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Abstract

Background: The advances in high-throughput sequencing technologies and growth in data sizes has highlighted
the need for scalable tools to perform quality assurance testing. These tests are necessary to ensure that data is of
a minimum necessary standard for use in downstream analysis. In this paper we present the SAMQA tool to rapidly
and robustly identify errors in population-scale sequence data.

Results: SAMQA has been used on samples from three separate sets of cancer genome data from The Cancer
Genome Atlas (TCGA) project. Using technical standards provided by the SAM specification and biological
standards defined by researchers, we have classified errors in these sequence data sets relative to individual reads
within a sample. Due to an observed linearithmic speedup through the use of a high-performance computing
(HPC) framework for the majority of tasks, poor quality data was identified prior to secondary analysis in
significantly less time on the HPC framework than the same data run using alternative parallelization strategies on
a single server.

Conclusions: The SAMQA toolset validates a minimum set of data quality standards across whole-genome and
exome sequences. It is tuned to run on a high-performance computational framework, enabling QA across
hundreds gigabytes of samples regardless of coverage or sample type.

Background
The growth in high-throughput sequencing means that
there is a need for standardized, robust and scalable
tools to perform quality assurance tests on the resulting
data. The QA tools need to be extensible and are
required to do more than check for instrument specific
problems. The tools need to be able to check for both
adherence to known standards and also to identify pro-
blems that may have arisen in sample preparation.
This paper introduces such a tool, built for analysis of

data from The Cancer Genome Atlas (TCGA). This is
the largest cancer genomics study to date, characterizing
thousands of patients across 20 different cancers. The
potential to discover new mechanisms and therapeutics
from such a large-scale project is hugely important to
the cancer community. However, the scale of the geno-
mic data being generated by TCGA alone has already
outpaced gains in computational power (associated with
Moore’s Law) making available analysis tools unusable
on standard hardware. New sequencing technologies

and the increasing interest in population-scale genomic
analysis will only exacerbate the computational pro-
blems. Within low-throughput genomic data many
errors can be characterized simply using the Sequence
Alignment/Map (SAM) specification [1] and tools are
available for reading and manipulation of sequence files.
However, as the size and scale of genomic data increases
these tools often struggle to perform at the necessary
speeds (or at all). SAMQA provides quality checking
using a high-performance computing framework to
quickly and automatically capture and report errors
across population-scale data. SAMQA has been designed
to use the latest advances in high performance comput-
ing to ensure it is able to scale from gigabytes to peta-
bytes of genome sequences regardless of sequencing
platform, depth of coverage or data type.
An important step in the analysis of these large-scale

genomic data is verification of a minimum standard of
quality. With large scale sequencing projects there are a
number of data quality issues that must be addressed, as
biases are introduced at multiple levels. In population-
level investigations data can significantly influence* Correspondence: john.boyle@systemsbiology.org
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secondary analysis [2], especially when looking at cancer
data where genomic variation is high and largely
uncharacterized. Within TCGA alone, issues affecting
the quality of sequence data range from sample collec-
tion to selection of sequence alignment tools:
• Biological sample collection. Despite the use of stan-

dard clinical methods and procedures, the samples may
lack consistent purity [3] resulting in highly variable
data within the population.
• Laboratory methods. Coverage discrepancies can

result from the use of specific genome amplification
methods [4] (e.g. GenomiPhi, Repli-G, PCR), potentially
differentially representing areas of the genome.
• Instrumentation bias. Sequencing instruments are

known to introduce specific anomalies, from Illumina’s
G-C bias [5] to the 454 Life Sciences [6] errors in
regions that vary too much from the reference sequence.
• Bioinformatics. Multiple tools and tool versions are

available to align reads to a reference genome. Within
TCGA versions of BWA [7], Bowtie [8], GATK [9], Maq
[10], and BFAST [11] are all used for sequence align-
ment. This results in data with a variety of computa-
tional errors as reads are matched and scored.
The next section discusses the types of tests that

SAMQA uses to identify technical errors in the structure
of the sequenced read data and biological errors which
are assessed by extracting features which correspond to
likely anomalies from the data. The Results section intro-
duces how the high-performance computing system has
been designed to scale to the required level. The Results
section gives an example QA analysis that was underta-
ken across approximately 400 genome files.

