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Abstract

Background: Increasing the nutrient concentration of wheat grains is important to ameliorate nutritional deficiencies
in many parts of the world. Proteins and nutrients in the wheat grain are largely derived from the remobilization of
degraded leaf molecules during monocarpic senescence. The down-regulation of the NAC transcription factor Grain
Protein Content (GPC) in transgenic wheat plants delays senescence (>3 weeks) and reduces the concentration of
protein, Zn and Fe in the grain (>30%), linking senescence and nutrient remobilization.
Based on the early and rapid up-regulation of GPC in wheat flag leaves after anthesis, we hypothesized that this
transcription factor is an early regulator of monocarpic senescence. To test this hypothesis, we used high-throughput
mRNA-seq technologies to characterize the effect of the GPC down-regulation on the wheat flag-leaf transcriptome 12
days after anthesis. At this early stage of senescence GPC transcript levels are significantly lower in transgenic GPC-RNAi
plants than in the wild type, but there are still no visible phenotypic differences between genotypes.

Results: We generated 1.4 million 454 reads from early senescing flag leaves (average ~350 nt) and assembled 1.2
million into 30,497 contigs that were used as a reference to map 145 million Illumina reads from three wild type
and four GPC-RNAi plants. Following normalization and statistical testing, we identified a set of 691 genes
differentially regulated by GPC (431 ≥ 2-fold change). Transcript level ratios between transgenic and wild type
plants showed a high correlation (R = 0.83) between qRT-PCR and Illumina results, providing independent
validation of the mRNA-seq approach. A set of differentially expressed genes were analyzed across an early
senescence time-course.

Conclusions: Monocarpic senescence is an active process characterized by large-scale changes in gene expression
which begins considerably before the appearance of visual symptoms of senescence. The mRNA-seq approach
used here was able to detect small differences in transcript levels during the early stages of senescence. This
resulted in an extensive list of GPC-regulated genes, which includes transporters, hormone regulated genes, and
transcription factors. These GPC-regulated genes, particularly those up-regulated during senescence, provide
valuable entry points to dissect the early stages of monocarpic senescence and nutrient remobilization in wheat.

Background
Wheat provides approximately one fifth of the calories
in the human diet and is an important source of vegeta-
ble protein and nutrients for a large proportion of the
world’s population. Modern wheat varieties differ in
their grain concentrations of N, Zn and Fe [1] and

therefore, increases in the nutritional quality of the
wheat grain are possible and have the potential to allevi-
ate nutrient deficiencies. In addition, increases in grain
protein content (N) are associated with improved pasta
and breadmaking quality and, therefore, are rewarded by
higher prices in many wheat growing regions.
Wheat grain nutritional content is dependent on the

remobilization of amino acids and nutrients from vege-
tative tissues to the grain during whole plant senescence
[2-4]. In monocarpic plants, such as wheat, senescence
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is a coordinated process acting at the whole-plant level,
during which genetically-programmed and developmen-
tally-controlled catabolic activities convert cellular mate-
rial into exportable nutrients that are remobilized from
the leaves to the grain [5,6]. Therefore, nutrient remobi-
lization and senescence are intrinsically interconnected
processes, and further improvements in grain nutritional
value will require a better understanding of the gene
regulatory networks controlling both processes. Unfortu-
nately, this developmental stage has not been studied in
great depth, as exemplified by the absence of dedicated
senescence libraries in currently available wheat EST
resources in NCBI.
Monocarpic senescence is an active process during

which the plant must disassemble complex molecules,
increase active transport mechanisms and maintain
functional conductive tissues, while coordinating the
programmed death of depleted leaf cells. Various plant
hormones coordinate the initiation and progression of
these processes, with abscisic acid (ABA) playing a cen-
tral role (reviewed in [7,8]). This hormone appears to be
the primary signal produced during senescence induc-
tion by both drought and high temperature [9]. Several
lines of evidence have also indicated important roles for
other hormones including jasmonic acid (JA) [10], sal-
icylic acid (SA) [11,12] and ethylene [13].
Leaf cells undergo dramatic physiological and meta-

bolic changes upon the initiation and progression of
monocarpic senescence. One of the earliest responses in
senescence is the degradation of the photosynthetic
machinery. Chloroplasts, which account for approxi-
mately three quarters of the organic nitrogen of meso-
phyll cells, are dismantled early during senescence
[6,14]. Proteins, carbohydrates, lipids, and nucleic acids
are degraded and catabolic products are supplied to the
filling grains [7,14,15]. As RUBISCO and other chloro-
plast proteins are hydrolyzed by proteolytic enzymes,
cellular and phloematic pools of free amino acids
increase, accelerating their remobilization to the grains
[16]. Remobilization of micronutrients (e.g. Zn, Fe and
others) across plant membranes (reviewed in [17]) is
mediated by transporters encoded by various gene
families. Different transporter gene families have both
specific and overlapping abilities to carry different metal
cations, potentially acting in concert to regulate the
remobilization of micronutrients to the developing grain.
Gene expression studies using microarray technologies

in Arabidopsis [11,18,19], Populus [20], barley [21] and
wheat [22] have shown that senescence is driven by
transcription factor networks that regulate the timely
expression of hundreds of senescence associated genes
(SAGs) illustrating how nutrient salvage requires a com-
plex array of regulatory networks and metabolic path-
ways [7]. The complexity of the multiple gene networks

involved in the initiation and progression of senescence
makes it hard to decipher the interactions between indi-
vidual genes, and the identification of central nodes of
the senescence regulatory network.
The existence of a close connection between senes-

cence and nutrient remobilization was also evident in
the simultaneous effect of the GPC-B1 (Grain Protein
Content 1) gene on both processes. The 6B chromosome
segment including this gene was initially introgressed
from wild emmer wheat (Triticum turgidum ssp. dicoc-
coides) into durum and common wheat as a source of
genetic variation for grain protein content [23], and was
later shown to accelerate senescence [24]. Positional
cloning of this gene showed that GPC-B1 is a NAC
transcription factor related to the Arabidopsis NAC-
LIKE, ACTIVATED BY AP3/PI (NAP) gene, which is
also involved in the regulation of leaf senescence, as are
other members of the NAC family [25-28]. A paralogous
gene, designated GPC-2, is present on chromosomes 2B
(GPC-B2) and 2D (GPC-D2) of hexaploid wheat and
shows a similar transcription profile to GPC-B1 [3].
Most commercial pasta and bread wheat varieties have

a non-functional copy of GPC-B1 and the addition of
the functional copy from wild wheat increases N, Fe and
Zn concentration in the wheat grain [3]. In contrast,
down-regulation of all functional copies of GPC in
transgenic hexaploid wheat plants expressing a stable
RNA interference construct (GPC-RNAi) significantly
delayed senescence (> three weeks) and decreased N, Fe
and Zn remobilization to the wheat grain (>30%) [3,29].
The GPC gene is rapidly up-regulated after anthesis

before any visible symptoms of senescence, suggesting
that it is an early positive regulator of senescence. There-
fore, the available GPC-RNAi transgenic wheat plants
and their non-transgenic control represent an excellent
entry point to study the gene networks regulating senes-
cence in wheat. Direct cDNA sequencing approaches
(mRNA-seq) for transcriptome profiling using Next Gen-
eration Sequencing technologies provide high-resolution
methods for quantifying gene expression levels on a gen-
ome-wide scale [30]. To start deciphering the GPC-
dependent transcriptome we applied Roche 454 pyrose-
quencing (454) technology for de novo transcriptome
assembly and Illumina systems to quantify the expression
of 30,497 contigs representing 14,735 wheat genes.
Comparison of the transcriptomes of flag leaves from

wild type and transgenic GPC-RNAi lines 12 days after
anthesis yielded a set of genes likely regulated by GPC
during the early stages of wheat monocarpic senescence.

