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Abstract

Background: Complete and accurate genome annotation is crucial for comprehensive and systematic studies of
biological systems. However, determining protein-coding genes for most new genomes is almost completely
performed by inference using computational predictions with significant documented error rates (> 15%).
Furthermore, gene prediction programs provide no information on biologically important post-translational
processing events critical for protein function.

Results: We experimentally annotated the bacterial pathogen Salmonella Typhimurium 14028, using “shotgun”
proteomics to accurately uncover the translational landscape and post-translational features. The data provide
protein-level experimental validation for approximately half of the predicted protein-coding genes in Salmonella
and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a
potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene
prediction programs, as well as evidence suggesting a role for one of these novel ORFs in Salmonella
pathogenesis. We also characterized post-translational features in the Salmonella genome, including chemical
modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of
chemical modifications than previously thought including several novel modifications. Our in vivo proteolysis data
identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function.

Conclusion: This work highlights several ways in which application of proteomics data can improve the quality of
genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of
Salmonella as a resource for systems analysis.
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Background
Many aspects of modern biological research are depen-
dent on accurate identification of the protein-coding
genes in each genome, as well as the nature of the
mature functional protein products, a process commonly
referred to as genome annotation. With the exponential
increase in the number of sequenced prokaryotic gen-
omes afforded by advances in genome sequencing

technologies over the last decade, present day prokaryo-
tic genome annotation is essentially an automated high-
throughput process that relies heavily on de novo gene
prediction programs [1-3].
While de novo gene prediction programs have signifi-

cantly improved for prokaryotic genomes considerable
challenges remain [4], such as determining the precise
start and stop site of a gene, accurately predicting short
genes, and determining a stop codon that represents an
alternative amino acid rather than a true stop site. As
efforts to sequence more branches of the tree of life
expand, the level of accuracy for current gene prediction

* Correspondence: Joshua.adkins@pnl.gov
1Biological Sciences Division, Pacific Northwest National Laboratory, Richland,
WA, 99352, USA
Full list of author information is available at the end of the article

Ansong et al. BMC Genomics 2011, 12:433
http://www.biomedcentral.com/1471-2164/12/433

© 2011 Ansong et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:Joshua.adkins@pnl.gov
http://creativecommons.org/licenses/by/2.0


programs trained on proteobacteria datasets will mark-
edly decrease, leading to an increase in incorrect predic-
tions of protein-coding genes [4]. Compounding the
issue is the lack of experimental evidence in support of
predicted protein-coding regions for the overwhelming
majority of annotated genomes. Where available, experi-
mental evidence is typically based on expressed RNA
sequences, such as from microarray or RNA Seq experi-
ments. However, these genome-centric analyses do not
independently and unequivocally determine whether a
predicted protein-coding gene is translated into a pro-
tein or importantly provide any reliable information on
post-translational processing.
Bottom-up proteomics offers the ability to directly

measure peptides arising from expressed proteins repre-
senting the current best option for independently and
unambiguously identifying at least an important subset
of the protein-coding genes in a genome and can be
used to experimentally validate gene annotations [4-9].
In a bottom up approach, proteins within a complex
mixture are typically digested with a protease, after
which the resulting peptides are separated by chromato-
graphic methods and then analyzed using tandem mass
spectrometry (MS/MS) [10,11]. Each MS/MS spectrum
is a measure of fragment masses, ideally from a single
peptide sequence of ~ 6-50 amino acids. This set of
mass values is analogous to a ‘fingerprint’ that identifies
the peptide. Interpretation of MS/MS peptide spectra is
accomplished 1) by using algorithms such as X!Tandem
[12], SEQUEST [13], or Mascot [14] to compare mea-
sured masses against a set of theoretical masses of possi-
ble protein sequences or 2) less commonly, by de novo
analysis, which does not depend on any prior knowledge
of the possible sequences [15,16]. Similar to searching
MS/MS spectra against a set of predicted protein
sequences, it is also possible (and feasible for simple
genomes) to identify the protein-coding genes in a gen-
ome by searching MS/MS spectra against a six-frame
translation of the genomic DNA sequence, thereby pre-
cluding the inherent biases derived from gene prediction
methods. We note that scaling up to an exponentially
larger database, as a result of six-frame translation of a
genomic DNA sequence, makes searches slower by
potentially orders of magnitude. Additionally, it also
results in increased possibility for false-positive identifi-
cations as the false discovery rate scales with the
increasing database size, greatly decreasing sensitivity;
twin challenges that can only be feasibly met with dedi-
cated/sophisticated computing resources precluding rou-
tine use at present.
Bottom-up proteomics also provides an avenue for

obtaining biologically relevant information about post-
translational modifications. Even for relatively simple
biological systems such as prokaryotes, post-translational

modification (PTM) events are increasingly being recog-
nized as important, but are poorly characterized with
regard to sites or function. While PTM information
gained from genome-scale MS/MS datasets stands to
benefit biological understanding of bacterial organisms,
significant technological challenges hamper the routine
inclusion of this valuable information in primary anno-
tations. This situation is exemplified by only a single
report of genome-scale MS/MS datasets being used to
comprehensively annotate post-translational modifica-
tions events in a genome sequence [17]. However, the
low resolution of the MS/MS datasets makes assignment
of modifications, including crucially the site of modifica-
tion, less confident and ill suited for routine use. For
example, the 0.036 Dalton mass difference between Gln
(Q) and Lys (K) cannot be resolved in low resolution
MS/MS spectra, which increases the number of possible
peptide candidates to be matched and reduces confi-
dence in assignments. On the other hand, the sequen-
cing precision afforded by high resolution MS/MS
spectra can resolve residues with small mass differences
like Gln and Lys, which reduces the search space and
thus the computational burden, and increases confi-
dence in assignments.
In this study, we employed a bottom-up proteomics

approach supplemented with a recently described de
novo sequencing methodology using high resolution and
high mass measurement accuracy MS/MS data [18,19]
to accurately uncover the translational landscape and
post-translational features of the bacterial pathogen Sal-
monella enterica serovar Typhimurium (STM) 14028.
Salmonella Typhimurium is a leading cause of bacterial
gastroenteritis and is widely used as a model to investi-
gate basic genetic mechanisms as well as the interaction
between bacterial pathogens and mammalian hosts. In
spite of the clinical and basic science relevance of Sal-
monella Typhimurium there has been no comprehensive
analysis undertaken to provide experimental support of
its in silico-based genome annotation to facilitate sys-
tems-level analysis. Our data provides protein-level
experimental validation for approximately half of the
predicted protein-coding genes in STM 14028 and sug-
gests revisions to 47 genes assigned incorrect transla-
tional start sites, including a potential novel alternate
start codon. Additionally, we uncovered 12 non-anno-
tated genes missed by gene prediction programs, as well
as evidence suggesting a role for one of these novel
ORFs in Salmonella pathogenesis. We also characterized
post-translational features in the STM 14028 genome,
including chemical modifications and proteolytic clea-
vages. We find that bacteria have a much larger and
complex repertoire of chemical modifications than pre-
viously thought including several novel modifications.
Our in vivo proteolysis data identified more than 130
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signal peptide and N-terminal methionine cleavage
events critical for protein function.
Contrary to the overwhelming majority of proteoge-

nomics analyses that utilize proteomics data to improve
the quality and completeness of previously annotated
genomes, this study represents one of the first to utilize
proteomics data “as part of a largely automated, high-
throughput annotation process directly at the primary
stage of genome annotation” [20].