Implementation
When attempting to classify anomalous data sets, we
must begin with the question, “What constitutes an
anomaly?” This is a difficult question to answer when
we expect our data sets to be highly divergent as: the
samples can be gathered from different cohorts and
populations; they typically will contain a high number of
polymorphisms and structural variations which differ
from the references sequence(s); and they often contain
batch effects due to sample collection and instrumenta-
tion differences.
Our approach has been to classify anomalies in

sequence data sets relative to individual reads within a
sample. The detection of these can be completely auto-
mated through the use of technical specifications, and
allow for the inclusion of a level of data and biologically
specific tests which require expert input.

Technical Tests
The default technical tests are defined using structural
components of the Sequence Alignment/Map (SAM)

specification dated 2010-12-11 (version v1.3-r882).
These tests generally include verifications of the SAM
file format itself (see Table 1). These errors are clearly
defined through the use of standard metrics such as: it
contains all reads that map beyond the length of a chro-
mosome; contains an invalid CIGAR value; or contains
zero-length reads. As these tests are defined through a
well-known standard (SAM), and implemented in the
Picard toolset from SAMtools [12,13], they are also fully
automatable.

Biological Tests
The biological plausibility of the test results is typically
judged through expert analysis. In validation all features
of the data that are highly unlikely in a biological con-
text (e.g. valid reads, structural variation) are identified.
The formal determination of implausibility requires a
confidence threshold to offer meaningful results. This
threshold determines for each feature whether a read
should be considered highly erroneous (see Table 2)
requiring some level of involvement from a domain
expert (e.g. errors in clinical cancer data vs. errors
within yeast population sets). When the tool is run
automatically the threshold can be used to assign pass/
fail flags to each of the sequence files.
At its core, SAMQA is a series of tools that determine

if a sample has syntactic errors and uses a series of
heuristic measures to identify likely biologically improb-
able anomalies. The system is designed to be extensible
so that further tests can be easily added. In implementa-
tion, SAMQA is two sets of tools that process Binary
Alignment/Map files using a defined standard (SAM)
and expert analysis.

High Performance Computing
Even for low coverage sequence files, traditional
approaches to processing these data on a local machine
are highly limited relative to the enormity of input data
from sequencing methods. The SAMQA system has
been designed to scale to meet the needs of investiga-
tions that may generate thousands of genomes. When
high-performance computing (HPC) is required, the
BAM processing layer is handled by the Hadoop-BAM
project [14], with minor modification to allow BAM
sequence indexing to occur entirely within the Hadoop
Distributed File System (HDFS), a storage solution that
spans disks in a cluster to provide one large, distributed
file system [15,16].
The MapReduce framework [17] was selected due to

the highly partitionable nature of the input data sets,
and the relative ease of adapting our workflow to the
MapReduce paradigm when searching for read-based
structural errors. Furthermore, as all operations that we
define are commutative and associative, we can make
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use of Hadoop’s intermediary Combine operation when
transitioning between the Map phase and Partition,
Shuffle, and Sort steps of Hadoop’s implementation of
the framework. By specifying an intermediary Combiner,
we can reduce network and processing overhead by per-
forming an immediate Reduce over the output data sets
of mappers on each cluster machine. For example, using
a small, 80-core cluster running OutputCoverage (our
tool to generate coverage totals per kilobase region), the
use of a combiner means the difference between three
minutes and nearly 90 minutes of analysis over the same
BAM file (see Table 3 and additional file 3), utilizing the
same job across the cluster. This significant difference is
due to the sheer volume of data reduction achieved by
collapsing a large number of map outputs into a very
small number of outputs from each Combiner.
Our selection of the MapReduce framework is notable