Results
De novo transcriptome assembly
The over-expression of the GPC-RNAi construct, under
the regulation of the 35S promoter, reduced the
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transcript levels of all homoeologous copies of GPC-1
and its close paralog GPC-2 (henceforth, GPC) by
approximately 35% at 12 days after anthesis (DAA) and
by 67% at 22 DAA, relative to the wild type (WT) non-
transgenic sister lines (Figure 1D). Senescence in GPC-
RNAi plants was delayed by approximately three weeks,
as previously reported [3]. To investigate the effect of
the down-regulation of the GPC transcription factors on
the early stages of senescence, we focused our 454 de
novo transcriptome assembly and Illumina expression
studies on RNA samples collected from flag leaves at12
DAA, when GPC transcript levels are approximately one
third of their level at the transcriptional peak [3]. At
this time point, GPC-RNAi transgenic plants showed
significantly lower levels of GPC transcripts than the
WT controls, but neither genotype showed visual symp-
toms of senescence (e.g. yellowing of the peduncle and a
loss of chlorophyll from the leaves, Figure 1A-B, [3]).
‘Bobwhite’ (the variety used to produce the transgenic
plants) frequently shows leaf tip necrosis, but this was
observed with equal frequency in both genotypes and
was unrelated to the onset of terminal senescence. Even
at 22 DAA, when additional samples were collected for
qRT-PCR time course studies, there were still no visible
signs of senescence in either genotype (Additional file 1
figure S1).
Since no wheat senescence transcriptome was avail-

able to use as a reference, we generated a de novo tran-
scriptome assembly from flag leaves 12 days after
anthesis using the 454 sequencing platform. This tech-
nology generates longer transcripts than Illumina, facili-
tating de novo assembly [31]. We sequenced four
biological replicates per genotype using two 454 runs
(two wild type and two GPC-RNAi transgenic plants per
run) and produced 1,469,817 reads, with a median
sequence length of 415 nucleotides (Additional file 1 fig-
ure S2A). The numbers of reads per plant are described
in Additional file 1 table S1).
Eighty percent of the reads (1,179,902) were assembled

into 30,696 contigs with a median length of 934 nucleo-
tides (Additional file 1 figure S2B). Contigs were
assembled using the default parameters of the GS
Assembler (at least 40 bp overlap and at least 90% iden-
tical) and, as a consequence, homeologous copies of the
same gene were generally assembled within the same
contig. Eleven percent of the reads (163,528) were not
assembled into contigs and are referred hereafter as sin-
gletons (median length 304 nucleotides). Ninety percent
of these singletons showed significant similarity to either
wheat ESTs (GenBank wheat EST collection: 1,071,199
sequences; BLASTN, E-value ≤ e-10) or rice proteins
(GenBank rice nr protein collection: 275,532 sequences;
BLASTX, E-value ≤ e-10). The sequences of the 146,671
singletons that show similarities to either of these

Figure 1 WT and GPC-RNAi plants 12 days after anthesis. (A)
WT (left) and GPC-RNAi plants at 12 DAA used to analyze the GPC-
dependent transcriptional changes. (B & C) Close-up images of the
ears (B) and flag leaves (C) from WT (left) and GPC-RNAi plants
(right) at 12 DAA. (D) Expression profile of the GPC genes relative to
ACTIN in WT and GPC-RNAi plants across a senescing leaf time
course (H = heading, D = days after anthesis). Transcript levels are
presented as normalized, linearized values from 10 biological
replicates (± SEM) derived from the 2-ΔΔCt method [36], where Ct is
the threshold cycle. * P≤0.05, ** P≤0.01. (E) Sample clustering based
on counts of Illumina reads mapped on 454 contigs. Dendrogram
represents the hierarchical clustering of samples as determined by
Euclidean distance. The heat map shows a false color representation
of the Euclidean distance matrix (from red for zero distance to
white for large distance).
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databases are available as a multi-fasta file in Supple-
mental Online Materials (Additional file 2). The residual
9% of the total 454 sequences (126,387) were eliminated
based on various quality criteria (see Material and
Methods).
Almost 95% of the 454-contigs (29,037) showed high

levels of similarity to wheat ESTs (97.4% ± 3.2 average
identity ± SD) over most of their lengths (80.4% ± 24.7
average alignment length ± SD). Seventy nine percent of
the contigs (24,076) also showed significant similarity
(BLASTX, E-value ≤ e-10) to sequences in the rice Gen-
Bank nr protein collection (79.2% ± 14.8 average identity
± SD) over more than half of their length (63.3% ± 31.4
alignment length ± SD). Among the 912 sequences that
did not show similarity to any wheat EST or rice protein
sequences, 199 showed high similarity to sequences
from insects (172), fungi (14), bacteria (7), and viruses
(6) (BLASTN, % identity ≥ 90%; E-value ≤ e-10; low
complexity filter on). These sequences were considered
contaminants and were excluded from further analysis,
reducing the number of contigs included in this study
to 30,497. Fifty percent of the nucleotides were incorpo-
rated into contigs of 1,563 nucleotides or longer (N50 =
1,563). A total of 4,692 contigs (15.3%) were longer than
2,000 nucleotides (Additional file 1 figure S2B). The
average coverage was 36.8 ± 1.4 reads per contig ± SD.
The 30,497 contigs were further grouped into 14,735

isogroups. Isogroups are defined in the GS Assembler as
a collection of contigs containing reads that imply con-
nections between them, and are expected to include
alternative splicing variants as well as homoeologs (A, B
and D copies) and close paralogs. The majority of iso-
groups were comprised of only 1 contig (65.7% 1 con-
tig/isogroup and 18.3% 2 contigs/isogroup). The median
length of the sequences forming each isogroup was 685
nucleotides. The identifiers of the assembled sequences,
the corresponding isogroups and GenBank accession
numbers are listed in Additional file 3.

Gene expression profiling by mRNA-seq
Alignment of Illumina reads to 454 contigs
To determine the differences in transcript levels of the
different isogroups between the WT and GPC-RNAi
plants at 12 DAA we used the Illumina platform that
provided a much greater average sequencing depth per
library than the 454 platform (Additional file 1 figure
S3). A summary of raw and trimmed Illumina reads is
provided in Additional file 1 table S2.
As a quality control, reads were aligned to the 1,138-

nt rice waxy-a intron, a sequence present in the
pMCG161 RNAi vector but absent in the wheat gen-
ome. On average, 858 reads mapped to the waxy-a
intron for the four GPC-RNAi samples, with no gaps
and no mismatches allowed using Bowtie [32]. As

expected, zero reads were mapped to the vector
sequence in the sequences obtained from wild type sam-
ples WT1, WT2 and WT3. However, 301 reads aligned
to the waxy-a intron among the sequences generated
from the Illumina library from sample WT4, indicating
that the WT4 library was contaminated with RNA from
the transgenic GPC-RNAi plants. Therefore, this sample
was removed from further analyses.
After trimming low quality regions and vector con-

taminants and excluding low quality reads (see Meth-
ods), a final set of 145 million reads with an average
length of 50 nucleotides was obtained from the seven
samples. These reads were mapped onto the 30,497 con-
tigs (Additional file 1 table S2) to determine their rela-
tive transcript levels (see Materials and Methods). Of
the 145 million high-quality Illumina reads, 89 million
(61.8%) mapped onto 30,378 contigs (99.6%) corre-
sponding to an average coverage of 22.2× (nt/nt) cover-
age per library (Additional File 1 Figure S3 and Table
S3). Of the 56 million reads (38.2% of the total) which
did not align to the 454 contigs, 14 million (9.5% of the
total) and 13 million (9.2% of the total) mapped onto
81,230 singletons and 40,996 wheat unigenes (http://
www.ncbi.nlm.nih.gov/UniGene/UGOrg.cgi?
TAXID=4565), respectively. Taken together, the Illu-
mina reads aligned to contigs, singletons and unigenes,
account for 79.9% of the total Illumina reads. The fail-
ure to align the 19.5% residual reads to any of the three
references sets described above could be explained by (i)
the absence of these wheat sequences in all three refer-
ences, (ii) a higher sequence divergence between reads
and reference than the similarity cut-off (maximum of 3
polymorphisms per read used as an alignment para-
meter), (iii) contamination of transcripts from other
organisms, or a combination of these three factors.
This study focuses on the comparison between WT

and GPC-RNAi transcript levels at 12 DAA for the
14,735 isogroups assembled with 454-sequencing. Reads
mapped to contigs within the same isogroup were
summed to obtain the counts per isogroup. Tables
including differentially expressed singletons and wheat
unigenes are included as supporting online materials for
those interested in an expanded dataset of differentially
regulated genes (Additional files 4 and 5).
Since the total number of reads obtained for the dif-

ferent biological replicates were not identical, counts
were normalized to minimize the effect of this systema-
tic technical variation. We used the normalization pro-
cedure implemented in the R/Bioconductor software
package DESeq that uses the library median of the ratios
between the read count and the geometric mean of each
gene as a scaling factor for each library ([33]; Additional
file 1 figure S4). All the statistical analyses described
below use the normalized data sets.
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Global characterization of Illumina counts
We observed a high Pearson’s product moment correlation
coefficient between normalized counts of Illumina and 454
sequences (R = 0.73, P < 0.0001). Figure 2A suggests that
this correlation is even better for genes with high Illumina
counts. These significant correlations indicate that, overall,
similar results were obtained with both technologies. How-
ever, the low average counts per isogroup in the 454 data
set (5 reads/isogroup) relative to the Illumina data set (863
reads/isogroup) resulted in much higher coefficient of varia-
tions in the 454 data set (93%) than in the Illumina data set
(20%). Therefore, we used only the Illumina sequencing
counts to estimate gene expression levels.
To determine if the down-regulation of the GPC gene

in the transgenic plants resulted in large changes in the
transcriptome, we performed a hierarchical clustering of
the seven samples using Euclidean distance as a measure
of similarity between expression profiles. As required for
distance calculations, normalized values were further
transformed to achieve homoscedasticity using the func-
tion ‘getVarianceStabilizedData’ in the DESeq package

