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Abstract

Background: Small molecule ligands often have multiple effects on the transcriptional program of a cell: they
trigger a receptor specific response and additional, indirect responses ("side effects”). Distinguishing those
responses is important for understanding side effects of drugs and for elucidating molecular mechanisms of toxic
chemicals.

Results: We explored this problem by exposing cells to the environmental contaminant benzo-[a]-pyrene (B[a]P). B
[a]P exposure activates the aryl hydrocarbon receptor (Ahr) and causes toxic stress resulting in transcriptional
changes that are not regulated through Ahr. We sought to distinguish these two types of responses based on a
time course of expression changes measured after B[a]P exposure. Using Random Forest machine learning we
classified 81 primary Ahr responders and 1,308 genes regulated as side effects. Subsequent weighted clustering
gave further insight into the connection between expression pattern, mode of regulation, and biological function.
Finally, the accuracy of the predictions was supported through extensive experimental validation.

Conclusion: Using a combination of machine learning followed by extensive experimental validation, we have
further expanded the known catalog of genes regulated by the environmentally sensitive transcription factor Ahr.
More broadly, this study presents a strategy for distinguishing receptor-dependent responses and side effects
based on expression time courses.

Background
Elucidating the transcriptional response of cells to xeno-
biotic compounds like drugs or environmental contami-
nants is of primary importance for understanding the
physiological effects of such compounds. However,
exposure to xenobiotic compounds often induces a
complex transcriptional response comprised of specific
(i.e. transcription factor (TF) activated programs) and
unspecific regulatory mechanisms. Dissecting these
responses and identifying the transcriptional profiles
associated with each individual (sub-)effect is essential
for explaining specific and possible side effects of drugs
or for predicting toxic responses of environmental
contaminants.

One of the most studied TFs involved in the response
to environmental pollutants or xenobiotic compounds
in general is the aryl hydrocarbon receptor (Ahr). The
Ahr has been studied for decades mainly because of its
critical role in xenobiotic-toxicity and carcinogenesis. In
its inactive state, Ahr resides in the cytoplasm in a cha-
perone complex together with the X-associated protein
2 (Xap2, also known as Aip, Ara9) and heat-shock pro-
tein 90 (Hsp90). After ligand binding, the receptor
translocates to the nucleus where it associates with its
cofactor Arnt (Ahr nuclear translocator) yielding a com-
petent TF. This heterodimer binds to a DNA binding
motif called the xenobiotic response element (XRE),
which functions as an enhancer in the regulatory
domain of a wide range of genes commonly referred to
as the Ahr gene battery [1,2]. Some of these genes, such
as the cytochrome P450 enzyme Cyp1a1, NAD(P)H:qui-
nine oxidoreductase (Nqo1), aldehyde dehydrogenase
(Aldh3a1), UDP glucuronosyltransferase (Ugt1a2) and
glutathione-S-transferase (Gsta1), are involved in Phase

* Correspondence: irina.lehmann@ufz.de; andreas.beyer@biotec.tu-dresden.de
† Contributed equally
1Cellular Networks and Systems Biology, Biotechnology Center, TU Dresden,
Dresden, Germany
2Dept. of Environmental Immunology, UFZ, Helmholtz Center for
Environmental Research, Leipzig, Germany
Full list of author information is available at the end of the article

Michaelson et al. BMC Genomics 2011, 12:502
http://www.biomedcentral.com/1471-2164/12/502

© 2011 Michaelson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:irina.lehmann@ufz.de
mailto:andreas.beyer@biotec.tu-dresden.de
http://creativecommons.org/licenses/by/2.0


