostaglandin dehydrogenase [NAD+] 4.66 3.94E-03
CA053442 Medium-chain specific acyl-CoA dehydrogenase, mitochondrial precursor 4.50 8.81E-01
CB501058 putative acyl-CoA dehydrogenase 441 4.76E-04
CA046470 Oncorhynchus mykiss CD59-like protein (CD59) mRNA, complete cds 427 5.16E-03
CB515011 Galectin-3-binding protein precursor 421 1.39E-02
CA045033 Trypsin-1 precursor 4.20 548E-01
CA037513 Glutathione peroxidase 2 4.09 4.84E-01
CA038646 Periostin precursor 402 1.27E-03
(CB494589 Glycogen phosphorylase, muscle form 3.96 2.79E-02
CA048635 Peroxisomal NADH pyrophosphatase NUDT12 387 9.97E-04
CK990305 Protein RCC2 homolog 3.86 5.53E-01
CA049909 Developmentally-regulated RNA-binding protein 1 374 1.80E-04
Male up regulated genes

CA045222 PREDICTED: similar to MGC82565 protein isoform 1 [Danio rerio] 0.15 3.56E-03
CA055654 Arachidonate 5-lipoxygenase 0.16 4.37E-03
CA039066 Tripeptidyl-peptidase 1 precursor 0.16 1.06E-01
CB509577 Prolargin precursor 0.17 1.16E-02
CA058492 novel protein [Xenopus tropicalis] 0.17 4.09E-03
CB510525 Guanine nucleotide-binding protein G(t) subunit alpha 0.17 1.15E-01
CA051319 PAX interacting 0.18 1.31E-02
CA056706 Tektin-4 0.18 143E-03
CA058670 Stabilin-2 precursor 0.19 346E-04
CA044989 Plastin-1 0.19 4.54E-03
(CB497295 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial precursor 0.19 1.10E-02
CA051876 60S ribosomal protein L19 0.20 3.79E-02
(CB494343 Adenosylhomocysteinase B 0.21 8.60E-03
CB510525 Guanine nucleotide-binding protein G(t) subunit alpha 0.21 5.48E-03
CA058492 novel protein [Xenopus tropicalis] 0.22 1.33E-01

categories were shared between different developmental
time points and between different genotypes with some
terms switching between upregulation in males and
upregulation in females. For example structural molecu-
lar activity was upregulated in males at 15 dpf in sam-
ples from OSU/CW (p = 0.002), but upregulated in
females at 19 dpf in OSU/CW (p = 0.001; Figure 4).
However, some GO terms that were shared between the
two genotypes showed similar patterns of expression
such as cellular biosynthesis process, which was upregu-
lated in males in samples from OSU/CW at 15 dpf (p =
0.03) and the same result was found in samples from
OSU/OSU at 15 dpf (p = 0.03; Figure 4).

Enrichment analysis on the 10 clusters shown in Fig-
ure 2 failed to identify any GO terms that were differen-
tially expressed compared to both the complete (10,162
features) and sex-biased (883 features) datasets. This

suggests that patterns of similar expression within clus-
ters are not due to shared functionality. Thirty-eight
GO terms were found to be significantly under
expressed in 5 clusters (5, 7, 8, 9 and 10) but this is
almost certainly due to small cluster size rather than a
cluster of genes with shared function.

gRT-PCR of candidate sex genes

We further examined whether genes with a potential
role in sex determination were differentially expressed
between male and female embryos. These genes were
identified using two approaches: 1) Based on GO term
analyses of differentially expressed genes on the micro-
array (details in methods), 9 candidate sex determining
genes were identified for further study. Of these only 5
(coatemer subunit, vasa, prostaglandin, cypl9ala and
zonadhesin) amplified with qRT-PCR methods. 2) Of
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Table 3 Subset of non-redundant, annotated features with a three-fold difference in expression between female and

male rainbow trout embryos (28 dpf)

ID Blast hit F/M P-value
Female upregulated

CB515363 Transmembrane protein 35 9.77 6.87E-03
CA050193 Granulins precursor 4.65 1.22E-02
CK991016 40S ribosomal protein SA 433 4.46E-03
CB509406 Phosphoribosyl pyrophosphate synthetase-associated protein 1 4.04 443E-04
CA046429 Pituitary tumor-transforming gene 1 protein-interacting protein precursor 3.76 1.64E-03
CB515607 Eukaryotic initiation factor 4A-I 351 6.07E-04
(CB488623 Fatty acid-binding protein 1, liver 351 4.67E-03
CA044543 Apolipoprotein D precursor 3.30 3.81E-04
CA768033 Coatomer subunit alpha 323 9.30E-03
CB507253 pfam00909, Ammonium_transp, Ammonium Transporter Family 3.19 2.20E-02
CB504468 Elastase-1 3.14 1.34E-02
(CB496736 Cytochrome ¢ oxidase subunit 5A, mitochondrial precursor 3.09 4.76E-03
(CB488623 Fatty acid-binding protein 1, liver 294 1.32E-02
CB496795 Serine/threonine-protein kinase Sgk3 291 8.97E-03
CA042983 Diamine acetyltransferase 1 2.79 443E-03
Male upregulated