[33]. Biological replicates were separated into two major
clusters, one including the four GPC-RNAi samples and
the other including the three wild type plants (Figure
1E). The same grouping was observed when the counts
of reads mapping onto singletons and wheat unigenes
were analyzed separately indicating a consistent biologi-
cal signal across these three independent data sets
(Additional file 1 figure S5). Principal component analy-
sis (PCA) confirmed the hierarchical clustering results
(Additional file 1 figure S6): the primary principal com-
ponent (PC1) accounted for most of the variation (PC1:
61.6%; PC2: 13.6%; PC3: 7.8%) and clearly separated the
replicates from the two different genotypes, which sug-
gests that a large proportion of the variation in this
dataset is associated with the differential expression of
multiple genes in the two genotypes.
Identification of differentially expressed genes
To identify genes differentially expressed between GPC-
RNAi and WT plants we used a conservative approach.
We first identified isogroups that showed significant dif-
ferences in normalized counts between treatments in
both DESeq [33] and edgeR statistical analyses [34].
The P-values generated by both analyses were adjusted

for false discovery rates (FDR) across the multiple tests
by using the procedure of Benjamini and Hochbergh as
implemented in the R/Stats package [35]. Hereafter, the
DESeq and edgeR P values refer to the adjusted P
values. Using this criteria, a total of 245 (1.7%) isogroups
showed significantly higher transcript counts in the WT
relative to the GPC-RNAi samples (up-regulated during
senescence) and 570 (3.9%) showed significantly lower
transcript counts in the WT relative to the GPC-RNAi
samples (down-regulated during senescence) simulta-
neously in both statistical analyses (P≤0.01; Figure 3;
Additional file 6). Sixty percent of the 815 differentially
regulated isogroups showed more than two-fold differ-
ential expression. Gene expression data points in rela-
tion to their statistical significance are presented as
volcano plots in Figure 2C, which shows an excess of
significantly down-regulated genes (green dots) over sig-
nificantly up-regulated genes (red dots).
To further validate the differences between WT and

GPC-RNAi samples, we repeated the same statistical
analyses between groups including permutations of the
samples. Ten different permutations resulting in two
GPC-RNAi and two WT samples in one group and two
GPC-RNAi and one WT sample in the other (due to
the elimination of sample WT4) were analyzed and
averaged. The edgeR and DESeq tests of 10 different
permutations showed 22 ± 3 and 18 ± 1 significant iso-
groups ± SE per permutation (P≤0.01), respectively. If
we consider only the intersection between the two tests,
15 ± 4 isogroups on average were identified as signifi-
cantly differentially regulated. These permutation

Figure 2 Comparison between 454 and Illumina mRNA-seq
results. (A) Scatter plot of log2 transformed 454 and Illumina
counts in WT and GPC-RNAi plants. Red lines represent the locally
weighted polynomial regression (LOWESS method). (B) Volcano
plots showing the magnitude of gene expression ratios (log2) as a
function of the significance of the difference in expression between
the two genotypes, is displayed on the y-axis [-log10(P-value at
DESeq)]. Vertical red lines delimit two-fold up- and down-regulation
and the horizontal blue line corresponds to a P-value cutoff of 0.01.
Red and green colored circles correspond respectively to up- and
down-regulated isogroups significant at both edgeR (P≤0.01) and
MWW testing (P ≤ 0.05).
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analyses also provided an indirect estimate of the type I
error rate in our experimental approach. The 15 iso-
groups showing statistically significant differences repre-
sent 1.8% of the 815 genes that showed significant
differences between the GPC-RNAi and WT samples.
This proportion of false positives is 80% higher than the
theoretical 1% FDR used in our analyses (P≤0.01).
The higher than expected rate of Type I error sug-

gested by the permutation analysis prompted us to
incorporate an additional statistical filter to reduce the
number of potential false positives and narrow down the
set of genes for further characterization. We incorpo-
rated an additional Mann-Whitney-Wilcoxon (MWW)
test between WT and GPC-RNAi (P≤0.05), which
reduced the number of isogroups with significant differ-
ences between treatments from 815 (≥ 2-fold change:
491) to 691 (≥ 2-fold change: 431; Additional file 7). We
are conscious that this conservative approach increases
the number of real differentially regulated isogroups
excluded from further analyses (false negatives), and for
this reason we are including both datasets in Additional
file 6 (815 genes significantly different in both DESeq
and edgeR statistical analyses) and Additional file 7 (691
genes significant in DESeq, edgeR and MWW tests).

Validation of differences in gene expression by qRT-PCR
qRT-PCR was used to validate the differential expression
of 22 isogroups that showed ≥2 fold significant differ-
ences in transcript counts between treatments in all
three statistical analyses (DEseq≤0.01, edgeR≤0.01 and
MWW≤0.05; Additional file 7). From the 431 isogroups
fulfilling all four criteria we selected 10 up-regulated
and 12 down-regulated genes for further validation.

These included isogroups covering a range of different
expression ratios between genotypes and genes which
were of biological interest to our group, including trans-
porters, signaling components and hormone-related
genes (Additional file 1 table S4). We selected ACTIN
(gene AB19881.1) as an endogenous control gene for
gene expression analysis, since this gene has been used
successfully in previous studies of senescing leaves [3].
Both Illumina and 454 data confirmed that the expres-
sion of ACTIN, corresponding to isogroup 01906 in our
dataset, is not affected by the expression of the GPC-
RNAi construct (fold changes = 1.05, P edgeR = 0.86
and P DESeq = 0.90) at this time point. All qRT-PCR
data were normalized against the expression of ACTIN
using the 2-ΔΔCt method [36].
The transcription ratios between transgenic and wild

type samples obtained by qRT-PCR were significantly
correlated with the corresponding ratios as determined
by normalized Illumina counts (R= 0.83, Figure 4).
Despite this overall high correlation, only 9 out of the
22 genes tested (41%) showed significant differences
(P≤0.05) between transgenic and wild type plants when
measured by qRT-PCR (Table 1).
The high inter-planta variability of the qRT-PCR

results may explain, in part, the relatively low rate of
validation. The linearized transcript levels of the 22
selected genes showed relatively large coefficients of var-
iation (CV, average 44%) among plants for both geno-
types, with significant variation among genes: the 95%
confidence interval for CV was between 38% to 50%.
Considering these CV values and a Type I error of 5%,
the power to detect 2-fold differences between two
groups using ten replicates varies from 75% (for a 50%

Figure 4 Correlation between normalized mRNA-seq results
and qRT-PCR expression values. Scatterplot showing ratios of
gene expression change from Illumina counts and qRT-PCR. A linear
trend line is shown. Values are adjusted so that the origin of the
graph is 1 (no change in relative expression).

Figure 3 Comparison of sets of differentially regulated
isogroups identified by different statistical testing approaches.
Venn diagrams show the overlapping and unique sets of
significantly up-regulated and down-regulated isogroups identify by
Mann-Whitney-Wilcoxon (MWW) test or by the R/Bioconductor
software packages edgeR and DESeq. Values in parentheses denote
isogroups with a ≥ 2 fold differential expression.
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CV) to 95% (for a 38% CV). The low power exhibited by
the statistical tests performed for several genes may have
contributed to the low proportion of genes that showed
significant differences in the qRT-PCR validation ana-
lyses. In support of this argument, none of the 8 iso-
groups with differences between 2 and 2.5 fold were
significant in the qRT-PCR analyses (P>0.05, Table 1). If
we include only the 14 genes with fold changes higher
than 2.5 (or lower than 0.4) in the analysis, the rate of
validation increases from 41% to 64% (9 out of 14). In
addition, two of the thirteen non-significant genes in the
qRT-PCR analysis performed on samples collected 12
DAA were significant in a second set of samples col-
lected 22 DAA. The larger relative reduction in GPC
transcript levels at 22 DAA (67%) compared to 12 DAA
(35%, Figure 1D) may explain the increase in signifi-
cance for some of the selected genes (Table 1).
Taken together, results from our qRT-PCR experi-

ments show a high correlation between qRT-PCR and
Illumina results, with a good validation rate among

genes that showed differences between the two geno-
types larger than 2.5 fold at 12 and 22 DAA.