Results and discussion
The genome of Salmonella Typhimurium (STM) 14028s
was sequenced as described in the Methods section and
is composed of two replicons: a main chromosome
(4.87 Mb) and a plasmid (94 kb) with over 99%
sequence homology to the Salmonella Typhimurium
LT2 virulence plasmid pSLT. The automated annotation
pipeline at the J. Craig Venter Institute (JCVI) was
employed to identify genome features in the raw DNA
sequence, gather evidence for function of the features,
and assign functional annotation. The main genome
characteristics of STM 14028 are presented in Table 1,
and the full list of predicted protein-coding genes is
provided in Additional file 1 Table S1. For the proteo-
genomic analysis described in this study we focused on
chromosome-encoded genome features. Low resolution
liquid chromatography (LC)-MS/MS datasets were
employed to experimentally validate gene annotations
and high resolution LC-MS/MS datasets were employed
to accurately annotate post-translational features as
described below.
To confirm and correct STM 14028 annotations and

in particular to identify proteins specified by non-anno-
tated genes, we searched low resolution MS/MS spectra
from 330 individual LC-MS/MS analyses against a six-
frame translation of the STM 14028 genome sequence.
These data comprise STM 14028 samples from different
cell culture conditions designed to mimic various
aspects of the non-infectious and infectious environ-
ments experienced by Salmonella Typhimurium. Briefly,
these included Luria-Bertani (LB) logarithmic and LB
stationary phases, and two acidic minimal medium
(AMM) conditions, AMM1 and AMM2 [21,22]. The
mass spectrometry datasets employed in this

proteogenomic annotation study have been previously
described, detailing the annotated Salmonella Typhi-
murium proteome response to the above growth condi-
tions [21,23,24]. Peptides with either one or two tryptic
ends were filtered according to the parameters described
in the Methods section. As an additional confidence
metric we only retained those filter-passing peptides
that mapped to unique locations (i.e. a unique ORF) in
the six-frame translation. Peptides mapping to multiple
locations (i.e. different ORFs) in the six-frame transla-
tion introduce a potential source of ambiguity making it
difficult to confidently validate individual ORFs or cor-
rect annotation errors. A total of 23889 unique peptides
that passed the above criteria were identified with a
false discovery rate of < 1%. Of these, 23097 peptides
were assigned as being generated by two tryptic ends
and 791, with one tryptic end.

Experimental validation of predicted genes at the protein
level
For the majority of genes annotated as part of sequen-
cing efforts there is no direct experimental evidence that
the gene is translated into a protein. In cases where
experimental evidence is available it is typically based on
expressed RNA sequences, such as from microarray or
RNASeq experiments. It is clear however that expressed
RNA sequences cannot independently and unequivocally
determine whether a predicted protein-coding gene is
translated into a protein. Thus knowing that a gene or
part of it in the relevant frame is being made (i.e. trans-
lated into protein) is useful information.
Multiple unique peptides mapping to a single gene

provide compelling evidence for the expression of the
product(s) encoded by that particular gene. As such, we
matched the 23,889 identified unique peptides to the
4817 predicted chromosomal genes in the STM 14028
genome sequence to validate automated gene predic-
tions at the protein level. The predicted genes covered
most of the observed peptides (23,759 of the 23,889).
Conservatively, a gene product was confirmed expressed
at the protein level only when a minimum of two
unique peptides mapped to the particular gene. Using
this criterion, our proteomics data validated 2118 of the
4817 annotated chromosomal ORFs in the STM14028
genome sequence at the protein level (Additional file 1
Table S2), providing experimental evidence for the pro-
ducts of these genes. Figure 1 shows an example of a
predicted gene whose length is covered by multiple
identified peptides providing experimental evidence for
its expression at the protein level. Given the limited
number of possible tryptic peptides available for protein
identification in small ORFs, the above criteria would
presumably preclude the confident identification of
novel small ORFs.

Table 1 General features of S. Typhimurium 14028
genome

Parameter Chromosome Plasmid

Size (bp) 4.87 Mb 94 kb

G+C content 52.2% 53.1%

rRNA 16 0

tRNA 63 0

Protein-coding genes 4816 126
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The ~44% level of proteome coverage is in line with,
and in most published cases exceeds, results obtained in
both typical proteomics experiments [25-27] and pre-
vious proteogenomic analyses [17,28,29]. Typical cover-
age is in the 30% range for the annotated ORFs.
However, multiple factors potentially prevent 100% cov-
erage, including extensive post-transcriptional regulation
that makes transcripts rather poor guides for protein
expression [21,30]. Here we have used four differing
growth conditions including typical laboratory condi-
tions and an infection-like environment. However, not
all possible growth conditions for Salmonella Typhimur-
ium can be efficiently sampled and it is likely that cer-
tain ORFs require specific conditions for expression,
such as intracellular growth in host cells [31]. In addi-
tion, various technical aspects associated with our
experiments may have precluded detection, such as
incompatibility with buffers for soluble protein extrac-
tion. The two peptide criterion may also negatively
impact coverage of small proteins present in low con-
centrations. However it is possible that application of
additional protein and peptide separation methods could
enable improved coverage of low abundance proteins.