CA769703 Ubiquinol-cytochrome-c reductase complex core protein 2, mitochondrial precursor 0.07 2.29E-03
(CB492678 Profilin-2 0.09 1.18E-02
CA058992 Salmo salar aryl hydrocarbon receptor 2b (AhR2) gene, exons 5 and 6 0.09 1.90E-04
(CB503189 60S ribosomal protein L12 0.11 8.40E-03
(CB503189 60S ribosomal protein L12 0.12 1.17E-02
CB516729 ER lumen protein retaining receptor 2 0.12 5.16E-03
CB516729 ER lumen protein retaining receptor 2 0.15 9.97E-03
CK990246 Phosphatidic acid phosphatase type 2 domain-containing protein 18 0.18 1.10E-02
CA058992 Salmo salar aryl hydrocarbon receptor 2b (AhR2) gene, exons 5 and 6 0.19 6.41E-03
CA050997 40S ribosomal protein S3a 0.22 591E-03
CA044542 Hypoxia up-regulated protein 1 precursor 0.24 6.33E-03
(CB499653 Enhancer of mRNA-decapping protein 4 0.25 1.30E-02
CK991256 Subunit of the THO complex 0.25 2.59E-03
CA063234 Cornichon homolog 4 0.26 8.58E-05
CB509577 Prolargin precursor 0.26 9.78E-02
CA037885 Cytochrome c oxidase polypeptide Vla, mitochondrial precursor 0.26 2.92E-03

102 candidate sex genes described in Baron et al [28] we
investigated 15 genes (based on differences observed in
Baron et al’s study, and their known importance in the
sex process in other vertebrates [28]). All 15 genes
amplified product of the expected size (i.e. as described
in [28]). Note that cypI9ala (aromatase) was the only
candidate sex gene identified from both the microarray
and was in Baron et al’s study.

Both sets of genes were examined in the original three
developmental time points, and a subset of six genes
from Baron et al. [28] (wtl, ovoll, foxI2A, foxI2B,
DMRTI1 and sox9b1) as well as zonadhesin and
c¢ypl9ala identified from the microarray were investi-
gated at three additional developmental times points (8,
24 and 33 dpf). There is a common pattern in six of the
genes (wtl, ovoll, foxI2B, DMRTI zonadhesin and

cypl9ala) which show a higher peak of expression in 28
dpf (hatch) samples than the other developmental time
points. At 28 dpf, the expression was higher in the
males for ovoll, wtl, foxL2B and DMRT1I and higher in
the females for zonadhesin and cypl19ala. Looking at
each time point only ovoll shows a significant difference
in expression between the sexes with higher expression
in males than in females (p = 0.05). Sex was significant
when it was considered as an interaction term with dpf
(wtl, ovoll, zonadhesin and cypl19ala) and with QTL
(ovoll, zonadhesin and cypl9ala). QTL was a significant
factor in ovoll, zonadhesin and cypl9ala although in all
cases it was only marginally significant (Additional File
2). The other 10 sex genes did not show a significant
relationship with sex either as a main or interaction
term except SOLTI where the sex*dpf interaction was
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a) OSU/CW b) OSU/OSU

15 dpf 19 dpf 15dpf - 19 dpf

28 dpf 28 dpf

) 15dpf d) 19 dpf

Oosu CW Oosu

Oosu

Figure 1 Venn diagrams showing the number of significant sex-biased genes in common between a) all three time points in samples
from OSU/CW, b) all three time points from OSU/OSU samples, c) Samples from 15 dpf from both OSU/CW and OSU/OSU, d) samples
from 19 dpf, e) samples from 28 dpf.

significant (p = 0.02, Additional File 2). Most of these throughout all developmental time points and in both
genes showed very similar levels of expression across all  sexes (average correlation of all genes at each develop-
three developmental time periods (Figure 5, Additional =~ mental time point; r* = 0.99 + 0.003, p = <0.001) (see
Files 2 and 3). Additional File 4). Scatter plots shown in Figure 5 plot
Most of the candidate sex genes except for the ones dis- the mean relative expression values of the male and
cussed above show constant low levels of expression female samples per gene averaged between the early
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Figure 2 Heat map produced by cluster analysis in JMP Genomics. Data are presented as female to male ratios. Features in green are
upregulated in males, features in red are upregulated in females. The cluster analysis found 10 discrete clusters and these are shown on the
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developmental time points (8-19 dpf; Figure 5a) and the
late developmental time points (24-33 dpf; Figure 5b).
Of note, Nr5al appears to be highly expressed in male
samples from early developmental time points, whereas
the other samples seem roughly similarly expressed
between males and females. ovo/l has a two fold
increase in expression in males than in females in later

stages in development. Cypl19ala and NrObl show
higher expression in females than in males at later
stages of development.