Analysis of GPC-regulated genes across an early
senescing time course
All 11 isogroups which showed significant differences
(MWW P≤0.05) in transcript levels by qRT-PCR at
either 12 DAA or 22 DAA in our initial analyses were
selected for an independent, more detailed expression
analysis including four time points from heading to 22
DAA.
Data from six genes, three up-regulated and three

down-regulated are presented in Figure 5. The three up-
regulated genes include; isogroup 08662 with homology
to a jacalin-like lectin domain-containing gene
(ABB51090.1), isogroup 10136 with homology to an
ABA induced protein (Q09134.1) and isogroup 10811
with homology to members of the MtN3 Nodulin family
(Q0DJY3.2). All three genes showed a gradual increase
in the difference in transcript levels between WT and
GPC-RNAi during the progression of senescence, paral-
leling the transcription profiles of the GPC gene (Figure
1D). Transcript levels of isogroups 08662 and 10136 are
almost undetectable at heading date, whereas isogroup
10811 is highly expressed at heading and only after
anthesis displays differential regulation between the two
genotypes (Figure 5). The significance of the differences
in transcript levels between WT and GPC-RNAi
increased between 12 and 22 DAA for all three up-regu-
lated isogroups (Figure 5).
The three down-regulated genes shown in Figure 5

include isogroup 10940 which exhibits high homology to
NAC2, a rice gene related to the GPC gene
(BAD09612.1), isogroup 10620 with homology to a cha-
perone protein (ABF96724), and isogroup 13722 with
homology to an LRR disease resistance gene
(BAD68095). All three genes show similar expression
profiles with an approximate four-fold decrease in
expression between heading date and 22 DAA. However,
transcript levels in WT plants were reduced to basal
levels faster than the GPC-RNAi plants resulting in sig-
nificantly lower transcript levels in WT than in GPC-
RNAi plants at 12 DAA (P≤0.05) for all three genes.
These differences disappeared at 22 DAA, when both
genotypes reached a common low transcript level. The
remaining five isogroups showing significant (P≤0.05) dif-
ferential regulation at either 12 DAA or 22 DAA were
also tested across a senescing time course in an indepen-
dent experiment and the data is available as a supple-
mental online material (Additional file 1 figure S7).

Gene ontology annotation
To obtain a broad classification of gene functions, GO-
slim annotation was assigned based on the GO-slim

Table 1 Comparison of the ratios of transcript levels
between WT and GPC-RNAi in the Illumina (12 DAA) and
qRT-PCR experiments (12 DAA and 22 DAA)

qRT-PCR a

12 DAA 22 DAA

Isogroup Illumina ratio Ratio P ratio P

Isogroup10136 8.745 4.976 0.004 6.472 0

Isogroup08662 5.887 2.11 0.018 2.021 0.001

Isogroup14133 3.303 0.983 0.955 1.208 0.78

Isogroup10811 3.226 2.183 0.034 4.795 0.005

Isogroup12718 2.917 1.67 0.189 1.8 0.018

Isogroup06043 2.797 1.761 0.04 2.088 0.045

Isogroup02905 b 2.292 1.349 0.192 2.8 0.008

Isogroup03083 b 2.218 0.839 0.638 1.904 0.108

Isogroup10053 b 2.19 1.017 0.92 1.094 0.572

Isogroup01211 b 2.052 0.806 0.506 1.582 0.119

Isogroup11278 b 0.471 0.764 0.18 0.726 0.114

Isogroup05843 b 0.448 0.852 0.316 0.827 0.068

Isogroup03470 b 0.445 0.863 0.271 0.845 0.063

Isogroup13287 b 0.422 1.012 0.942 0.853 0.427

Isogroup13088 0.393 0.698 0.050 0.843 0.492

Isogroup06482 0.365 0.916 0.461 0.924 0.605

Isogroup10940 0.333 0.739 0.018 0.631 0.917

Isogroup10620 0.272 0.716 0.029 1.068 0.732

Isogroup13722 0.267 0.606 0.005 0.522 0.336

Isogroup07898 0.254 0.97 0.816 0.882 0.325

Isogroup06574 0.237 0.973 0.782 0.759 0.063

Isogroup07736 0.199 0.62 0.015 0.975 0.912
a Ratios presented as expression in WT/expression GPC-RNAi determined by
Illumina counts and qRT-PCR. Ratios higher than one indicate genes up-
regulated by senescence and ratios lower than one genes down-regulated by
senescence. b Isogroups with less than 2.5 fold changes.
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terms associated with the homologous rice genes
[37,38]. Homology searches using BLASTX (E-value <
1e-5) and the predicted rice peptides as a database
showed significant similarities for 78% of the 14,735
wheat isogroups. Among the 815 isogroups significantly
up- and down-regulated 12 DAA (P ≤ 0.01 at both
edgeR and DESeq; Table S6), significant matches to
known rice proteins were found in a larger proportion
among the down-regulated genes (91%) than among the
up-regulated genes (40%). Similarly, GO-slim terms for
biological process associated with the homologous rice
genes (Rice Genome Annotation Project; http://rice.
plantbiology.msu.edu/) were assigned to only 10.0% of
the 245 up-regulated genes, in contrast to 45.6% of the
570 down-regulated isogroups. Putative rice homologs
and assigned GO numbers for molecular functions and
biological processes are listed in Additional file 3 and a
summary of the relative distribution of the GO-slim
categories for the most represented functional terms is
presented in Table 2.
We observed significant differences in the relative dis-

tributions of the functional groups between up- and
down-regulated genes (Kolmogorov-Smirnov test: P =
0.002) and we also observed a significant change in dis-
tribution of functional groups of up-regulated genes
compared to the distribution of classes of all annotated
isogroups (Kolmogorov-Smirnov test: P = 0.0001), which
indicates an enrichment of specific functional classes as
the transcript levels of the GPC gene increase during

senescence. In agreement with the accelerated senes-
cence and augmented translocation of minerals observed
in the presence of wild type GPC expression, we
observed an enrichment in the percentages of genes
involved in transport (GO:0006810), protein metabolism
(GO:0019538) and catabolic processes (GO:0009056),
and a reduction in the percentages of genes involved in
biosynthetic process (GO:0009058) and cellular compo-
nent organization and biogenesis (GO:0009628; Table 2)
among the up-regulated isogroups.

Transposable elements
Similarity searches were also carried out against the TREP
database to identify transcribed transposable elements
(TREP redundant database; http://wheat.pw.usda.gov/
ITMI/Repeats/). A total of 748 isogroups (5.1%) and 4,010
singletons (2.5%) showed significant similarity to transpo-
sable elements (BLASTN, E-value<e-5, Additional file 1
table S6). The distribution of different superfamilies of
transposable element in our dataset is similar to that
observed in the entire wheat EST database and in wheat
genomic DNA [39], with Gypsy and Mariner as the most
abundant class I and class II elements, respectively.
Among the expressed elements, 46 isogroups and 29 sin-
gletons were differentially regulated in the two genotypes
at both edgeR and DESeq tests (P ≤ 0.01; Additional file
8). In both datasets, the number of repetitive elements up-
regulated during senescence (87% among isogroups and
93% among singletons) largely exceeded the number of

Figure 5 Transcript levels of selected isogroups across a senescence leaf time course. Expression levels in WT and GPC-RNAi plants were
determined using qRT-PCR at four points across a senescing leaf time course (H = heading, D = days after anthesis). Transcript levels are
presented as normalized linearized values using the 2-ΔΔCt method [36], where Ct is the threshold cycle. Values are corrected using the same
calibrator across genes and therefore the transcript level scale is comparable between isogroups. Each data point is an average based on ten
plants (± SEM). * P≤0.05, ** P≤0.01.
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repetitive elements down -regulated during senescence
(13% among isogroups and 7% among singletons). These
proportions were significantly different from a random
50% distribution (X2 tests, P<0.0001).
These results support the hypothesis that some transpo-

sable elements are activated, potentially through the deac-
tivation of silencing mechanisms [39] during senescence
as observed under conditions of biotic and abiotic stresses
[40-42]. Differences were detected in the distribution of
different classes of retroelements between the complete
data set and the subset of elements up-regulated during
senescence, both for the isogroup (Kolmogorov-Smirnov
test: P = 0.06) and the singleton set (Kolmogorov-Smirnov
test: P = 0.02). The up-regulated repetitive elements dis-
played enrichment of Gypsy elements in the isogroup set
and of Mariner elements in the singleton set.