Refinement of predicted gene structures: Start sites
Determining the correct start position of a gene remains
a challenge for current gene prediction algorithms. In a
recent re-analysis of 143 annotated prokaryotic gen-
omes, Nielsen and Krogh [32] observed that in some
genomes up to 60% of the genes may have been anno-
tated with a wrong start codon, especially in GC-rich
genomes. Accurate start site predictions better define
intergenic spaces that may encode promoters and regu-
latory binding sites, which are critical elements in stu-
dies of transcriptional regulation. Cellular localization
signals also are contained in start sites, which makes
accurate start site predictions important for accurately
determining the localization of proteins within a cell.
Peptides that map to genomic regions within 200 bp

upstream of previously annotated genes and in the same
translational reading frame represent evidence

supporting extensions of their predicted start sites. We
note that this approach has been described in detail in a
number of recent publications [17,29,33]. Additionally
peptides that span (i.e., partially overlap) the start site of
previously annotated genes also represent evidence sup-
porting extensions of their predicted start sites. To this
end, we examined the identified peptides for experimen-
tal evidence supporting extension of start sites in each
of the predicted genes, and where possible proposed a
new start codon. 51 peptides spanned the start site of
previously annotated genes, and 36 peptides mapped to
genomic regions within 200bp upstream of previously
annotated genes. Overall, 87 of the 23,889 peptides
mapped to genomic regions that served as experimental
evidence supporting extension of start sites. We
restricted our correction of start sites to predicted genes
confirmed at the protein level (see preceding section),
which yielded a final candidate list of 75 peptides that
correspond to 47 genes requiring N-terminal extension/
start site correction (Additional file 1 Table S3A). New
start sites were largely defined by the first Methionine
amino acid and/or start codon encountered upstream of
peptides mapped to the genomic region within 200 bp
upstream of their previously annotated start sites.
Figures 2 and 3 highlight examples depicting the uti-

lity of proteomics data for start site correction.
ORF0641 is a member of the universal stress protein
(Usp) family of proteins with biological roles in motility,
adhesion and coping with stress [34]. In our proteomics
data we observed several peptides upstream of
ORF00641 in the same reading frame and within 200 bp
of the predicted start site, i.e., evidence supporting
extension of the predicted start site (Figure 2). Further-
more, three of these peptides span the previously pre-
dicted start site, providing additional evidence in
support of refining the start site. ORF01800 is the
NADH-dependent enoyl reductase from the type II bac-
terial fatty acid biosynthesis pathway (FAS-II), as
inferred from the primary in silico genome annotation, a
validated but currently underexploited target for drug
discovery [35]. Similarly, we observed several peptides
that overlap this ORF including one peptide that
spanned the currently predicted gene start (Figure 3).
The accurate experimental delineation of the structure
of this clinically relevant gene represents an important
step in facilitating ongoing drug development efforts.
While beyond the scope of this study, we remark that
protein expression and purification coupled with Edman
degradation represents a useful orthogonal avenue to
validate at the protein level the corrected assignments
proposed.
In prokaryotes the initiation of translation is typically

mediated by the start codon ATG. In addition GTG and
TTG are also used as alternative start codon. Studies in

Figure 1 Validation of computationally predicted genes .
Multiple peptides mapping to predicted gene ORF04105 evidence
for the expression of the product(s) encoded by ORF04105. Protein
sequence of ORF04105 shown in black, and the identified peptides
are shown in red.
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E. coli have estimated the frequency of start codon
usage as ATG 83%, GTG 14% and TTG 3%. However a
very small number of studies have also reported CTG,
ATT, ATA, and ATC codons to function as rare non-
canonical translation initiators. Interestingly our proteo-
mics data showed multiple peptides that overlap
ORF01417 (integration host factor alpha) including one
peptide that spanned the currently predicted gene start,
providing evidence in support of extending the start site
(Figure 4). The peptide, GIEPMALTKAEM-
SEYLFDKLGLSKR, is immediately adjacent to a stop
codon (TGA) with another stop codon (TAA) a further
seven amino acids upstream making the possibility that
the peptide results from a stop codon read through unli-
kely. Considering this, the first amino acid in the pep-
tide sequence Glycine (G) would presumably be the
translation initiator. Glycine is coded for by the triplet
codon GGG. However, it is well known that even if an
alternative start codon is used as the translation initia-
tor, it gets translated as methionine. Thus we examined
the possibility of a frame-shift involving the preceding
ORF pheT, coded in a different frame, as a potential
mechanism to explain this observation. However, the
ORF pheT terminates with the “...ASLRD-stop” amino
acid sequence conserved across several related

Salmonella and E. coli strains. It is clear that further
studies beyond the scope of the present work will be
required to resolve and or confirm this interesting
observation. The peptide GIEPMALTKAEM-
SEYLFDKLGLSKR is defined as fully tryptic, having a
native N-terminus and a C-terminal arginine, and was
observed in three independent LC-MS/MS analyses with
minimum SEQUEST® peptide identification scores
across the three independent LC-MS/MS analyses of
Xcorr ≥ 3.47, ΔCN ≥ 0.23, and PeptideProphet™ prob-
ability ≥ 0.99. A representative MS/MS spectrum of the
peptide GIEPMALTKAEMSEYLFDKLGLSKR is shown
in Figure 5. While we do not observe any fragments
ions corresponding to proline directed fragmentation,
the near complete y ion series and extensive sequence
coverage when considering both b and y ion series pro-
vides additional confidence to the annotation.

Identification of novel genes
The identification of protein-coding genes (structural
annotation) in eukaryotic genomes is complicated by the
high frequency of alternative splicing in most eukaryotic
genes. Additionally the small fraction of protein-coding
genes that comprise eukaryotic genomes (< 25% in
worms and < 5% in humans) make the identification of

Figure 2 Correcting start site assignment for ORF00641. Multiple peptides (green bars) map upstream of the predicted ORF00641 (yellow
bar) including several peptides that spans the currently predicted gene start, providing evidence in support of extending the start site. The in-
frame * symbol represents the stop codon TAA.

Figure 3 Correcting start site assignment for ORF01800. Multiple peptides (green bars) map to predicted ORF01800 (yellow bar) including
one peptide that spans the currently predicted gene start, providing evidence in support of extending the start site. The in-frame * symbol
represents the stop codon TAA.
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coding sequences against the ubiquitous background of
non-coding sequences difficult [36]. In contrast, the
usual absence of introns and the compact nature of pro-
karyotic genomes make the identification of all possible
ORFs longer than a chosen threshold in a DNA
sequence a relatively straightforward computational
exercise. This view, in particular of bacterial genomes,
has lead to the assumption that computationally derived
coding sequences completely describe the entire coding
capacity of a bacterial genome. However, structural
annotation of prokaryotic genome sequences by predict-
ing coding sequences is far from being a trivial matter.
A number of recent studies [7,17,37] used proteomics
data to identify novel protein-coding genes in prokaryo-
tic genomes that had been missed by de-novo gene find-
ing programs.