Candidate gene linkage mapping
Where possible, candidate sex genes were mapped to
determine if any map to the putative sex determining
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Figure 3 Expression bias of 883 genes differentially expressed on the microarray. Histogram showing the distribution of fold change
values for female-enriched (left of Y axis bar) and male-enriched (right of Y axis bar) from a) OSU/CW, and b) OSU/OSU samples. Different colour

region on the rainbow trout sex chromosomes. Four of the
candidate sex determining genes (sox9, DMRTI1, NrOb1
and Amh) have already been mapped in rainbow trout,
and so were not mapped here; none of these map to the
sex chromosome [31]. Of the remaining (n = 11) candidate

sex determining genes, three (Nr5al, GCI and fox[2A)
failed to produce clean sequence product, despite primer
redesign and optimization. This suggests that these genes
are duplicated in the rainbow trout. Of the eight remain-
ing genes all had at least one polymorphic base within the
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Table 4 GO terms identified as being significantly differentially expressed between the sexes within the OSU/CW

genotype

dpf GO term ID GO term name p-Value females males

15 GO:0005198 structural molecule activity 0.000 2 14
GO:0009059 macromolecule biosynthetic process 0.001 2 12
GO:0034645 cellular macromolecule biosynthetic process 0.001 2 12
GO:0044249 cellular biosynthetic process 0.003 4 14
GO:0003735 structural constituent of ribosome 0.003 1 9
GO:0009058 biosynthetic process 0.006 5 14
GO:0044260 cellular macromolecule metabolic process 0.010 9 18
G0O:0032991 macromolecular complex 0011 13 22
GO:0044430 cytoskeletal part 0.015 1 7
GO:0003723 RNA binding 0.017 0 5
G0:0003676 nucleic acid binding 0.017 9 17
GO:0006412 translation 0.032 1 6
GO:0005524 ATP binding 0.032 1 6
GO:0032559 adenyl ribonucleotide binding 0.032 1 6
GO:0006414 translational elongation 0.039 0 4
GO:0016301 kinase activity 0.039 0 4
GO:0016772 transferase activity 0.039 0 4
GO:0044237 cellular metabolic process 0.043 16 22
GO:0044424 intracellular part 0.048 34 37
GO:0016491 oxidoreductase activity 0.021 11 2
G0O:0032502 developmental process 0.040 15 5
GO:0050790 regulation of catalytic activity 0.047 5 0

19 G0:0043232 non-membrane-bounded organelle 0.000 16 0
GO:0043228 non-membrane-bounded organelle 0.000 16 0
GO:0005198 structural molecule activity 0.002 12 0
G0O:0032991 macromolecular complex 0.007 41 13
GO:0003735 structural constituent of ribosome 0011 9 0
G0O:0030529 ribonucleoprotein complex 0.013 15 2
GO:0034645 cellular macromolecule biosynthetic process 0.013 12 1
GO:0009059 macromolecule biosynthetic process 0.013 12 1
GO:0005840 ribosome 0018 8 0
GO:0044237 cellular metabolic process 0.022 48 19
GO:0044445 cytosolic part 0.030 7 0
GO:0044249 cellular biosynthetic process 0.033 26 8
GO:0006091 generation of precursor metabolites and energy 0.050 9 1
GO:0003008 system process 0.050 6 0
GO:0006412 translation 0.050 6 0
G0:0042802 identical protein binding 0.050 6 0
GO:0043231 intracellular membrane-bounded organelle 0.001 15 24
GO:0043227 membrane-bounded organelle 0.001 15 24
GO:0005576 extracellular region 0.034 1 5
GO:0004872 receptor activity 0.043 3 7

28 GO:0005509 calcium ion binding 0.028 0 4

sequence and were genotyped in the OSU x CW doubled
haploid mapping population [32,33]. One of these genes
(SOLT) did not produce significant linkage with any other
marker and remains in an unmapped region of the gen-
ome. None of the remaining seven genes mapped to the
sex linkage group (LG1) (Additional File 5).