Discussion
Monocarpic senescence is characterized by a develop-
mentally regulated set of physiological changes encom-
passing extensive alterations in gene expression [21,22].
These changes are intrinsically linked with the remobili-
zation of nutrients and carbohydrates from the leaves to
the grains, as shown by the simultaneous alteration of
senescence and remobilization in isogenic lines with dif-
ferent dosages of active GPC genes or in transgenic
RNAi plants with different GPC transcript levels [3].

Global analysis of gene expression during early
senescence
Based on the early up-regulation of GPC after anthesis
and the delayed senescence of the GPC-RNAi plants [3],

we hypothesized that this transcription factor is an early
regulator of monocarpic senescence. To test this
hypothesis, we selected an early time point after anthesis
when there are no visible phenotypic differences
between WT and GPC-RNAi plants (Figure 1A-C), but
when the GPC transcript levels are significantly different
between WT and GPC-RNAi (Figure 1D). The 35%
reduction in GPC transcript levels observed 12 days
after anthesis in the transgenic plants relative to the
WT (Figure 1D) was associated with large-scale differen-
tial gene expression affecting roughly 5.5% of the iso-
groups included in this study (using a stringent criteria).
Most of these differences disappear when the same ana-
lyses were made between reshuffled groups including
mixtures of wild type and GPC-RNAi samples, confirm-
ing the existence of real biological differences. The fact
that the differences in GPC transcript levels affect a
large number of genes was also reflected in the cluster
and principal component analyses of isogroups (Figure
1E), singletons and unigenes (Figures S5 and S6). In all
the analyses the transcriptomes were divided into two
major groups defined by the GPC genotype.
Since the down-regulation of the GPC genes has mul-

tiple pleiotropic effects on senescence and nutrient
remobilization [3] and affects the overall timing of the
senescence process, it is possible that many of the genes
differentially regulated in the transgenic plants would
also be differentially regulated between different time
points of the senescence process in wild type plants.
However, we currently do not know if the genes affected
by the RNAi down-regulation of the GPC genes include
the complete set of genes differentially regulated during

Table 2 Distribution of the functional grouping of the assembled isogroups based on GO-slim annotation

Accession Ontology Total Up-regulated a Down-regulated a

GO:0019538 protein metabolic process 5.1 13.9 5.1

GO:0009987 cellular process 7.2 12.4 7.2

GO:0006950 response to stress 13.9 10.2 12

GO:0006810 transport 3.4 8.0 4.3

GO:0009719 response to endogenous stimulus 7.9 8.0 8.5

GO:0009056 catabolic process 2.8 7.3 1.8

GO:0009607 response to biotic stimulus 4.1 5.1 5.5

GO:0007165 signal transduction 8.7 4.4 9.9

GO:0006464 protein modification process 10.6 3.6 8.3

GO:0006350 transcription 2 3.6 1.9

GO:0009628 response to abiotic stimulus cellular component organization 3.2 1.9 2.6

GO:0016043 and biogenesis 3.4 0.7 4.5

GO:0008152 metabolic process 2.8 0.7 1.8

GO:0009058 biosynthetic process 2.7 0.7 3

GO:0006412 translation 3.7 0.0 1.9

Others 18.5 19.5 21.7

Values are % of the total number of GO-annotated isogroups.
aSignificantly different between genotypes (P≤0.01 edgeR and DEseq).
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senescence or just a subset of them. This will depend on
how early the GPC gene is located within the hierarchy
of transcription factors that coordinate the senescence
response and on the presence of feedback regulatory
loops initiated downstream of GPC and that activate
earlier regulatory steps.
Expression analysis of six selected candidates across an

early senescing time course (Figure 5) suggests that the
selected time point for the mRNAseq analysis (12 days
after anthesis) provided a good snapshot of the tran-
scriptional changes associated with the down-regulation
of the GPC gene. At 2 DAA, none of the six genes ana-
lyzed by qRT-PCR in Figure 5 showed significant differ-
ences in transcript levels. Conversely, transcript level
differences at 22 DAA were larger in all three up-regu-
lated genes, but not significant for all three down-regu-
lated genes since their expression levels in both WT and
GPC-RNAi samples had been reduced to similar lower
levels compared to heading date by this time point (Fig-
ure 5). Among the three additional down-regulated
genes presented in Additional file 1 figure S7, isogroup
06043 also showed larger differences at 12 DAA com-
pared with 22 DAA, but both differences were signifi-
cant. Thus, an analysis limited to the 22 DAA might
have resulted in an underestimation of the number of
down-regulated genes. In addition, as senescence pro-
gresses, the initial regulatory effects of the GPC gene are
likely to be expanded by other transcription factors
which are induced at this and later time points, thus
complicating our analysis.
Previous microarray-based approaches have provided

an initial picture of the transcriptome changes during
senescence. However, most of these studies were carried
out in dicot species [11,18-21,43,44], and only a few
such studies have been performed in temperate cereals
[21,22]. These studies resulted in the identification of
hundreds of genes which are activated as senescence
progresses, including those with putative roles in meta-
bolism and translocation [38]. However, the use of
microarrays can be limiting, particularly when analyzing
a relatively sparsely studied stage of development such
as senescence.

De novo transcriptome assembly
Unlike microarrays, which are limited to the genes
printed on the chips, mRNA-seq represents an open
platform that is capable of detecting novel transcripts,
provided that they are expressed at levels compatible
with the sequencing depth. This advantage of the
mRNA-seq approach is particularly valuable considering
the limited current sequence information of wheat genes
expressed during senescence and the lack of an
assembled wheat genome. Of the 1,071,335 wheat ESTs
present in GenBank at the time of this analysis, none

are derived from flag leaves collected after anthesis and
there are only two annotated wheat SAGs present in the
Leaf Senescence Database, one being the GPC gene itself
[45].
About 5% of the genes assembled from the 454

sequence (excluding the singletons) (~1,460 genes) were
not found in the NCBI wheat EST collection (BLASTN,
E ≤ e-10), suggesting that the effort to generate a de
novo transcriptome assembly provided novel informa-
tion. It is possible that a larger proportion of novel
genes can be identified from later stages of the senes-
cence process. The limited genomic information avail-
able for senesce genes is also reflected by the small
proportion of up-regulated transcripts (10%; edgeR and
DESeq P ≤ 0.01) that we were able to annotate using
GO Slim (based on putative rice homologs) when com-
pared to the proportion of the annotated down-regu-
lated transcripts (46%; edgeR and DESeq P ≤ 0.01).
A high proportion of reads from the 454 sequencing

runs (82.9%) were assembled into contigs with a high
N50 and an average contig length of 1,216 bp, which is
longer than those reported before, which range from
197 bp [46] to 500 bp [47]. The accuracy of the sequen-
cing and assembly was confirmed by BLAST similarity
searches, both in terms of identity and alignment length.
The assembled transcripts are publically available
through the TSA division of GenBank, and the single-
tons as a multi-fasta file in the SOM (since only
assembled contigs are accepted in the TSA division).
The assembly of the transcriptome of a polyploid spe-

cies such as wheat poses additional problems that are
not encountered in diploid species. Homeologous tran-
scripts of the three wheat genomes are approximately
97% identical [48] and, under the assembly parameters
used in this study, are usually merged into chimeric
contigs. Therefore, when mapping reads to the contigs
it is important to adjust the number of mismatches to
tolerate the average differences generated by genome
divergences. In our case, we mapped reads with up to 3
nucleotide differences in 50 bp average reads, which will
result in the inclusion of reads with more than 94%
identity. Some of the unmapped reads may represent
reads that are more divergent than the genome present
in the isogroup used as reference. The objective of this
study was the identification of differentially regulated
genes, and therefore the collapse of the three wheat
homeologs into single contigs was a conscious decision.
Future studies aiming to characterize transcript levels of
specific homoeologs will require a much higher coverage
and higher stringency to assemble contigs for the differ-
ent homoeologous groups.
Based on the observed Ct values from qRT-PCR

experiments, the assembled transcriptome includes
genes with transcript levels as low as 1/36 of ACTIN
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transcript levels (e.g. isogroup 12718). Even though we
obtained 12-16 million reads per sample, ~38% of the
Illumina reads were not mapped to the 14,735 iso-
groups. Approximately half of those unmapped reads
were subsequently mapped to the singleton set (9.5%) or
to the wheat GenBank UniGene set (9.2%, among those
not mapped to contigs or singletons), confirming that
our 454 contigs represent a transcriptome limited to
genes expressed at relatively high levels. The average
number of counts mapped onto the singletons was one
order of magnitude lower than those mapped onto the
assembled contigs (Additional file 1 figure S3). This
result suggests that, on average, the transcript levels of
the genes included in the singleton dataset are lower
than those included in the assembled contigs. The resi-
dual unmapped reads may correspond to genes missing
from all three reference wheat datasets, that have more
than three polymorphisms with the reference sequence
(cutoff limit), or that correspond to foreign DNA con-
tamination and/or sequencing errors [49].
A BLASTX comparison of our dataset of 815 differen-

tially regulated genes with the Leaf Senescence Database
[45] showed significant similarities (E-value<1e-5) for
181 genes (24 up-regulated and 157 down-regulated).
This result suggests that the differentially expressed
genes present in our dataset include both a core of
known SAGs as well as a large set of previously unchar-
acterized SAGs. However, one additional reason why
similarities might not have been detected is that almost
90% of the sequences deposited in the leaf senescence
database are from dicotyledonous species. Only 9% of
the sequences are from rice and 1% from other grasses
[46], http://www.eplantsenescence.org/ as of April 20th