I/II metabolism. As previously mentioned, this activa-
tion of metabolizing enzymes through Ahr may lead to
the formation of toxic metabolites of the activating
ligand itself. This is particularly true for benzo-[a]-pyr-
ene (B[a]P), a classical Ahr agonist. Only after the self-
induced metabolism of this procarcinogen is the ulti-
mate genotoxic metabolite anti-benzo-[a]-pyrene-trans-
7, 8-dihydroxy-9, 10-epoxid (BPDE) formed. Several stu-
dies have examined the transcriptional effects of Ahr
activation in different species and cell types [3-6]. How-
ever, deciphering the Ahr-specific transcriptional
response is not a trivial task, considering that Ahr acti-
vation might trigger the activation of other TFs or the
generation of toxic metabolites which will add side
effects to the observed differential gene expression (Fig-
ure 1). Therefore, the overall transcriptional response
directly related to Ahr binding is incompletely eluci-
dated, and the number of well-defined Ahr specific
genes still remains small.

One strategy to assess Ahr-dependence is to compare
gene expression of cells or tissues that have the wild
type Ahr with those of Ahr-null cells in a matched
genetic background, as was shown by Tijet et al. [7]. In
their study they compared the effect of 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD) in Ahr +/+ and Ahr -/-
mice after long term exposure. This experimental setup,
as the authors themselves conceded, does not allow the
discrimination of genes directly regulated through Ahr
as a primary response and secondary, downstream
effects: both classes would register as being differentially
expressed. A time course design with early measure-
ments has the potential to distinguish primary respon-
ders, which are likely to change first, from indirect
responses that are likely to show up later.
In an elegant experimental setup, Hockley et al. [8,9]

sought to separate the primary effects of Ahr activation
from the side effect caused by the genotoxic metabolite
BPDE. They compared the effects of B[a]P, BPDE and
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Figure 1 Exposing cells to B[a]P provokes a complex intracellular response. Exposing cells to B[a]P provokes a complex intracellular
response. In Ahr expressing cells (+Ahr) B[a]P is metabolized, causing side effects due to its active metabolite BPDE. Since this metabolism is
dependent on P450 enzymes that are activated by Ahr, side effects caused by B[a]P metabolism should only be detectable in +Ahr, while effects
of direct exposure to BPDE should be independent of Ahr (A). Primary responders to Ahr are activated by B[a]P exposure only in +Ahr (B); these
include other TFs. These TFs can in turn activate their target genes with a time lag compared to the primary Ahr response (C).
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TCDD exposure in two different human cell lines.
Unfortunately, the first time point they investigated was
not until six hours after exposure. Considering that it
was shown previously that Ahr translocation and nas-
cent transcription is already induced 1 h after TCDD
exposure [10], we believe that identification of primary
Ahr responders is only possible by including early time
points of exposure in gene expression studies.
In this work, we investigate the hypothesis of whether

time-resolved transcriptional signatures of genes that are
primary Ahr targets differ from the profiles observed for
genes responding to the toxic metabolite BPDE. We
demonstrate that machine learning can be used for
identifying these characteristic signatures and for subse-
quently classifying genes as to whether they are primary
Ahr-dependent targets or indirectly affected (BPDE-
dependent) genes. This general strategy of using time
course gene expression data to predict transcriptional
regulatory roles has been previously explored [11-14],
although primarily in lower organisms such as bacteria
and yeast.
We expect that because such learning methods are

less encumbered by methodological assumptions (com-
pared to traditional statistical comparisons), they are
more able to find subtle but meaningful patterns in the
data. For example, an important assumption of previous
attempts to cluster Ahr-centric expression data [3,15-17]
is that co-regulated genes should also be co-expressed.
Hence, clustering of genes based on expression patterns
should identify sets of genes subject to the same regula-
tory program. However, in time courses such co-expres-
sion may only be present during certain phases. In the
case of Ahr we expect co-expression during early time
points, whereas expression may diverge later when the
influence of Ahr diminishes. The analysis presented here
anticipates and effectively deals with this scenario.
Here we employ machine learning techniques coupled

to a straightforward yet robust experimental design in
order to more clearly define genes that are under the
direct transcriptional control of Ahr. This is accom-
plished by training a Random Forest [18] (RF) classifier
to learn the difference between genes responding to B[a]
P exposure and side effects caused by the B[a]P metabo-
lite BPDE. The trained classifier is then applied to all
genes found to be significantly differentially expressed as
a result of B[a]P exposure, and their roles as primary
responders or side effects are predicted. In addition, the
patterns learned by the classifier are used as a basis for
performing weighted clustering. These clusters facilitate
a better understanding of the functional relatedness of
the perturbed genes. Finally, we support predictions
with our own experimental follow-up, as well as with
data from independent studies.