Discussion

Patterns of gene expression between the sexes
Repeatedly, microarray experiments have found that a
substantial portion of the transcriptome is differentially
expressed between the sexes [e.g. [2,5,10]]. Most of
these studies have focused on model organisms such as
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Table 5 GO terms identified as being significantly
differentially expressed between the sexes within the
OSU/OSU genotype

dpf GO term GO term name p- females males
ID Value
15 GO:0009058 biosynthetic process 0014 2 17
GO:0044424 intracellular part 0018 11 38
G0O:0044249 cellular biosynthetic 0.021 2 16
process
GO:0003676 nucleic acid binding 0.029 1 12
GO:0000166 nucleotide binding 0.031 2 15
G0O:0044281 small molecule metabolic ~ 0.044 2 14
process
19 GO:0048037 cofactor binding 0016 5
GO:0046483  heterocycle metabolic 0.038 4 0
process
28  GO:.0044444 cytoplasmic part 0.004 9 12
GO:0044424 intracellular part 0.005 18 16
GO:0032991 macromolecular complex  0.030 6 8
GO:0015669 gas transport 0.031 0 3
GO:0015671  oxygen transport 0.031 0 3
GO:0046906 tetrapyrrole binding 0.031 0 3
GO:0020037 heme binding 0.031 0 3
GO:0044445  cytosolic part 0.031 0 3
GO:0005344 oxygen transporter activity  0.031 0 3
GO:0019825 oxygen binding 0.031 0 3
GO:0005833  hemoglobin complex 0.031 0 3

Drosophila, C. elegans and Mus, with relatively few stu-
dies on non-model species that lack a complete genome
sequence. Moreover, very few studies have included
individuals that have not yet undergone sexual differen-
tiation. Our study mined data from a microarray project
to find a total of 883 genes that showed a significant dif-
ference in expression between the sexes before the com-
pletion of sexual differentiation. In so doing, it is not
only one of the few studies to evaluate sex bias in the
transcriptome in a non-model species, but is also one of
the first studies to examine expression patterns between
the genotypic sexes in embryos before the completion of
gonad differentiation. Most genes differentially
expressed between the sexes in this study are involved
in processes such as cell cycle function and general
structure, and are not necessarily associated with sexual
development. This suggests that there are inherent dif-
ferences in the transcriptome of male and female rain-
bow trout, and that these differences are present early
in development. Other microarray studies in ovarian O.
mykiss samples (collected from females of 1-2 years of
age, after sexual differentiation) also found a wide range
of genes differentially expressed in the ovaries, many of
which had no obvious sex function [34]. These included
transcripts that encode various elastases, cathepsins,
proteases and immune function transcripts, suggesting
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that rainbow trout are exhibiting broad differences in
transcriptome expression between the sexes throughout
life. An expression quantitative trait loci (eQTL) study
in an F1 cross between “dwarf” and “normal” Lake
whitefish (Coregonus clupeaformis) found strong evi-
dence for more eQTLs in females than in males. How-
ever, the genes underlying these eQTLs were found not
to be differentially expressed between the sexes, strongly
suggesting pleiotropic sex-linked effects in the transcrip-
tome, at least within white muscle, the tissue used for
microarray analysis [35].

Here we find a relatively low proportion of the tran-
scriptome that exhibits sex bias in gene expression
when compared to other studies, but it is important to
consider the developmental stages of the samples. In
our study, 8.7% of the features showed sex-biased gene
expression (883 out of 10,153) in at least one of the
three developmental time points in one of the two stu-
died QTL genotypes. These numbers are low when
compared to results in Drosophila, where a much higher
percentage of sex-biased expression in mature adults
(between 12% [4] and 88% [15] of genes) with most stu-
dies reporting a number near 50% [5]. Studies from
whole individual adult Tribolium [10] and adult zebra
fish [2] report around 20% and 38%, respectively. Similar
numbers have been found in mice [e.g. [36]]; although
note that like in Drosophila, sex-biased expression is
very variable depending on tissue type with up to 72%
of genes from liver to 13% of genes from brain [36].
Taken together these studies suggest that sex-biased
gene expression is commonplace, however it seems to
be variable both within and among species and variable
with regard to tissue type and developmental stage.

There are a number of potential reasons for why we
see fewer genes showing sex-biased expression com-
pared to prior studies. Firstly, most other studies have
focused on developmental stages that have occurred
after sex differentiation, so presumably the samples
used in such studies were actively expressing genes
linked to sex and gamete functions [2,5]. In salmonids
gonad differentiation tends to occur soon after the
onset of hatching [37,38] which is around our oldest
time point of sampling. So it is perhaps surprising that
we did not find more sex-biased genes, and genes with
an obvious sex function in samples from our oldest
developmental point (28 dpf). Secondly, the absolute
numbers of genes that are being expressed in embryos
are less compared to the number of genes that are
expressed in adults. Many of the sex and gamete func-
tion processes do not begin at such early stages of
development and transcripts of such genes, presum-
ably, would not be present (or present in very small
numbers). Thirdly, the microarray is not a complete
survey of the transcriptome and so there will be sex
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Figure 4 Expression plots of three GO terms significantly differentially expressed. Plots on the left show all three developmental time
points from samples from OSU/CW, plots on the right from OSU/OSU. The three GO terms are a) structural molecular activity b) macromolecular
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genes and sex-biased genes that were not surveyed. For
example, none of the 16 candidate sex genes chosen
for qRT-PCR study were on the microarray. Although
these 16 genes did not show significant differences in
expression between the sexes there are many other