2011). Therefore, our dataset expands considerably the
number of genes with potential roles in regulating
senescence in the monocots. We hope that these data-
sets will become useful tools for research projects inves-
tigating monocarpic senescence of cereals.

Gene expression profiling by sequencing
A comparison of the number of Illumina reads mapping
to a particular gene in wild type and GPC-RNAi trans-
genic samples is a good indicator of its relative tran-
script levels [50]. The validity of this approach was
confirmed by a high correlations between normalized
Illumina counts and both 454 and (Figure 2) qRT-PCR
data (Figure 4), and by the separation of the transcrip-
tomes of GPC-RNAi and WT plants into the same two
different clusters when contigs, singletons and unigenes
were analyzed separately (Figures 1E, S5 and S6). From
our results it is evident that expression level and
sequencing coverage are both important determinants of
the precision of the gene expression measurement since
the variation in read counts between libraries is reduced

as read count increases (Figure 2B). 454 data displayed a
low coverage, with small counts particularly for genes
with low transcript levels and a large variation between
replicates. In contrast, the precision provided by the
high coverage of Illumina sequencing resulted in suffi-
cient sensitivity to detect significant differences (P ≤
0.01 at both edgeR and DESeq tests) for changes in
gene expression as low as 50%. Genes with low expres-
sion levels are generally difficult to measure accurately,
resulting in low validation rates across platforms [51,52].
The Illumina and qRT-PCR platforms have different

strengths and weaknesses. qRT-PCR provides the sensi-
tivity to detect genes at very low expression levels,
which would require extremely deep Illumina sequen-
cing, but has limited power to detect differences lower
than 2-fold, unless a large number of biological repli-
cates are used (>10 for some of the coefficients of varia-
tion observed in our study). In contrast, Illumina
sequencing has the power to detect small differences in
expression but lacks the sensitivity to detect genes with
very low transcript levels (unless a very deep coverage is
used). The relatively low power of qRT-PCR to detect
differences close to 2-fold (only 41% validated genes) is
reflected in the improved proportion of significant dif-
ferences in the qRT-PCR test observed when the com-
parisons were limited to genes with more than 2.5 fold
differences in transcript levels (64% validated genes).
However, the high correlation between qRT-PCR and
Illumina transcript level ratios between genotypes (R =
0.83, Figure 4) suggests that there are significant simila-
rities between the two datasets.
The time and cost of validating genes individually by

qRT-PCR, together with its relatively low power com-
pared with new mRNA-seq technologies, will probably
result in the gradual replacement of qRT-PCR as the
golden standard for validation of global expression stu-
dies. We envision next-generation mRNA-sequencing
analyses of transcriptomes in independent experiments
using different genetic stocks as a more efficient strategy
to validate hundreds of differentially regulated genes
simultaneously. As next generation sequencing
approaches become increasingly affordable and technol-
ogies and data analysis tools mature, replicated mRNA-
seq experiments will likely become a common validation
strategy.

Biological significance of GPC-regulated genes
The list of putative GPC-regulated genes generated in
this study provides a valuable entry point to dissect the
pathways regulating senescence and nutrient transloca-
tion in wheat. However, the lack of functional informa-
tion for a large fraction of the differentially regulated
transcripts limited our ability to perform a more com-
prehensive bioinformatics analysis of the biochemical
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and signaling pathways differentially regulated during
senescence. Because of this limitation, the following dis-
cussion focuses on the variation in the relative propor-
tions of several functional categories, and on a more
detailed study of several genes that represent examples
of up-regulated and down-regulated genes within differ-
ent functional categories.
Down-regulated isogroups comprise 70% of all differ-

entially regulated genes (Figure 3) and are likely to
include genes coding for processes no longer required
during this final stage of the plant’s development.
Within our dataset, this is evident in the large-scale
down-regulation of signaling components (Table 2),
including wall-associated kinases (WAKs) of which sev-
eral members are down-regulated (directly or indirectly)
by GPC (E.g. isogroups 14599 and 13361, (DEseq
P≤0.01, Edge R P≤0.01 and MWW P≤0.05, Additional
file 3). In addition, GPC may play an active role in shut-
ting down photosynthetic processes during the early
stages of senescence as suggested by the down-regula-
tion of several genes encoding components of the
photosynthetic machinery in the WT samples (higher
GPC levels) relative to the GPC-RNAi. The down-regu-
lated genes include those encoding the small subunit of
Rubisco (isogroup 01798, MWW P≤0.05, Additional file
3) and at least eight putative genes encoding chlorophyll
a/b binding (CAB protein), a well-characterized gene
closely associated with the onset of senescence (e.g. iso-
groups 11346, 11739 and 11151(DEseq P≤0.01, Edge R
P≤0.01 and MWW P≤0.05) Additional file 3; [53,54]).
The finding that a NAC transcription factor is also sig-
nificantly down-regulated as GPC expression increases
(isogroup 10940, Figure 5) shows that the differential
transcriptional regulation of different members of the
NAC family may play diverse roles as the plant transi-
tions into senescence.
In contrast, genes which are up-regulated during

senescence are likely to include those playing an active
role in driving the onset of senescence and activating
the transport networks required for the remobilization
of nutrients to the grain and are thus of greater biologi-
cal interest to enhance grain nutritional value. Among
the genes most highly up-regulated in this study is a
gene encoding a JA-induced jacalin-like lectin domain
protein (isogroup 08662, Figure 5). Transcript levels of
this gene are almost undetectable at 2 DAA and it is
only as GPC expression increases, that its expression is
induced. Differences in this gene’s transcript levels
between WT and GPC-RNAi plants increased from 12
to 22 DAA (Figure 5) paralleling the results observed
for the GPC transcripts (Figure 1D). Jasmonic acid has
been shown to induce leaf senescence in Arabidopsis
[10] and several JA biosynthetic genes are up-regulated
during senescence [53]. JA-responsive SAGs have been

identified in independent microarray studies [55-57]
including several genes in the jacalin lectin gene family.
The strong up-regulation of this gene by GPC in addi-
tion to a significantly up-regulated JA-inducible protein
(isogroup 09977, edgeR and DESeq P ≤ 0.01, MWW
<0.05, Additional file 3) suggests that JA may play an
important role in the onset of senescence in wheat.
The hormone ABA also plays a well-documented role

in the induction of senescence in other plant species
[8,13]. Our finding that a putative ABA inducible pro-
tein is among the most highly up-regulated genes (iso-
group 10136, Figure 5) shows that genes induced by this
hormone may also be involved in the induction and pro-
gression of senescence in wheat. As with other up-regu-
lated genes, transcript levels increase at 12 DAA and
onwards in accordance with increasing GPC expression.
A closer functional study of these wheat genes has the
potential to provide new insights into the roles played
by JA and ABA during monocarpic senescence and on
their interactions with the GPC genes.
The increase in GPC expression is also associated with

an increase in the translocation rate and more efficient
remobilization of several important micronutrients to
the developing grain [3,29]. Since a large proportion of
the nutrients found in the grain arise from the disman-
tling of leaf-cell components during senescence [58],
one possible explanation for the improved remobiliza-
tion is a more rapid and complete breakdown of com-
plex leaf molecules resulting in an overall increase in
the concentration of simpler molecules ready to be
transported. In agreement with this, our gene ontology
annotation revealed an enrichment of genes involved in
protein metabolism and in catalytic processes among
those significantly up-regulated (Table 2).
Studies using steam girdling to induce senescence in