Results
Extensive transcriptional response
The transcriptional response due to Ahr activation by 50
nM and 5 μM B[a]P was investigated in murine hepa-
toma cells (Hepa1c1c7). Exposure effects were examined
in time-course data for 2, 4, 12 and 24 h after treatment,
together with corresponding vehicle (DMSO) controls.
A total of 2,338 genes were perturbed significantly

(FDR <0.05) by exposure to B[a]P and had at least a 2-
fold change (with respect to DMSO-exposed cells) at
some time point over the course of the experiment.
Compared to previous studies of Ahr-mediated temporal
gene expression, this represents a very substantial tran-
scriptional response (see Additional File 1, Table S1).
These genes were highly enriched for a host of biologi-
cal processes (summarized in Additional File 1, Table
S2), including mRNA transport, control of the cell cycle,
apoptosis, and development.

Prediction of primary vs. side effects
The overall analytical framework used here is summar-
ized in Figure 2. Using a matrix of time-resolved gene
expression values as predictors (interpolated as
described in methods), we trained a Random Forest
classifier in a two-class scenario (Ahr primary and side
effect). Training labels were assigned based on the sig-
nificant perturbation of a gene in conditions that sug-
gest being either a primary Ahr responder or responsive
to the presence of BPDE (side effect). This yielded 28
genes as primary responders and 559 genes as side
effects (Additional File 1, Figure S2), before filtering for
outliers. The final classifier had an estimated misclassifi-
cation rate of 7%. Performance of the classifier on out-
of-bag (OOB) data is depicted as a receiver operating
characteristic (ROC) curve in Additional File 1, Figure
S3, panel A.
We then used this trained classifier to predict on all of

the 2,338 differentially expressed genes. The predictions
have varying degrees of confidence, indicated by the
proportion of votes cast for the predicted class. To
establish a threshold above which we could be confident
that the classifier was predictive, we permuted the origi-
nal training labels randomly, trained a Random Forest
with these labels, and predicted on all 2,338 genes. In
general we found that in this “null” scenario, the Ran-
dom Forest did not predict with a proportion of votes
greater than 0.8. Therefore, we consider a class predic-
tion with a proportion of votes greater than 0.8 to be a
reliable prediction (Additional File 1, Figure S3, panel
B). After filtering, 81 genes were predicted as primary
responders to Ahr (Table 1), 1,308 genes were predicted
as side effects, and 949 genes could not be reliably clas-
sified (see Additional File 2).
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Characterization of transcriptional response programs
To characterize the expression patterns that underlie
the classifier’s decision rules, we used the RF proximity
measure as an input to PAM (partitioning around
medoids) clustering - this combination is a form of
weighted clustering. This yielded three coherent clus-
ters, depicted in Figure 3. Clusters 1 and 2 are com-
prised of genes predicted to be side effects of Ahr
activation by B[a]P, while cluster 3 contains genes pre-
dicted to be primary responders to Ahr. Clusters 1 and
2 are characterized by undulating expression profiles
in the low (50 nM) B[a]P exposure, with the mean
behavior of each cluster strongly anticorrelated to the
other. The high (5 μM) B[a]P exposure shows less
cohesive expression patterns, but with the same gen-
eral trend of anitcorrelation between clusters 1 and 2.
In both cases, time points in the 50 nM B[a]P series
are more important for the identity of the clusters
than time points in the 5 μM B[a]P series. Cluster 3 is
characterized by punctuated expression induction at 3
hours in the 50 nM B[a]P time series, and a slightly
extended phase of induction in the 5 μM B[a]P time
series. Other time points are unimportant for the clus-
ter’s identity; indeed, the expression of these genes is
fairly divergent outside of the common phase of