Peptides that map to genomic regions outside the
boundaries of predicted genes are evidence suggestive of
the presence of novel genes missed by gene finding pro-
grams. By matching the 23,889 identified peptides to the
4817 predicted chromosomal genes in the STM 14028
genome sequence, we detected 130 peptides mapped to
regions falling outside the boundaries of known protein
coding genes. We further refined the list of peptides by
excluding the 36 peptides that mapped to genomic
regions within 200 bp upstream of predicted genes, i.e.,
peptides that are indicative of N-terminal extensions
(see previous section), which yielded a final candidate
list of 92 peptides (Additional file 1 Table S4A). These
peptides represent experimental evidence for the pre-
sence of novel genes missed by gene finding programs.
Using the set of 92 intergenic peptides, we defined 12

Figure 4 Evidence for potential novel alternative start codon. Multiple peptides (green bars) map to predicted ORF01417 (yellow bar)
including one peptide that spans the currently predicted gene start, providing evidence in support of extending the start site. The in-frame *
symbol represents the stop codon TGA.

Figure 5 Validation of mass spectral evidence. Annotated experimental MS/MS spectra of the peptide “GIEPMALTKAEMSEYLFDKLGLSKR” with
the fragmentation ladder below.
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novel genes that had been missed by gene prediction
methods. Note that novel genes were confirmed as
detected and expressed at the protein level only when a
minimum of two peptides mapped to that particular
novel gene.
Of particular interest was the novel ORF

C1368_1:795109-795576 defined by five peptides that
map to the genomic region 795142 to 795556 where no
gene had been predicted (Figure 6A). Protein BLAST
analysis (BLASTP) of the genomic region where the five
peptides mapped to against the non-redundant protein
sequences database revealed a single significant hit to a
phage protein in Salmonella Typhimurium strain
D23580 (Figure 6B). Interestingly, examination of our
experimental MS/MS data showed that this novel ORF
C1368_1:795109-795576 was highly expressed under
growth in acidic minimal media (AMM) relative to
growth under standard laboratory conditions (Figure
6C). Growth in AMM has been shown to approximate
the environment found within the Salmonella-contain-
ing vacuoles (SCV) observed in infected host macro-
phages, and we among others have shown that this
media induces the expression of the Salmonella patho-
genicity island 2 (SPI-2)-encoded type-III secretion sys-
tem (TTSS), a system critical for virulence and
intramacrophage survival [21,22,38,39]. Thus proteins
co-regulated with known virulence proteins under such

environmental conditions are likely to play a role in Sal-
monella Typhimurium pathogenesis. Indeed phage pro-
teins are known to play an important role in Salmonella
Typhimurium pathogenesis further supporting our
observation [40]. The full repertoire of factors employed
by Salmonella Typhimurium to establish a successful
infection is still unknown, presumably because they
remain undetected due to a number of reasons includ-
ing being missed by annotators; thus the enumeration of
all proteins in the Salmonella Typhimurium 14028 gen-
ome, especially those co-regulated with known virulence
factors, as presented above is an important step in
understanding the mechanisms of Salmonella Typhi-
murium pathogenesis.

Assessing the performance of proteogenomic annotation
Manual curation has become a luxury reserved for a few
organisms and the majority of newly sequenced gen-
omes only receive a single round of computational
annotation with no additional manual refinement, there-
fore the utility of proteogenomics lies in its application
at the primary stage of genome annotation to improve
the quality and completeness of the automated genome
annotation. A version of the STM14028 genome anno-
tated using a combination of computational methods
and human annotators, i.e. refined annotation, released
while this manuscript was in preparation [41] allowed

Figure 6 Identification of novel genes. A) Five proteomics identified peptides map to the genomic region 795142 to 795556 on the forward
strand, where no gene had been previously predicted by computational approaches. B) Sequence alignment shows 100% homology to a phage
protein in Salmonella Typhimurium strain D23580. C) Examination of protein expression shows the novel ORF is highly expressed under
infection-mimicking conditions.
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us to assess the performance of proteogenomic
annotation.
A comparison of the new start sites for the 47 genes

proposed by the proteomics data to the start sites for
the same 47 genes in the refined STM14028 genome
annotation revealed an overlap of 34 genes where start
sites matched exactly (Additional file 1 Table S3B). Of
the remaining 13 genes, 10 had proteomics-suggested
start sites that were downstream of those determined by
refined annotation. While the proteomics data suggest a
shorter ORF than indicated in the refined annotation,
homology analysis (BLASTP) supports the refined anno-
tation. Note that deeper proteome coverage may
improve matches to the refined annotation. The remain-
ing three genes had proteomics-suggested start sites that
were upstream of start sites in the refined annotation,
which is tangible experimental evidence that suggests a
longer ORF than indicated in the refined annotation, i.
e., correcting the refined annotation. In summary 44 of
47 start site corrections proposed by our proteogenomic
analysis in the primary annotation reported in this study
were in line with the refined annotation. The remaining
three start site corrections suggested represent correc-
tions to both the automated (this study) and refined
annotation [41].
Our proteogenomic analysis also identified 12 novel

genes missed by gene prediction methods. A comparison
of the 12 novel genes proposed by proteomics data to
the refined STM14028 genome annotation revealed 9 of
the 12 novel genes were also identified and annotated
similarly in the refined annotation (Additional file 1
Table S4B). This result highlights the power of proteo-
mics data to identify relevant novel protein-coding
genes. The three remaining proteomics-identified genes
missed by de novo gene finding programs and human
annotators represent a correction and improvement to
both the current automated (this study) and refined [41]
annotations.

Annotation of complex post-translational chemical
modifications
While a number of groups have used genome-scale MS/
MS data to confirm predicted bacterial genes at the pro-
tein level, as well as identify new genes and correct gene
prediction [37,42-44], there is only a single report of
genome-scale MS/MS data being used for comprehen-
sive “unrestricted” analysis and annotation of post-trans-
lational chemical modifications (PTCMs) in a bacterial
system [17]. We note however a number of recent stu-
dies focused on characterizing ribosomal protein modifi-
cations [45,46]. As relatively little is known about
PTCMs in bacteria, even for intensively studied model
organisms such as E. coli and Salmonella, any PTCM
information gained from genome-scale MS/MS data

would aid biological understanding of bacterial
organisms.
We have recently described a de novo sequencing

approach (de novo-UStags), using high resolution and
high mass measurement accuracy MS/MS data, for the
accurate discovery of unknown or unexpected PTCMs
of proteins [18,19]. Here we apply the de novo-UStags
approach to analyze 60 high resolution LC-MS/MS
datasets for PTCMs in the STM 14028 genome. These
datasets represented samples that had been grown in a
variety of cell culture conditions.
Figure 7 illustrates application of the de novo-UStags