barley leaves have indicated a prominent role for pro-
teases in regulating this cellular breakdown, particularly
those of the cysteine protease class [59,60]. A TBLASTN
search (E-value ≤ e-10) using all characterised barley pro-
teases against our isogroup, singleton and unigene sets
yielded 150, 107 and 149 wheat proteases, respectively
(data not shown). Among these 406 proteases only
seven with homologs in the unigene assembly
(CK209601, CK194339, CA646317, CK218017,
CK214606, CK205578, CK167111; Additional file 5)
showed significant up-regulation in the WT relative to
the GPC-RNAi samples (DEseq P≤0.01, Edge R P≤0.01
and MWW P≤0.05). One possible explanation for the
relatively limited up-regulation of proteases in our data-
set could be the differences in experimental approaches
(naturally-induced monocarpic senescence vs. steam
girdling induced senescence). Alternatively, it is possible
that GPC plays a limited role in the up-regulation of
proteases and that, at 12 DAA, the genes coding for
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other proteases are not yet differentially regulated. Since
visible signs of senescence in the leaves are still absent
even at 22 DAA (Additional file 1 figure S1), the cellular
degradation and metabolism mediated by proteases may
simply be occurring at a later stage of senescence and
thus beyond our detection.
An obvious way to increase nutrient remobilization is

to increase the expression or activity of transporter
genes responsible for the transport of nutrients to the
grain. For example, over-expression of a gene encoding
a member of the ZIP transporters in barley resulted in
increased levels of zinc in the developing grain [61].
Within our transcriptome data, there are a greater pro-
portion of genes with transporter activity among those
up-regulated by GPC than among those down-regulated
by GPC or not affected by GPC (Table 2). The up-regu-
lated transporters include one member of the NRAMP
family (isogroup 01654, MWW P≤0.05, Additional file
3) and one from the ZIP gene family (isogroup 02825,
MWW P≤0.05, Additional file 3). NRAMP proteins have
been shown in plants to act as multiple divalent metal
cation transporters, accepting ions including iron [62],
aluminium [63] and cadmium [64]. In plants, the ZIP
family of transporters have been well-characterised as
metal ion transporters and several members have been
shown to be up-regulated during senescence [53].
Based upon rice annotation, several genes of the

nodulin family are significantly up-regulated during
wheat senescence. The most highly up-regulated mem-
ber of this family is from the MtN3 nodulin class which
is significantly up-regulated in the WT relative to the
GPC-RNAi at 12 DAA, and which increases further at
22 DAA (isogroup 10811, Figure 5). A close homolog in
rice has been shown to interact with two Cu transpor-
ters (COPT) [65,66] suggesting the possibility that the
homologous genes identified in our screen may play a
similar role in the remobilization of nutrients during
senescence. Additional experimentation will be neces-
sary to elucidate the role of wheat nodulins during
monocarpic senescence.
While the approach described in this study provides a

starting list of differentially expressed genes to dissect
the early stages of GPC-regulated senescence, we are
currently unable to distinguish between those genes
directly regulated by GPC and those which are regulated
indirectly through intermediate genes. Chromatin
immunoprecipitation experiments complemented with
in vitro identification of the GPC specific DNA-binding
sequences will be necessary to address this question
[67,68].

Conclusions
The comprehensive overview provided by mRNA-seq is
well-suited to explore the complexity of the regulatory

networks and metabolic and physiological events asso-
ciated with monocarpic wheat senescence and nutrient
remobilization. This study confirms the hypothesis that
the GPC gene is an early regulator of a complex regula-
tory network that includes hundreds of genes affecting
both monocarpic senescence and nutrient remobilization
from the leaves to the grain. In addition, our study
shows that the onset of monocarpic senescence is char-
acterized by the down-regulation of a large number of
genes, which are likely to be no longer necessary.
Although genes up-regulated during senescence repre-
sent a small proportion of the differentially regulated
genes identified in this study, they will likely provide the
most interesting targets to identify the active processes
triggered during monocarpic senescence. These active
processes are most likely required to guarantee an
orderly disassembly of the contents of the leaf cell and
the subsequent efficient remobilization of these nutri-
ents to the developing grains.
The early time point of the senescence process

selected in this study (12 DAA) proved to be very infor-
mative, but a more detailed study of the senescence
time course will be required to better understand this
dynamic process. In addition, the GPC-RNAi transgenic
plants showed a simultaneous down-regulation of the
GPC-1 and GPC-2 genes making it impossible to differ-
entiate the individual contributions of these paralogous
genes. We have developed a set of tetraploid wheat GPC
mutants (gpc-1, gpc-2 and double gpc-1/gpc-2) using
TILLING (Targeting Induced Local Lesions in Genomes
[69]) with which we plan to carry out a more extensive
characterization of the senescence time course using
mRNA sequencing. The same tetraploid TILLING
population [69] can also be used to generate loss-of-
function mutants for selected GPC up-regulated genes
to determine their functions and to initiate a systematic
dissection of the regulatory network controlling senes-
cence in wheat. We have initiated the TILLING of the
JA-induced jacalin-like lectin domain protein as an
initial step in the dissection of this complex regulatory
network.

Methods
Plant material and RNA extraction
Transgenic plants for the GPC-RNAi construct (T. aesti-
vum cv. Bobwhite) and the wild-type controls [3] were
grown under long-days (16 h light 8 h dark). Single
entire flag leaves were sampled 12 days after anthesis
(12 DAA) and immediately frozen in liquid nitrogen.
The same plant material was used for library construc-
tion and qRT-PCR validation, using four independent
biological replicates for library construction and a total
of ten biological replicates for the qRT-PCR validation
experiments. The leaves were ground and RNA samples
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were extracted using the RNeasy Plant Mini Kit (QIA-
GEN). Concentration and purity of total RNA was
checked on a Nanodrop Spectrophotometer. RNA integ-
rity was evaluated by standard formaldehyde agarose gel
electrophoresis.

454 mRNA sequencing
The sequencing of full-length cDNA libraries was per-
formed using a GS FLX sequencer (Roche) in Kansas
State University Integrated Genomics Facility following
the standard single read shotgun 454 sequencing proto-
col with Titanium chemistry (Roche). First-strand cDNA
synthesis was performed according to SMART cDNA
synthesis technology (Clontech Laboratories, Inc.) using
modified 3’ SMART CDS Primer II A (5’-AAG-
CAGTGGTATCAACGCAGAGTACTTTTGT(9)C T
(10)VN-3’) and SuperScript III reverse transcriptase
(Invitrogen). Double-stranded cDNA was amplified by
long-distance (LD) PCR using Advantage 2 PCR Enzyme
System (Clontech Laboratories, Inc). Amplification was
performed on a thermal cycler (Applied Biosystem) with
the following PCR parameters: 95°C - 1 min. followed
by 16 cycles of 95°C - 15 sec., 65°C - 30 sec., 68°C - 6
min. The quality of double-stranded cDNA was checked
by running on a 1.1% agarose/EtBr gel in 1X TAE buffer
and was purified using QIAquick PCR Purification Kit
(QIAGEN).
cDNA sequence assembly and trimming of adaptors

used for library construction were performed using GS
Assembler (Roche) with default parameters for overlap
detection. These parameters include a minimum overlap
of 40 bp and a minimum overlap identity of 90%. Since
the wheat A, B and D genome coding regions are
approximately 97% identical [48], the 454 contigs pre-
sented here are likely to include the combinations of the
different homoeologs as well as intra-genomic paralogs.
Reads identified as outliers by the GS De Novo Assem-
bler and reads shorter than 50 nt after trimming were
excluded from the assembly process.
The number of 454 reads within each isogroup was

counted using a custom PERL script using the data in
ACE file generated by the GS De Novo Assembler.
Assemblies were deposited in GenBank (TSA division)
under accessions HP608076 - HP639668 (TSA project
59945; Additional file 2). BLAST analyses were run
locally using BLAST 2.2.21 (NCBI).