because, even for jobs bound by linear or linearithmic
time and space, data sets and analysis can quickly prove
unwieldy at the tera- and petabyte scale (see Table 4).
MapReduce’s strengths in data processing, when
coupled with Hadoop’s strengths in data and computa-
tional locality, task delegation, and aggregation strategies
over key-indexed information, provide significant con-
stant time improvements, with a near-linear speedup
bounded only by the number of nodes in a compute
cluster. In the context of a Mapper-only job, we see

improvements in constant processing time plus linear
data marshalling time associated with Hadoop distribut-
ing tasks to individual machines. In the case of a job
that also defines a Reduce operation, improvements are
linearithmic with its primary overhead attributable to
distributing tasks and the Partition, Shuffle, and Sort
operations performed by Hadoop.
All feature extraction tools are implemented as sepa-

rate MapReduce jobs, which operate on the complete
data sets as described (in Figure 1). While this results in
referencing the same read data multiple times (once for
each job), the speed and performance of HDFS trivialize
this operation through data and cache locality. As a
result of these systems working in tandem, the toolkit is
extremely robust, fast, easy to understand, and easy to
extend. We believe that these factors are vital to the
extensibility of SAMQA as new analysis types are
requested and added to the tool.
Each feature extraction tool outputs a series of key-

value pairs in a human-readable and machine-parsable
text format. Each key-value pair describes some feature
of the data as defined by the tool being run. For exam-
ple the pair < BIN_example_0_COVERAGE, 9.4126293>
has the compound key BIN_example_0_COVERAGE
describes the coverage for the kilobase region 0 for our
example sequence, and the value 9.4126293 denotes
coverage over this region. While somewhat terse in their

Table 1 SAMQA Technical Tests

Technical Tests Examples

Header Consistency Consistency of chromosome identifiers, presence of read groups and sequence dictionary, valid reference sequence.

Specification
Adherence

Correct regular expression for flag value, query name, mapping position, mate mapping position, inferred insert size, etc.

Functional
Relationships

Incorrect flags set (e.g. Reads not mapped in a proper pair, with proper pair flag set), adjacent indel present in CIGAR value,
invalid or missing tag NM, and functional dependent fields do not align or are invalid.

This list includes errors that are defined by the SAM format. Errors may be introduced at multiple levels as described in the “Examples” column. These tests are
run in SAMQA using the Picard toolset from SAMtools.

Table 2 SAMQA Biological Tests

Biological Tests Inclusion Criteria

Mapping quality Low Phred-adjusted mapping quality score

Read length Shortened read lengths for a given sequencing technology

Read count Low aggregate number of reads for a given sequencing technology

Read frequency Low number of reads for a given set of kilobase regions

Coverage Low coverage for a given read group, chromosome, or kilobase region

Structural variations High numbers of localized structural variation

Anomalous sequence data Instances of “random” chromosomes from human assembly [8]

Population estimates of structural variation Very high projected structural variation across different platform units

Read group correlation Low mapping quality correlation for megabase regions, across read groups
Low coverage correlation of megabase regions, across read groups

These tests extract useful, biological features from the data for expert analysis. Other extraction tools (e.g. detection of polyadenylation within individual
sequences, determinants of the feature-dimensional “shape” of the data, as through multidimensional Bayesian analysis) may be added as appropriate to the
data or downstream analysis requires.
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contrived meaning, all compound keys output by
SAMQA are fully representative and uniquely identifi-
able. This simple representation is designed to make it
easier to integrate with downstream analysis tools while
remaining extensible to the operating standards of those
wishing to integrate the tool into their own workflow.
For all Mapper-only jobs, the mappers are used to