approach in conjunction with the UNIMOD database to
reveal multiple PTCMs, on a single sequence. The
UStag DSEVLEK was sequenced from deisotoped high
resolution MS/MS spectra and matching with the pre-
dicted proteome located this UStag to residues Lys142-
Asp148 of the Salmonella Typhimurium protein thia-
min/thiamin pyrophosphate ABC transporter. The mea-
sured mass of the UStag suffix sequence and the
predicted mass have an apparent mass difference (dm)
of -0.002 atomic mass units (u), revealing no modifica-
tion on the suffix. The prefix had an apparent dm of
12.992 u from the database predicted sequence, a discre-
pancy that suggests a peptide modification. The mass
shift of 12.992 u can be explained by several combina-
tions of 2 modifications in various arrangements on the
prefix sequence QKWR within a 10 parts per million
(ppm) mass tolerance according to UNIMOD database
as shown in Figure 7. Using an in-house scoring func-
tion (described in Additional file 2) that takes into
account sequencing precision and count of isotopically
resolved b and y fragments among other parameters, the
12.992 u mass shift is best explained by a C-terminus
amidation combined with tryptophan oxidation to
oxolactone.
Using the approach illustrated above, we determined

mass shifts for UStags in 4144 MS/MS spectra that
represented 675 proteins. We estimate the false discov-
ery rate (FDR) of PTCM analysis to be < 1% (see Meth-
ods). Utilizing in-house developed software and a list of
450 UNIMOD modifications, including SNP substitu-
tions, http://www.unimod.org (Additional file 3 Table
S5F) we inferred hypothetical explanations for observed
mass shifts in ~92% of the spectra in which modifica-
tions were detected (i.e. 3826 MS/MS spectra), several
of which had multiple potential chemical explanations
(Additional file 3 Table S5D). Where applicable observa-
tion of “differential” fragments were used to resolve
ambiguity of assignments between SNPs and other mod-
ifications of similar mass defect as described below and
in the Methods and Additional file 2. The remaining
spectra (~8%, i.e. 318 MS/MS spectra) in which modifi-
cations were detected but where no plausible
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modification combination of up to two of the selected
450 UNIMOD modifications could explain observed
mass shift for prefix or suffix sequence represent novel
previously un-described PTCMs and are listed in Addi-
tional file 3 Table S5E. To obtain lower limit estimates
on the number of distinct PTCMs, we binned different
mass shifts and inferred a total of 70 distinct modifica-
tions mass-shifts, each with multiple potential chemical
explanations according to UNIMOD (Additional file 3
Table S5A). This represents a much larger and complex
repertoire of chemical modifications than previously
thought existed in bacteria. Note that this only consid-
ered mass-shifts for which a potential chemical explana-
tion was found in UNIMOD, thus most likely an

underestimate. Nevertheless this estimate represents a
much larger number of modification types than can be
considered by commonly used, but often restrictive
PTCM search algorithms such as Sequest, X!Tandem,
and Mascot [12-14]. The 3826 modification containing
MS/MS spectra with hypothetical explanations for the
observed mass shifts were ranked using a peptide identi-
fication scoring function (see Methods and Additional
file 2) and based on the identification scores we
obtained unambiguous explanations, with regards to
type, number and site of modification, for observed
mass shifts in 1273 MS/MS spectra (i.e., ~31% of modi-
fication containing spectra, see Additional file 3 Table
S5B). We also established confident assignment of

Figure 7 Post-translational chemical medication (PTCM) analysis using de novo-Ustag approach. An example illustrating the application of
de novo-UStag approach in detection of multiple modification and high resolution MS/MS for distinction between multiple possible
combinations. C-terminus amidation and tryptophan oxidation to oxolactone was determined for the sequence SLKELVESDQKWR of the
Salmonella thiamin/thiamin pyrophosphate ABC transporter protein. Explanation for the determination of modifications is detailed in text.
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number and type(s) of modification to explain observed
mass shifts in an additional 239 MS/MS spectra (i.e.,
~6% of modification-containing spectra); however site(s)
of modification could not be unambiguously derived
from spectral evidence (Additional file 3 Table S5C).
Among the modification types observed were those

known to result from sample preparation, including car-
bamylation and carbamidomethyl, as well as those that
can occur both in vitro and in vivo, such as methionine
oxidation [47,48] and asparagine deamidation [49-51].
As no methods are currently available for distinguishing
between in vitro and in vivo modifications, to identify
PTCMs in STM that are biologically relevant we
assumed such modifications would be conserved across
closely related organisms. Using this approach we report
a number of PTCMs of biological significance previously
unappreciated in STM. Methylation of ribosomal pro-
teins has been suggested to modulate the intra- or inter-
molecular interactions of the methylated ribosomal
proteins or affects their affinity for RNA, and, thus,
influences various cell processes, including ribosome
assembly and translation accuracy [52,53]. Single methy-
lation of the E. coli ribosomal protein L7/12 has been
reported [54] and localized to K82 [55], while the ribo-
somal protein L3 has been reported as being methylated
at Q150 in E. coli [56]. In the present study we observe
methylation of the E. coli ribosomal protein L7/12
homolog in STM14028 ORF04348 at the same location,
K82, and methylation of the ribosomal protein L3 ortho-
log in STM14028 ORF03631 at the exact same position,
Q150, suggesting a similar regulatory and/or structural
role in STM14028 as in E. coli (Additional file 4 Figure
S1; 3 methylated residues shown in red). Methylation of
the translation elongation factor Tu (tufB) at position
K56 has been reported, and suggested as a mechanism
for ‘fine tuning’ of tufB-tRNA inter-molecular interac-
tions [57]. We observed the same modification at K57
of the STM14028 protein ORF03636, the homologous
position to K56 of the E. coli protein, suggesting a simi-
lar functional role in STM14028 as in E. coli (Additional
file 4 Figure S1; modified residue shown in red).
Besides those PTCMs with functional inferences from

comparative analysis we observed additional Salmonella
Typhimurium PTCMs of interest. For example, Figure 8
shows the detection of a cyano modification at residue
Cys28 of the Salmonella Typhimurium protein riboso-
mal protein S4 (RpsD). Note that the cyano modification
is classified in UNIMOD as a post-translational modifi-
cation and not a chemical derivative/artifact. This to our
knowledge is the first report of an in vivo cyano modifi-
cation in Salmonella. Previous studies in E. coli have
reported on the effects of cyanate on the different cata-
lytic activities of carbamyl phosphate synthetase [58,59].
It will be interesting to assess the biological significance

of cyano modification on RpsD. While the current lack
of available experimental data with regard to PTCMs for
Salmonella Typhimurium (and bacteria as a whole) pro-
hibits us from validating predicted modifications pre-
sented herein, future Salmonella Typhimurium studies
may confirm several of these putative modifications,
leading to a greater understanding of the biology of this
pathogenic organism.