genes that have been shown to be differentially
expressed at the onset of exogenous feeding in O.
mykiss [28] that were not studied here. These reasons
are not mutually exclusive, and all three undoubtedly
help explain our results. Other studies have also found
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low levels of sex-bias expression in embryos, for exam-
ple roughly 8.7% of the chicken embryo gonad tran-
scriptome is female biased and 4.7% male biased [9].
This number increases to 33.5% and 28.2% in the adult
gonads of females and males, respectively. Although

the proportions of the transcriptome that was differen-
tially expressed in chicken is similar to this study in
rainbow trout, it is important to note key differences
in the study designs. In our study, whole embryos were
used from developmental time points prior to gross
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morphological differentiation of the gonads, while in
[9] gonad tissue was used from embryos after sex
differentiation.

Previous studies have examined sex-bias in gene
expression to test hypotheses about the influence of sex-
ual selection on gene expression. As other authors have
suggested, a male bias in gene expression could provide
support for a higher rate of functional evolution in
genes important for sex and reproduction in males,
where selective pressure on males in the form of male-
male competition for mates is high [9,39,40]. We how-
ever, found roughly equal expression between the num-
ber of male biased and female biased genes, with only
slightly higher number of male biased genes in samples
from both lines at 19 dpf and slightly higher number of
female biased genes in OSU/OSU at 15 dpf. Moreover,
our enrichment analysis failed to identify any key func-
tional processes with sex bias in gene expression and
moreover within and among genes there was no consis-
tent directionality to sex-biased in expression across
time points (Figures 2 and 5a and 5b). All of the sex-
biased genes and candidate sex determining genes
showed spiky patterns of expression, suggesting rapid
change in the transcriptome of the developing embryo.
Many other studies using adult individuals report large
differences in the number of sex-biased genes with, fre-
quently, many more male-biased than female-biased
genes [2,41], supporting the idea that sex bias towards
males could be a product of sexual selection. However,
studies in both Drosophila [5] and zebra fish [11] have
found more female-biased genes than male-biased
genes. These studies reinforce the idea that results can
be very dependent on which transcriptomes are being
investigated. For example, studies in the gonads [41]
and whole body transcriptome [5] of Drosophila pro-
duce different results. In a hypothetical situation where
sexual selection arises through sperm competition, sex
bias may be expected to occur only at the level of the
gonad and potentially swamped by signals from other
tissues in whole body analyses (such as reported here).
In contrast, sex bias in gene expression arising from
selection in the form of male-male competition through
alternative behaviors, ornamentation, or other ‘pheno-
types’ outside of the gonads themselves could be found
in the transcriptome of multiple tissues or at the level of
the whole body. Moreover, the way in which animals
used for transcriptome studies are maintained prior to
tissue sampling can have a large effect. For example, [2]
separated male and female zebra fish whereas [11] kept
both sexes together immediately prior to sampling and
in so doing, may have modified the expression of sex
related genes. In other words, it is clear that the way
individuals are reared prior to sampling can have an
effect on the results of the experiment. This potentially
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could lead to misleading interpretations of the effects of
sexual selection on sex-bias expression, as behavioral
and physiological interactions among members of the
opposite sex can elicit changes in gene expression.
Finally, the degree to which gene expression early in life
is genetically correlated to gene expression late in life
when sexual selection is prominent also remain as ques-
tions to be explored in future studies of model and non-
model organisms where sexual selection is prevalent.

Candidate sex determination genes

Studies on post hatch rainbow trout indicate that genes
known to be involved in the sex determination process
are differentially expressed between the sexes [28,29].
However, we are still unclear as to when expression of
these genes is initiated as the majority of the candidate
sex determination genes were differentially expressed at
the earliest point of sampling (55 dpf, onset of exogen-
ous feeding; [28]). The O. mykiss embryos in our study
were reared at 11°C and hatched at 28 dpf (or after 308
degree days), and therefore, our sampling procedure
should span the point of sex determination. It has been
found that differences in expression between the sexes
in these genes tend to spike more at specific time
points, rather than show consistent differences in multi-
ple development points [28,29]. Our results show a simi-
lar trend in that out of 16 candidate sex genes only
ovoll showed a statistically significant difference in
expression between male and female samples across all
developmental time points sampled, although many
genes showed differences in expression at specific time
points. In the fruit fly (Drosophila) ovoll is required for
female germ line determination and differentiation [42].
Ovoll is also expressed in sheep (Ovis aries) ovaries
immediately prior to gonad differentiation [43]. Here we
find upregulation of ovoll in males at 15dpf and females
at 28 dpf. Of the other genes that showed a significant
difference between the sexes, Nr5al expression has been
shown to be directly affected by Sox9 in mammals and
wtl in reptiles and is turned on after male determina-
tion [44,45]. With so few candidate genes showing dif-
ferences between the sexes, it is important to give pause
as to why this might be. Results from studies in mouse
suggest that the window of differential expression of sex
determining genes is small [e.g. [46-48]]. Perhaps we
have missed the specific time point when these genes
are upregulated? Increasing sampling effort just before
the onset of hatch to the point of first exogenous feed-
ing, and using a whole-transcriptome approach, could
prove fruitful.