perform parallel computations against isolated, atomic
data fragments. In a MapReduce operation, each Map-
per performs input pre-processing, the Combiner (if spe-
cified) aggregates these intermediate results, and the
Reducer performs each final calculation. This is espe-
cially vital for any tests across the entire input data such
as Pearson correlations or calculations of coverage.
While SAMQA provides a clean pass or failure for

invalid reads, it provides no additional facilities to pro-
cess these key value pairs (see Figure 2). We leave this
job to post-processing and data mining tools better
equipped to the task, which may operate on a vastly
reduced output data set relative to the size of the original
sample files. We have currently defined tools built on top
of SAMQA that parse these key-value pairs in Python
and additional visualization tools written in R. More
details regarding setup and use of SAMQA as well as
information about the output format can be found at
http://informatics.systemsbiology.net/project/samqa

Results
The SAMQA toolkit was developed to support work
being undertaken at the Center for Systems Analysis of
the Cancer Regulome, which is one of the TCGA Gen-
ome Data Analysis Centers.
The tool is run across all samples prior to secondary

analysis. In a recent QA run on COAD/READ (Colon/
Rectal Adenocarcinoma) samples the tool was used to
analyze 324 exome and 42 full genome samples. The
results of the technical tests are summarized in Table 5,
and the results of the biological tests are shown in
Figures 3 and 4 (SAMQA output shown in additional
file 1). The tool automatically rejected those samples
that failed the technical tests (e.g. six samples that con-
tained only unmapped reads).
The biological validation tests are used to further

explore the data. The exploration allows for the identifi-
cation of files that have similar properties, which will
result in batch effects (e.g. lower average quality scores
or coverage - see Figures 3 and 4), as well as individual
outliers. The tests themselves are output as a single file,
and can be read directly into an analysis program. The
supplementary materials contains the output for the
default tests that have been run across both the COAD/
READ samples, as well as Glioblastoma (GBM) and
Ovarian (OV) cancer samples.

Table 3 Run Time for SAMQA on Hadoop

Validation Test One Patient, aggregate time in
minutes (over 23GB)

Ten Patients, aggregate time in
minutes (over 405GB)

One Hundred Patients, aggregate time in
minutes (over 3,904GB)

Mapping Ratio Test 1.10 6.98 66.91

Sequence Validation 5.40 66.11 621.54

Read Group Validation 8.40 86.38 670.79

Mapping Quality Test 9.03 57.27 706.02

Read Statistics 11.28 67.49 753.00

File Structure Validation 15.10 59.57 700.67

Chromosome Check 63.15 102.02 768.37

Pearson Coverage
Correlation

279.41 280.50 3211.33

Pearson Mapping
Quality Correlation

702.28 484.92 3327.94

This table lists required time to completion at multiples of ten samples over an 80-core computational cluster running Hadoop. Each validation step includes a
full Map-and-Reduce pass. All times are given in aggregate time to completion, assuming each file is scheduled for analysis after the previous one completes. The
files selected are listed in additional file 2. File size is the only consideration for speed comparisons.

Table 4 Run Time SAMQA on Hadoop vs. Standard Server

SAMQA Run Single Core Server (in hours) Hadoop Cluster (aggregate in hours)

1 Sample (23GB) 1460.22 18.25

10 Samples (405GB) 1615.00 20.19

100 Samples (3904GB) 14435.42 180.44

The SAMQA toolset consists of eleven different technical and biologically relevant tests run over each BAM file. Using the Hadoop cluster and data as referenced
in Table 3, all of the tests can be run in parallel decreasing the overall time for analysis (files used for this test are listed in additional file 2).
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Conclusions
SAMQA is a QA analysis toolkit that runs a series of
tests over sequenced read data and is optimized for
large numbers of files. The tests are for both verification
of errors according to the SAM specification, and for
assigning scores relating to the biological implausibility
of structurally valid, dubious reads that relate to putative
erroneous samples. It provides a simple, extensible, and

robust framework built on top of Google MapReduce
and Apache Hadoop, and is capable of processing large
volumes of data quickly in a highly parallel manner. We
have used the tool for analysis over data sets of OV,
GBM, and COAD/READ cancer data from TCGA. The
software can be used, with minimal extension, to pro-
vide useful analysis of any form of sequenced read data
in SAM-defined formats.