Annotation of post-translational proteolytic events
Proteolytic cleavage plays an essential role in the control
of numerous biological processes, including protein
localization, fate and activity as well as the processing of
cellular information. However current high throughput
genome annotation pipelines are blind to this informa-
tion, any amount of which would clearly improve the
quality of the genome annotation. The low throughput
and labor-intensive nature of Edman degradation and
two dimensional gel electrophoresis approaches make
them incompatible with state of the art high throughput
annotation pipelines. Using the high precision MS/MS
data generated above, we highlight the use of proteo-
mics data to identify a subset of post-translational pro-
teolytic events in a high throughput label-free manner
and include this additional layer of information to
improve the quality of the genome annotation.
Data were searched against the predicted genes in the

STM 14028 genome sequence using X!Tandem [12] and
included 10336 unique fully tryptic peptides (i.e., two
inferred tryptic ends), 1756 with one tryptic end (par-
tially-tryptic), and 20 with no tryptic ends (non-tryptic),
identified at < 1% FDR. In light of the high specificity of
trypsin [60], it is likely that peptides with either one or
no tryptic termini are representative of proteolytic
events. We note that these peptides may also be gener-
ated by degradation of fully tryptic peptides due to
hydrolysis during sample processing or to in-source
decay during instrumental analysis, both of which intro-
duce a potential source of ambiguity. To address this
concern, we employed a two step filtering procedure.
First, we only considered non- or partially-tryptic pep-
tides that were not contained within a longer observed
tryptic peptide, which reduced the non- or partially-
tryptic peptide candidate list to 1656 peptides. Second,
we removed non- or partially-tryptic peptides contained
within any other peptide, which further reduced the
candidate peptide list for examining proteolytic events
to 754 peptides (Additional file 5 Table S6). While con-
servative, this two step filtering approach ensured we
considered biologically generated non- and partially-
tryptic peptides rather than experimental or analytical
artifacts.
A potential drawback of this two-step approach is that

identification of proteolytically processed proteins are
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typically made on the basis of single peptide identifica-
tions. However this concern was mitigated by using high
resolution and high mass measurement accuracy LC-
MS/MS data. If our hypothesis that non- or partially-
tryptic peptides likely represent the results of possible
proteolytic events were false, we would expect to see a
relatively uniform distribution of non- or partially-tryp-
tic peptides across the protein sequence. To the con-
trary, when the frequency of the occurrence of peptides
and the residue start positions between 2 and 60 (Figure

9) are plotted, two pronounced peaks are apparent, one
representing residue start positions 1-5 and the other,
representing residue start positions 21-25.
In Figure 9, the peak at residue start positions 1-5,

which is comprised almost exclusively (~90%) of pep-
tides with residue start position 2 (see Additional file 5
Table S6) is indicative of N-terminal methionine clea-
vage, a well-known post-translational modification
recognized to be the major source of N-terminal amino
acid diversity and thought to play an important role in

Figure 8 Identification of a novel PTCM in Salmonella. Cyano modification on Cys was determined for the sequence CKIEQAPGQHGAR of the
Salmonella ribosomal protein S4. Explanation for the determination of modifications is detailed in text. Inset figure demonstrates how
sequencing precision in high resolution MS/MS spectra easily resolves residues with close mass like Gln (Q) and Lys (K) which cannot be
resolved in low resolution spectra. The map in the lower right corner of contains all predicted fragments observed from the resolved isotopic
clusters with shade of spots corresponding to parts per million (ppm) distance from expected value. This map is used to determine the correct
identification between all plausible sequences and PTCMs matching observed mass shifts.
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controlling protein half-life [61,62]. Examination of the
peptides with residue start position 2 revealed amino
acids with small side chains (Ala, Ser, Gly, Met, Pro,
Val, Thr) in the penultimate (P1’) position, with Ser
(41%) and Ala (33%) most frequently observed (Figure
10), which agrees with established N-terminal methio-
nine cleavage rules; require Met as the P1 residue and
amino acids with small side chains as the P1’ residue (e.
g., Ala, Ser, Gly, Pro, Val, or Thr) [63-67]. Using this set
of peptides we confirm cleavage of N-terminal methio-
nine in 88 proteins (Additional file 5 Table S7).
The peak at residue start positions 21-25 is indicative

of signal peptide cleavage, another well-known post-
translational modification. Most signal peptides in
Gram-negative bacteria range between 20 and 30 amino
acids in length, with an estimated average length of 25
amino acids, which is in agreement with our data
[68,69]. Examination of the sequence immediately

upstream of putative signal peptides (Additional file 5
Table S8; i.e., peptides with residue start positions 20-
30) revealed a clear sequence motif [70] (Figure 11) that
closely matches motifs used by SignalP [71], shown to
be the most accurate in a recent comprehensive assess-
ment of N-terminal signal peptides prediction methods
[72]. This provides additional support for using this
characteristic set of peptides for identifying signal pep-
tide cleavages. Signal peptides are essential for proper
cellular function in both eukaryotes and prokaryotes,
targeting proteins for secretion or for transportation to
appropriate cellular locations. For example in pathogenic
bacteria, secretion of effector molecules is a central hall-
mark of the host-pathogen interaction in establishing a
successful infection. Although algorithms such as Sig-
nalP enable genome-based predictions of signal peptides,
they almost always lack experimental verification. This
lack of verification is of particular concern in the highly
sensitive area of recombinant protein production for
human therapeutic use where inclusion of amino acids
that are actually cleaved in the mature protein might eli-
cit an immune response [73]. Using the current set of
peptides we provide genome-scale experimental evi-
dence for signal peptide cleavage for 44 proteins (Addi-
tional file 5 Table S8). Analysis of homologs in STM
LT2 with > 99% identity by SignalP revealed 41 of these
proteins were predicted to possess a signal peptide
(Additional file 5 Table S8). Collectively, these results
demonstrate the utility of high accuracy MS/MS data
for providing label-free high throughput genome-scale
experimental confirmation of signal peptide cleavage

Figure 9 In vivo proteolytic cleavage analysis. Distribution of the
curated non-tryptic peptides with residue start positions between 2
and 60 reveals two peaks at residue start positions 1-5 and at
residue start positions 21-25 indicative of N-terminal methionine
cleavage and cleavage of signal peptides respectively.

Figure 10 Experimental annotation of N-terminal methionine
cleavage. The frequency of amino acid occurrence at position P1’
reveals a clear preference for small amino acids at P1’ in agreement
with current N-terminal methionine cleavage rules.