Mapping of candidate sex differentiation genes
The fact that none of the candidate sex genes mapped
to the sex chromosome in this study further suggests
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that a master control gene for the determination of sex
in O. mykiss remains elusive. Linkage mapping of other
candidate sex determining genes in other populations of
O. mykiss also found no genes mapping to the sex chro-
mosome. A total of 11 candidate sex genes have been
mapped prior to this study, including 3 different tran-
scripts of wtl [49], three sox9 loci [31] and 2 sox6
genes, Amh, DMRTI1 and Nrobl [31]. The addition of
fst, ovol, zonadhesin, IGFI, foxI2A, cypl19ala and wtl
brings the total number of loci to 18. The sex chromo-
somes of fishes (including salmonids) are at the early
stages of differentiation (unlike mammals) and this in
part helps explain why only one sex determining gene is
known in any fish (Dmy in Medaka, [25]). In order to
identify the master sex gene in rainbow trout a concen-
trated sequencing effort of the sex chromosome is
needed.

Conclusion

Here we found evidence that a proportion of the tran-
scriptome is differentially expressed between the sexes
at early stages of development in rainbow trout, prior to
the morphological differentiation of the gonads. Most of
the features were not connected with obvious sex func-
tion suggesting that there is sexual dimorphism in gene
expression even prior to sex differentiation, and the pro-
cesses that are differentially regulated are varied and
complex. The early age of our sampling precluded us
from looking at the transcriptome of the gonads; how-
ever the fact that so many genes are differentially
expressed so early in development is a novel and inter-
esting find. In addition, we found evidence that several
candidate sex determining genes showed a significant
difference in expression between males and females. In
all cases, this difference was seen at one or at most two
time points only, suggesting that the transcriptome of
O. mykiss embryos goes through rapid changes early in
development. It is possible that our sampling scheme
has missed the key window of sexual differentiation in
O. mykiss, to that end a more thorough sampling effort
to include embryos after 33 dpf and before (or just over-
lapping) with 55 dpf as well as earlier points in develop-
ment could further our understanding of embryonic
development in O. mykiss.

Methods

Backcross lines and embryos sampled

Details of the experimental backcrosses and the condi-
tions for raising the embryos are presented elsewhere
[30]. Briefly, samples originated from a fourth genera-
tion backcross between two clonal lines of rainbow
trout, whereby alleles from a fast-developing line were
introgressed by repeated backcrossing into a slow-devel-
oping line. One line (Clearwater, CW, YY male)
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possessed alleles for fast development, and the other
line (Oregon State University, OSU, XX female) pos-
sessed alleles for slower development at a major QTL
for embryonic development rate. Embryos from the
fourth generation backcross were reared at 11°C and
sampled at 8, 15, 19, 24, 28 and 33 days post fertiliza-
tion (dpf). At each time point a total of 100 embryos
were collected and immediately flash frozen in liquid
nitrogen and stored at -80°C.

RNA extraction and cDNA synthesis

Total RNA was extracted from each embryo using Tri-
Zol reagent (Sigma) following the manufacturer’s proto-
col, and RNA was further purified using RNeasy
columns (Qiagen) to remove residual yolk proteins, as
described [30].

Microarray processing and data analysis

Full details for the microarray experimental design and
hybridization, are presented elsewhere [30]. Briefly, four
individuals of each of two QTL genotypes (OSU/OSU
and OSU/CW), each of three time points (15, 19 and 28
dpf) and each sex were selected at random for the
microarray experiment, for a total of 48 samples. QTL
genotype was determined using three microsatellite mar-
kers linked to the major QTL for development rate [30].
Sex was determined by genotyping samples for the Y
chromosome specific marker OmyY1 which is 96% con-
cordant with phenotypic sex in these clonal lines [50].
The three development time points used in the microar-
ray study were: 15 (eyed stage, 165 degree days), 19
(caudal flexing stage, 209 degree days) and 28 (begin-
ning of hatch stage, 308 degree days) days post-fertiliza-
tion (dpf). The microarray used was a 16,006 feature (16
k) array developed from ESTs of several salmonid spe-
cies, primarily Atlantic salmon (Salmo salar) and rain-
bow trout, by the Consortium for Genomic Resources
for All Salmonids Project [cGRASP, [51]].