Figure 1 MapReduce Framework. MapReduce provides a generic framework that enables rapid, parallel analysis of partitionable data. Each
Mapper runs a single test (e.g. OutputCoverage) across a section of the data from a single sequence file. The Reduce phase (if specified) can do
additional analysis across aggregated data or mapper results and output information that can be used by external tools (as in Figure 2).

Figure 2 SAMQA System. The SAMQA system can run either on a single machine, a distributed cluster, or across heterogeneous servers using
HDFS. The tests are run against the stored BAM/SAM files and the output is generated as key/value pairs. The results can be explored using the
generated reports and visualizations, or through R. SAMQA can also operate in batch mode so that it can be run as part of an automated
pipeline.
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We believe that this tool is valuable to the medical
research and bioinformatics communities specifically, as
it provides a sanity check and second opinion that
release data sets are valid. The tool can be used as part

of an automated pipeline, and the HPC system means
that the tool can be run repeatedly on increasingly large
files as investigations evolve. SAMQA also provides an
improvement in standards for release quality, which we
feel is valuable in a community that relies heavily on
custom and highly vendor-specific technologies for
sequencing and data processing. SAMQA is released as
a free and open-source tool to the community.

Availability and requirements
Project Name: SAMQA
Project home page: http://informatics.systemsbiology.

net/project/samqa
Operating system: Platform independent.
Programming language: Java
Other requirements: Java 1.6 or higher, computational

cluster or single server running Hadoop 0.20.2. Basic
familiarity with Google MapReduce and Apache
Hadoop. Further information on setting up and running
a Hadoop cluster can be found in Hadoop’s Quick Start
guide [18], Cluster Setup guide [19] or in Tom White’s
book, Hadoop: The Definitive Guide [15].
License: Apache version 2.0

Additional material

Additional file 1: SAMQA COAD Output. This provides the output of
the SAMQA tool after a run over the 236 COAD data files.

Additional file 2: SAMQA Output for Hadoop Comparison. This lists
the files used for the test time comparison across Hadoop and the
single-core server.
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Table 5 COAD/READ SAMQA Results

Sample Group Anomaly Files affected

“CIGAR should have zero elements for unmapped read” 150 files

236 COAD/READ exon capture sequence files. Files were completely unpaired in sequencing 5 files

Files contained unpaired reads 1 file

“CIGAR should have zero elements for unmapped read” 48 files

48 COAD/READ whole genome files “MAPQ should be 0 for unmapped read” 48 files

“RG ID on SAMRecord not found in header” 18 files

The technical tests were run across 236 exon capture sequences files and 48 full genome sequence files for COAD/READ cancer samples from the TCGA project.
The results identified problems with the files, and also identified 6 files that could not be used for further analysis. The mapping issues found in the whole
genome and exon datasets are due to a documented issue within the alignment tools where BWA maps beyond the reference. The tool flags it as an error, but
it is non-fatal to SAMQA. The files and SAMQA output are provided in additional file 1.

Figure 3 Average Mapping Quality of COAD/READ Data .
Density plots of the average mapping quality for the individual
COAD/READ files. The plot shows that the distribution of average
mapping quality for the 236 file data set (listed in additional file 1)
is bimodal based upon the mapping quality of two different
sequencing platforms over exon data (Illumina and SOLiD).

Figure 4 Average Coverage of COAD/READ Data. Density plot of
the average coverage for the 236 COAD/READ files. The coverage
of the files varies from 2× to 8×. The tool allows for the easy
identification of files with similar average coverage. The separation
shown here, while less clear than in Figure 2a, is also due to use of
different sequencing platforms (Illumina and SOLID) over exon data.
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