Illumina mRNA sequencing
Amplified cDNA synthesis was performed according to
the mRNA sequencing protocol from Illumina (Part #
1004898 Rev. D) and using 10 μg total RNA as starting
material. The initial targeted insert size ranged between
150 to 250 bp, but shorter fragments were incorporated
during the purification process as reflected in the

subsequence analyses. Sequencing was carried out on an
Illumina Genome Analyzer II at the DNA Technologies
Service core at UC Davis (http://genomecenter.ucdavis.
edu). One paired-end sequencing runs were carried out
using 85 cycles. The primary output of the Illumina
pipeline (qseq files) was used to extract high quality
sequences. The parser, http://code.google.com/p/atgc-
illumina/wiki/Illumina_QSEQ_Parser analyzed quality
scores in qseq files and trimmed everything after the
first failed score, ‘B’ (see http://code.google.com/p/atgc-
illumina/wiki/Illumina_Quality_Scores). Upon trimming,
we filtered out sequences shorter than 40 nt and those
whose GC content was not within the 20% - 80% range.
FASTA files with high-quality trimmed sequences were
used for downstream analysis. Low quality sequences
and vector/adaptor contaminants were removed using
custom scripts available from http://code.google.com/p/
atgc-illumina/. The Illumina reads were deposited in the
National Center for Biotechnology Information’s Gene
Expression Omnibus (GEO) and are accessible through
GEO (accession n. GSM632785-91; http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE25759).
High quality reads were mapped to the 454 assem-

blies, singletons and unigenes (http://www.ncbi.nlm.nih.
gov/UniGene/UGOrg.cgi?TAXID=4565) using Bowtie
V0.12.5 [32] global alignment mode and allowing a max-
imum of three mismatches (parameters: -k 1 –best -v 3
-f – sam–sam-nohead). Results were confirmed with
SOAPaligner/SOAP2 [70]. SAM output files were parsed
with custom Perl scripts to count the number of reads
mapping to a single contig/isotig. Reads matching isotigs
and contigs within isogroups were summed to obtain
the counts per isogroups. Isogroup normalized counts
from wild type and GPC-RNAi transgenic plants were
compared using both DESeq [33] and edgeR statistical
analyses [34]. Both programs assume a negative bino-
mial distribution for the count data, but differ in their
models for estimating the distribution parameters from
the data. In particular, edgeR uses a single-value disper-
sion estimate of the variance, whereas DESeq estimates
the variance locally, using different coefficients of varia-
tion for different expression levels assuming that genes
with a similar expression level also have similar variance
across replicates (for details see [33] and [34]).

qRT-PCR
The sequence from each target isogroup was used to
screen the available wheat NCBI EST database (http://
www.ncbi.nlm.nih.gov/). Primers were designed using
Primer3 software (http://frodo.wi.mit.edu/primer3/)
based on the isogroup sequence, or if available, on the
consensus sequences from ESTs or contigs from the dif-
ferent wheat genomes. Therefore, the transcription pro-
files presented here represent the integration of the

Cantu et al. BMC Genomics 2011, 12:492
http://www.biomedcentral.com/1471-2164/12/492

Page 14 of 17

http://genomecenter.ucdavis.edu
http://genomecenter.ucdavis.edu
http://code.google.com/p/atgc-illumina/wiki/Illumina_QSEQ_Parser
http://code.google.com/p/atgc-illumina/wiki/Illumina_QSEQ_Parser
http://code.google.com/p/atgc-illumina/wiki/Illumina_Quality_Scores
http://code.google.com/p/atgc-illumina/wiki/Illumina_Quality_Scores
http://code.google.com/p/atgc-illumina/.
http://code.google.com/p/atgc-illumina/.
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25759
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25759
http://www.ncbi.nlm.nih.gov/UniGene/UGOrg.cgi?TAXID=4565
http://www.ncbi.nlm.nih.gov/UniGene/UGOrg.cgi?TAXID=4565
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://frodo.wi.mit.edu/primer3/


transcript levels of different homeologs of each gene.
Primer efficiencies were calculated using five 4-fold
cDNA dilutions (1:1, 1:4, 1:16, 1:64 and 1:256) in dupli-
cate as well as checking for amplification in a negative
control without DNA. The efficiency of the primers
used in this study ranged from 86.8% to 99.5% (Addi-
tional file 1 table S4). Specificity was checked by analyz-
ing dissociation curves ranging from 60°C to 94°C.
Primers for the internal control (ACTIN) and conserved
primers that amplify all GPC paralogous and homeolo-
gous genes in a region outside the RNAi construct have
been described previously [3]. The GPC-6B copy is
deleted in Bobwhite [3].
The RNA equivalent of 1μg cDNA was synthesized

using QuantiTect cDNA synthesis kit (QIAGEN) and
samples diluted to 10 ng/μl. qRT-PCR reactions
included 1 μl cDNA corresponding to 10 ng of total
RNA, 10 μl QuantiTect SYBR Green PCR mix (QIA-
GEN) 0.5 μl of both forward and reverse primers (10
μM, final concentration 250 nM), and 4 μl of water in a
20 μl final reaction volume. qRT-PCR reactions were
carried out using an ABI Prism 7000 sequence detection
system (Applied Biosystems) using the following cycling
conditions: 50°C - 2 min, 95°C - 15 min, 40 cycles of
95°C - 15 sec, 60°C - 1 min. For each validation, 10 bio-
logical replicates were used per genotype. The 2-ΔΔCt

method [36] was used to normalize and calibrate tran-
script values relative to the endogenous ACTIN control.
Within analyses, the same calibrator was used for all
genes so the scales of their linearized values are compar-
able. These linearized values represent the number of
RNA copies per copy in the calibrator sample.

Additional material

Additional file 1: Figure S1 - WT and GPC-RNAi plants 22 days after
anthesis. Figure S2 - Frequency distribution of lengths of 454 reads (A)
and assembled transcripts (B). Figure S3 - Relative distribution of counts
coverage of 454 and Illumina data (contigs and singletons). Figure S4 -
Boxplots showing the distributions of raw (left) and normalized (right)
Illumina counts. Figure S5 - Sample clustering based on counts of
Illumina reads mapped on singletons (left) and unigenes (right). Figure
S6 - Principal component analysis of the Illumina data. Figure S7 -
Transcript levels of isogroups validated by qRT-PCR (Table 1P≤0.05) and
not included in Figure 5 across a senescing time course. Table S1 -
Summary of 454 sequencing results. Table S2 - Summary of Illumina
sequencing results. Table S3 - Summary of Illumina reads counts. Table
S4 - Isogroups analysed by qRT-PCR, homeologues, primer sequences
and primer efficiencies. Table S5 - Percent distribution of the functional
grouping of the singletons based on GO-slim annotation. Table S6 -
Abundance of transposable elements in the assembled transcriptome
and in the singletons and their differential expression in WT and GPC-
RNAi flag leaves.

Additional file 2: Multi-fasta file with the sequences of 146,671
singletons.

Additional file 3: Normalized Illumina counts of reads mapped onto
454 contigs with calculated P-values for MWW, edgeR and DESeq
statistical analyses. The table includes also isotigs and contigs IDs with
the corresponding GenBank accession number and the associated

GOSlim terms. Cell color-coding: red color corresponds to ≥2 fold up-
regulation, green color corresponds to ≥ 2 fold down-regulation, yellow
color corresponds to P≤0.01, and orange color corresponds to P≤0.05.

Additional file 4: Normalized Illumina counts of reads mapped onto
454 singletons with calculated P-values for MWW, edgeR and
DESeq statistical analyses. Cell color-coding: red color corresponds to
≥2 fold up-regulation, green color corresponds to ≥ 2 fold down-
regulation, yellow color corresponds to P≤0.01, and orange color
corresponds to P≤0.05.

Additional file 5: Normalized Illumina counts of reads mapped onto
wheat unigenes with the calculated P-values for MWW, edgeR and
DESeq. Cell color-coding: red color corresponds to ≥2 fold up-regulation,
green color corresponds to ≥ 2 fold down-regulation, yellow color
corresponds to P≤0.01, and orange color corresponds to P≤0.05.

Additional file 6: Set of 815 isogroups differentially regulated at
both edgeR and DESeq tests (P≤0.01). Cell color-coding: red color
corresponds to ≥2 fold up-regulation, green color corresponds to ≥ 2
fold down-regulation, yellow color corresponds to P≤0.01, and orange
color corresponds to P≤0.05. Data are sorted by fold-change.

Additional file 7: Set of 691 isogroups differentially regulated at
edgeR (P≤0.01) DESeq tests (P≤0.01) and MWW (P≤0.05) tests. Cell
color-coding: red color corresponds to ≥2 fold up-regulation, green color
corresponds to ≥ 2 fold down-regulation, yellow color corresponds to
P≤0.01, and orange color corresponds to P≤0.05. Data are sorted by fold-
change.

Additional file 8: Set of 748 isogroups similar to transposable
elements. Cell color-coding: red color corresponds to ≥2 fold up-
regulation, green color corresponds to ≥ 2 fold down-regulation, yellow
color corresponds to P≤0.01, and orange color corresponds to P≤0.05.
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