As described by Xu et al. [30], after removal of fea-
tures that were not detected (the signal was less than
90th percentile of the negative controls) and normaliz-
ing, the log intensity of each feature (yjjq) on the micro-
array was tested using a mixed effects linear model yjjiq
=+ Dj + Tj + Ay +ejq, where p is the mean log inten-
sity for each probe, D is the dye (Cy3 or Cy5), T is
treatment effect and A is the array effect. The treatment
effect is the combination of sex (male/female) genotype
(OSU/CW, or OSU/OSU), and days post fertilization
(15, 19 or 28 dpf). Dye and treatment were fixed effects
while array was fitted as a random effect. An FDR of
0.05 was applied to identify features that were significant
in the overall statistical model. A false discovery rate
(FDR) of 0.2 was then applied across all possible pair-
wise treatment contrasts (n = 66) to control for type I
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error [52,53], as described [30]. Only those six contrasts
comparing males and females at each time point and
each QTL genotype were evaluated for differences
between the sexes (i.e. OSU/CW males vs. OSU/CW
females and OSU/OSU males vs. OSU/OSU females at
each time point). In other words, all pairwise compari-
sons between the sexes were only made within the same
genotype and at the same developmental time point.
Models were evaluated using SAS JMP Genomics (SAS
Institute, Cary NC, USA).

ESTs from the microarray were annotated using
BLASTX, as described [30] and Blast2GO [54,55]. Blas-
t2GO was used to both obtain gene ontology terms and
to conduct a GO enrichment analysis. A Fisher’s exact
test with multiple testing correction (FDR of 0.05) was
used for the enrichment analysis with two objectives: 1)
to assess overrepresentation of GO terms in all sex-
biased genes (male or female biased) relative to all fea-
tures on the microarray, and 2) to assess overrepresenta-
tion of GO terms in either male or female sex-biased
genes relative to the total set of sex-biased genes. All
genes that were significantly differentially expressed
between the sexes at each time point for each genotype
were compared so that a total of six Fisher’s exact tests
were calculated (e.g. OSU/CW males vs. OSU/CW
females and OSU/OSU males vs. OSU/OSU females at
each time point). Ward hierarchical clustering was used
to group all the sex-biased genes based on shared pat-
terns of expression between all six treatments. Cluster-
ing was done with JMP Genomics (SAS, Cary, NC). We
also calculated Fisher’s exact tests with an applied FDR
of 0.05 to examine over expression of GO terms within
each of the clusters generated from shared patterns of
expression.

A total of 20 genes were selected for qRT-PCR analy-
sis from the microarray, of these 9 had GO terms sug-
gesting functions important in sex. qRT-PCR follow up
on these 20 genes identified from the microarray served
to validate the microarray analysis, while also examining
an increased sampling of gene expression differences in
those genes associated with sex determination. All qRT-
PCR experiments were conducted on a StepOnePlus
(Applied Biosystems). Primers were designed from the
rainbow trout EST that produced the best BLAST hit
(see Additional File 6). Primers were designed (where
possible) to span intron/exon boundaries so that ampli-
fication of genomic DNA in qRT-PCR could be avoided.
In addition, primers were designed to have optimum
binding at 58°C, so that minimum effort was required in
primer optimizing. All primer design was done in Pri-
mer 3 [56].

For qRT-PCR, a total of 24 samples were run per gene
(8 individuals per development time point, with equal
numbers of males and females and OSU/CW and OSU/
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OSU genotypes). Samples were run in triplicate on the
same plate with a negative control that lacked cDNA.
Positive controls were set up for each sample in tripli-
cate using beta-actin. Beta-actin was used as a reference
gene because the microarray showed no differential
expression among treatments (sex, genotype, and dpf)
[30]. qRT-PCR mixtures consisted of 1x SYBR Green,
0.36 uM of each primer, 1 pl of template cDNA and
water to 10 pl. The thermal profile for all genes was as
follows; 95°C for 10 min, followed by 40 cycles of 95°C
for 15 s and 58°C for 1 min. A melting curve analysis
was conducted from 50°C to 90°C with 0.5°C increases
per cycle for a total of 80 cycles to insure there was no
mis-annealing or contaminated cDNA in the sample.
For each gene PCR efficiency was tested by pooling
samples of all cDNA for each developmental time per-
iod. Eight serial dilutions of the cDNA pool were used
in the real-time PCR reactions on both target and refer-
ence genes to assess PCR efficiency. The qRT-PCR data
was analyzed using Pfaffl’s method, which corrects cycle
thresholds (Cr) for differing amplification efficiencies of
the target and reference genes, this procedure is more
commonly known as the AACt method [57].
Expression of additional candidate sex determination
genes were examined, as a number of genes involved in
the sex determination cascade are not represented on
the microarray. A total of 16 genes known to be
involved in the sex determining cascade in rainbow
trout [28,29] were chosen for examination of differential
expression prior to hatch in this study. The qRT-PCR
was carried out as described above. The same 24 sam-
ples used for the microarray genes of interest (from 15,
19, and 28 dpf) were used for this candidate gene
approach, but samples from additional time points were
also analyzed for a subset of genes (wtl, foxl2b, foxl2a,
DMRTI, sox9bl1, ovoll, zonadhesin and cypl9ala).
Twenty four samples from three additional developmen-
tal time points (8 each from 8, 24 and 33 dpf) were
included to expand the time series examined. The addi-
tional samples consisted of 4 male and 4 female (2
OSU/OSU and 2 OSU/CW) individuals. For primer
sequences and PCR amplification conditions see [28].