Figure 11 Experimental annotation of signal peptide cleavage.
The upper panel shows the sequence logo for the amino acid
sequence motif of all signal peptides identified by high resolution
MS/MS (STable 8). The lower panel shows sequence logo for gram
negative bacteria employed by SignalP (Image reproduced from
Nielsen et al. 1997).
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identifications to improve the quality of the genome
annotation. We note that a recent study used a related
approach to predict and validate signal peptides in the
extracellular proteome of a microbial community [74].

Conclusions
In this study, we reported the genomic sequence of the
bacterial pathogen Salmonella Typhimurium (STM)
14028 and demonstrated the use of MS-based proteomics
to guide accurate primary genome annotation. Our pro-
teomics data provided experimental confirmation for >
40% of the predicted protein-coding genes, and further
improved the genome annotation with 47 start site correc-
tions and the identification of 12 novel genes missed by
gene finding programs, importantly these include some
that appear to play a role in Salmonella pathogenesis.
Comprehensive analysis of post-translational proces-

sing events in STM 14028 identified more than 130 sig-
nal peptide and N-terminal methionine cleavage events
critical for protein function and also revealed a large and
complex repertoire of post-translational chemical modifi-
cations, including those known to influences various cell
processes and several novel chemical modifications.
A major impact of this work on genome annotation

efforts is in demonstrating the utility of proteogenomics
for high-throughput protein-level experimental annota-
tion, validating and augmenting the in silico primary
annotation. Even for a well annotated organism like Sal-
monella with a high degree of homology to E. coli, we
still uncovered a number of annotation errors as well as
novel genes. An additional impact of this work is further
highlighted in the unique capability of proteogenomics
to experimentally annotate in vivo post-translational
processing events, increasingly recognized to play
important roles in prokaryotic biology.
As more distantly related organism are sequenced in

efforts to sample more branches of the tree of life, the
level of accuracy for current gene prediction programs
trained on proteobacteria datasets is expected to mark-
edly decrease, and depending on the GC content of a
genome annotation methods suffer accordingly. Thus,
the ability of proteogenomics to provide direct protein-
level evidence for a significant fraction of predicted pro-
tein coding genes will be of significant benefit as a com-
plementary tool in any genome annotation effort. In
addition, the data used for proteogenomic annotations
may already be generated as part of existing proteomics
experiments and then only requires a different analysis
method to incorporate the results.

Methods
Genome Sequencing
The genome of Salmonella Typhimurium strain 14028s
was decoded using 454 FLX pyrosequencing technology

(Roche) in combination with conventional chain-termi-
nator sequencing at the Genome Center in St. Louis, MO
http://genome.wustl.edu. The pyrosequencing efforts
resulted in 565,427 reads of 249.3 bases average length,
corresponding to 28.8× sequence coverage. These data
were complemented with Sanger sequencing reads
approximating 4.4× coverage. De novo assembly yielded
seven contigs (Clifton, unpublished data). A sequence for
a different isolate of this strain has recently been depos-
ited at GenBank under accession number CP001363[41].
This sequence is identical to the sequence in this study
except for point mutations in 27 loci that await further
confirmation. The genome, hence, is a 4.87 Mb circular
molecule with a GC content of 52.2%, and contains four
presumably functional prophages: Gifsy-1, Gifsy-2, Gifsy-
3, and a phage nearly identical to ST64B. Strain 14028s
contains a 94 kb plasmid (deposited as CP001362 at Gen-
Bank) with over 99% homology to the Typhimurium LT2
virulence plasmid pSLT.

Automated Annotation
JCVI employs an automated annotation pipeline that iden-
tifies genome features in the raw DNA sequence, gathers
evidence for function of the features, and assigns func-
tional annotation based on the weight of the evidence.
DNA Feature Identification: Glimmer3 [75] is used to

predict protein coding sequences (CDS), tRNAs are
identified with the tRNAscan tool [76], rRNA genes and
other structural RNAs are identified directly from
BLAST [77] matches to Rfam [78], a database of non-
coding RNA families.
Evidence for Functional Annotation: JCVI uses a com-

bination of trusted evidence types which provide consis-
tent functional annotation and can be transferred onto
genes with high confidence in an automated fashion.
The two major trusted evidence types used in the anno-
tation pipeline are:

• CHAR database: JCVI’s CHAR is a curated data-
base of experimentally verified proteins, source pub-
lications, and functional annotations. Each protein
entry has detailed annotation including function,
gene symbol, and GO terms and evidence codes

• Trusted Protein Families: These families cur-
rently include JCVI’s TIGRFAM protein family
models [79] and Pfams [80], both built on Hid-
den Markov Models (HMMs) as well as NCBI’s
PRK clusters [81]).

Supporting Evidence for the annotation pipeline
includes:

• BLAST searches against PANDA: PANDA is JCVI’s
internal repository of non-redundant and non-
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identical protein and nucleotide data pulled from
public databases that include the latest assembly and
protein sequences (e.g., GenBank, RefSeq, UniProt,
Protein Data Bank).
• Computationally derived assertions: Computations
integral to the pipeline include derived physical and
chemical metrics including lipoprotein signals (LP)
and transmembrane helices (TmHMM, [82]).

AutoAnnotate: AutoAnnotate weighs the evidence
from a precedence-ordered list of evidence types-the
CHAR database, trusted protein families, best protein
BLAST matches from PANDA, and computationally
derived assertions-to annotate each protein by assigning,
where possible, a function, gene symbol, EC numbers,
JCVI functional role category, and GO terms. AutoAn-
notate and the databases on which AutoAnnotate runs
are freely available for download and installation via the
open source repository SourceForge https://sourceforge.
net/projects/prokfunautoanno/.