Statistical methods for gRT-PCR

To test the significance of differences in expression
between the sexes while accounting for time and geno-
type effects, general linear models were constructed.
Gene expression, y was modeled as a function of sex
(S), time (T) and genotype (G) as follows: yyiq = S; + T;
+ Gy + (S;T)) + (S;Gi) + (TjGi) + ejjiq where S is the sex
of the individual (male or female), T is the developmen-
tal time point (dpf) and G is the QTL genotype of the
individual (OSU/OSU or OSU/CW). All models were
constructed in SAS v9.2, and a type I error rate of 0.05
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was chosen to determine statistical significance of the
overall model, and pairwise comparisons of treatments.

Candidate sex gene mapping

A subset of genes that were differentially expressed
between the sexes were chosen for linkage mapping, in
order to identify genes that map to the putative sex
determining region on the sex chromosome. The major-
ity of the candidate sex determining genes had primers
that amplified a short (150 bp or less) fragment of
cDNA for qRT-PCR. Primers were redesigned in these
genes to increase sequence length and increase the
chances of locating SNPs. One primer pair was designed
for each gene (see Additional File 7). Each gene was
amplified using 1x buffer, 1 pM dNTPs, 1 pM each for-
ward and reverse primer, 0.1 U Taq polymerase and 20-
50 ng of template DNA. The thermal profile for PCR
followed the same conditions as described above but
with variable annealing temperatures (see Additional
File 7). Once optimized, PCRs were cleaned of excess
primers and unincorporated dNTPs using 1.5 U Antarc-
tic Alkaline Phosphatase (New England BioLabs) and 0.5
U of Exonuclease I (New England BioLabs) and incu-
bated at 37°C for 1 h, followed by heat inactivation at
75°C for 15 min.

Cleaned PCR products were cycle-sequenced using
ABI BigDye 3.1 (Applied Biosystems) and size separated
on an ABI 3130xl. Sequences were aligned in LaserGene
(DNAstar) and investigated for the presence of SNPs
that segregate between the CW and OSU clonal lines.
Candidate SNPs for mapping were chosen based on the
quality of the sequence, the presence of two discrete
alleles, and the presence of at least 40 bp next to the
SNP in both directions to allow the design of SNP spe-
cific primers. One SNP primer for each gene was
designed immediately adjacent to the SNP (either the 5’
or 3" end). Each SNP was genotyped in a mapping popu-
lation of 110 double-haploid progeny derived from an
OSUxXCW cross [32,33]. SNP genotyping was conducted
using ABI SNaPshot (Applied Biosystems). SNPs that
were successfully genotyped were incorporated into a
previously published map [32,33]. Linkage mapping was
conducted in JoinMap 4, and the resulting linkage maps
were drawn in MapChart v 2.0 [58].

Additional material

Additional file 1: Expression ratios (F/M) of all 883 features found
to be statistically significantly expressed in at least one comparison.
Expression ratios and significance (p-values) for all 883 features found to
be significantly differentially expressed between the sexes across all three
time points and both genotypes.

Additional file 2: Table showing results from GLM analysis. Results
from GLM analysis, components that are statistically significant are shown
in bold type. Genes identified from the microarray are above the line.
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Additional file 3: Differences in expression between the sexes of
the four candidate sex genes identifies from the microarray.
Expression plots from four of the candidate sex determining genes
identified from the microarray.

Additional file 4: Expression profile of candidate sex genes
identified from Baron et al 2005. female/male ratio of candidate sex
genes. Significant differences between the sexes within time points is
shown by * *= 0.05, ** = 0.01

Additional file 5: Linkage mapping of candidate sex genes. linage
groups with mapped candidate sex genes (in red). Maps were
constructed from a double-haploid cross between two populations of O.
mykiss, see Nichols et al (2008) for details.

Additional file 6: Primer details from genes identified for RT-PCR
analysis from the microarray. Primer details and PCR conditions for
amplification of genes identified from the microarray

Additional file 7: Primer details for mapping candidate sex genes.
Marker, primers and PCR conditions used for mapping candidate sex
genes, PCR annealing temperatures are given in °C. Note that primers
used for zonadhesin were the same as those reported in Additional File
6.
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