LC-MS/MS and data analysis
Salmonella Typhimurium strain 14028 was grown under
four in vitro conditions: Luria-Bertani (LB) logarithmic
and LB stationary phases, and two acidic minimal media
conditions (AMM1 and AMM2) as previously described
[21,22]. Given its high osmolarity and nutrient-rich con-
dition, LB broth partially reproduces the small intestine
lumen environment, while AMM, providing a low pH,
low magnesium, and nutrient-deficient condition, par-
tially mimics the intracellular milieu within the Salmo-
nella-containing vacuole (SCV).
The materials and methods used to prepare the pro-

tein samples for LC-MS/MS have already been described
in full for similar samples [21,23]. Briefly, each sample
was lysed, extracted into global, soluble, and insoluble
fractions then trypsinized; and further fractionated by
ion exchange chromatography. Trypsinized protein sam-
ples i.e. peptides were analyzed by ultra high pressure
reversed-phase HPLC coupled online to a Thermo Fin-
nigan LTQ ion trap or hybrid LTQ-Orbitrap mass spec-
trometer in a data-dependent MS/MS mode.
To experimentally validate gene annotations low-reso-

lution MS/MS spectra were analyzed using SEQUEST
[13] to search against all possible stop-codon to stop-
codon open reading frames (ORFs) ≥ 50 amino acids in
length in the STM14028 genome. All identified tryptic
and partially tryptic peptides, greater than six amino
acids in length, were first filtered by charge state-depen-
dent cross correlation cut-off (Xcorr) scores as follows:
a minimum cross-correlation cut-off (Xcorr) of either
1.9, 2.2, or 3.3 for 1+, 2+, or 3+ charge states, respec-
tively; and further filtered using a relatively high confi-
dence PeptideProphet [83] cut-off score of 0.9. Partially

tryptic peptides were additionally filtered by charge
state-dependent cross correlation cut-off (Xcorr) scores
as follows: a minimum cross-correlation cut-off (Xcorr)
of either 3.1, 3.8, or 4.5 for 1+, 2+, or 3+ charge states,
respectively. FDR estimated via the decoy database
method was < 1% for peptides.
To accurately annotate in vivo proteolytic cleavage

events high resolution LC-MS/MS spectra were analyzed
using X!Tandem [12] to search against the computation-
ally predicted genes in the STM 14028 genome
sequence. All identified peptides greater than six amino
acids in length, were required to have a Log10 E-value <
= -1.3, which corresponds to a 5% probability that the
peptide sequence identified as the best hit from the X!
Tandem process arose from a random match to a
sequence. FDR estimated via the decoy database method
was < 1% at the unique peptide level.
To accurately annotate post-translational chemical

modifications (PTCMs) high precision MS/MS spectra
were analyzed as described below.
Raw data and collated peptide identification informa-

tion are available to the community as supplemental
data at http://omics.pnl.gov/view/publication_1039.html

USTags and Unrestricted Post-translational Chemical
Modifications (PTCM) Search
Data analysis and search for PTCMs were performed
using a high resolution LC-Orbitrap FT MS/MS dataset.
Data were deisotoped using Decon2LS [84], which
implements the THRASH algorithm to determine neu-
tral monoisotopic masses of observed molecular species
[85]. Note, Decon2LS is publically available at omics.pnl.
gov [86]. The UStags process used for inferring peptide
sequences and its PTM mass shifts was described and
discussed elsewhere [18,19]. Briefly, de-novo sequences
were generated utilizing in-house developed recursive
function using neutral monoisotopic fragment masses
and sequencing precision of 0.005 a.m.u. and allowing
no gaps in sequence tag. Sequence tags are matched in
forward and reverse direction against computationally
predicted proteins in the STM 14028 genome sequence.
If sequence was found to be unique in predicted pro-
teome it was declared a UStag and selected for more
precise description from the precursor -fragment spectra
pair. A UStag was first aligned within the protein
sequence using observed precursor and first fragment
mass, preferring tryptic cleavages where possible. If pre-
dicted theoretical masses matched observed masses
within tolerance of 10 ppm peptide was considered to
be non-modified and corresponding spectra explained.
The cases where potentially more than one peptide was
fragmented were not considered. The remaining spectra
containing UStags were subjected for further processing
to explain mass shifts with known PTMs. PTM searches
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are based on the USTag method which provides “near
zero” FDR for the tryptic peptide identifications based
on decoy database searches. We cannot claim zero FDR
since palindromic sequences and sequencing gaps (like
Gly-Gly-> Asn or Gly-Ala-> Gln) could occasionally
produce false positive hits which are detectable from
database inspection. Thus, using the decoy search
method of determining FDR this “near zero” FDR would
be propagated to modified peptides since the reverse
sequence would not produce USTags except in rare
cases described above. Thus the FDR of PTM analysis
was estimated to be < 1%.
A list of 450 possible PTMs including SNP substitu-

tions as used in this study was obtained from
UNIMOD http://www.unimod.org with differential
labels and unlikely chemical artifacts manually filtered
out. All single and combinations of any two modifica-
tions from the list were explored together with the
reported residual and terminus specificity of each PTM
to produce all plausible explanations of mass shift
from non-aligned prefix and suffix sequences with the
mass tolerance of 10 ppm. It is important to empha-
size that explanation for prefix and suffix mass shifts
are completely independent from each other; therefore
some modifications could be sufficiently explained
even if the whole peptide is not assigned. Expected
peptide monoisotopic mass was matched with observed
precursor mass from the parent spectra within the 10
ppm. Making the clear numeric cut between two dif-
ferent modification options in an automated fashion is
challenging by itself and a decision tree was implemen-
ted. Various heuristics and parsimony rules have been
historically used to reduce mass ambiguities in order
to characterize and estimate counts of modification
sites. We argue that in the realm of high resolution
mass spectrometry no plausible hypothesis should be
rejected except by the strength of experimental evi-
dence. Therefore we developed robust peptide identifi-
cation scoring function in attempt to extract
identification hypotheses which explain UStag contain-
ing spectra using the most evidence from observed
fragments. A detailed description of the scoring func-
tion and default settings used in this study are pro-
vided in Additional file 2.

Informatics and Visualization
Visualization of alignment of detected peptides with the
six-frame translation of the genome and the called
ORFs was performed using Artemis [87] and/or CLC
Genomics Workbench (CLC bio Inc.). BlastP [77]
searches of detected peptides corresponding to novel
ORFs against the nr database was performed to assign a
putative annotation to novel ORFs discovered.

Additional material

Additional file 1: Tables S1-S4. Table S1: List of predicted protein-
coding genes. Table S2: List of protein-coding genes confirmed at
protein level. Table S3: List of genes requiring start site correction. Table
S4: List of novel genes.

Additional file 2: Supplemental Text: A description of the Peptide
Identification Scoring Function for High Resolution LC-MS/MS Spectra.

Additional file 3: Table S5. Table S5: Summary of post-translational
chemical modifications observed.

Additional file 4: Figure S1: Selected methylations identified in
Salmonella of biological relevance with previously observed
correlations in E. coli. Analysis of the literature identifies modifications
in related prokaryotes that have been shown to be biologically relevant
and therefore appear to be conserved across Salmonella and related
organisms.

Additional file 5: Tables S6-S8. Table S6: Summary of peptides with
one or no tryptic ends. Table S7: List of proteins with N-terminal
Methionine cleavage. Table S8: List of proteins with Signal peptide
cleavage.
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