induction. Although cluster 3’s “identity phase” is gen-
erally between 3-4 hours after exposure, where all
genes in the cluster show elevated expression, several
genes (such as Cyp1a1 and Tiparp) in the cluster are
highly expressed well before this window.
Using the Kolmogorov-Smirnov (KS) test, we evalu-

ated the clusters for enrichment of genes perturbed by
an Ahr mutation (Figure 4). By using data from previous
studies [7,19], we performed a 2-way ANOVA and took
P values from the genotype*ligand interaction; these P
values were used as indicators of genes under the direct
influence of Ahr. Genes belonging to the training set
were excluded when calculating the enrichment. Cluster
3 was the only cluster to show enrichment for genes
perturbed by an Ahr mutation. This result further sup-
ports the assertion that cluster 3 contains true Ahr pri-
mary responders, and that the classifier is predictive in
practice. We similarly checked the three clusters for
overrepresentation of known XRE motifs, using UCSC 5
kb upstream promoter sequences and motifs from
TRANSFAC (release 2009.3). We found only borderline
(P = 0.056) enrichment of an XRE motif among genes
in cluster 3 and no enrichment in the other clusters.
The lack of significant enrichment among the predicted
primary Ahr responders suggests that our knowledge of
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the sequence-level requirements for functional binding
of Ahr is currently far from complete.

Experimental confirmation of Ahr dependency
Two independent experimental approaches were chosen
to confirm Ahr-dependency for a subset of representa-
tive genes: direct comparison of the transcriptional

response of Ahr-expressing Hepa1c1c7 and mutant tao
BpRc1 cells deficient in endogenous Ahr, as well as con-
firmation of binding of Ahr in the corresponding pro-
moter regions by chromatin immunoprecipitation
(ChIP).
B[a]P is likely to induce side effects caused by B[a]P

metabolites independent of direct Ahr activation,

Table 1 List of predicted primary targets of Ahr.

MGI ID cluster votes target votes train/test MGI ID cluster votes target votes train/test

Hspa4l 1.00 0.98 test Ccng2 0.98 0.9 test

2410066E13Rik 1.00 0.98 test Fam198b 0.98 0.9 test

Arl6ip5 1.00 0.98 test Ddit4 0.98 0.9 test

Plscr2 1.00 0.98 test Ubl3 0.98 0.87 test

Mpp2 1.00 0.98 training Nqo1 0.98 0.87 test

Tiparp 1.00 0.98 training Trp53inp1 0.98 0.87 test

Sdpr 1.00 0.98 test Cyp1a1 0.98 0.86 test

Ndrg1 1.00 0.97 test Abca6 0.98 0.86 test

Nrn1 1.00 0.97 test Hmox1 0.98 0.83 test

Cyp2s1 1.00 0.97 test Aldh4a1 0.98 0.81 test

Tnfaip2 1.00 0.97 test Npffr1 0.97 0.91 test

Cpox 1.00 0.97 training Btg2 0.97 0.89 test

Osbpl2 1.00 0.97 test Nr3c1 0.97 0.87 test

Rbks 1.00 0.96 test Gm10122 0.97 0.87 test

Ppard 1.00 0.96 training Snx30 0.96 0.96 training

Tbc1d16 1.00 0.95 test Cdkn1b 0.96 0.92 test

Arrdc3 1.00 0.95 training Slc26a2 0.96 0.88 test

Lpin1 1.00 0.95 test Plk2 0.96 0.85 test

Id2 1.00 0.94 test Zscan29 0.96 0.83 test

Xdh 1.00 0.94 test Zfp608 0.95 0.92 training

Gramd3 1.00 0.94 test Nrg1 0.95 0.91 test

Serpine1 1.00 0.93 test Abcd2 0.95 0.8 test

Pfkfb3 0.99 0.98 training Klf9 0.94 0.94 test

Jub 0.99 0.97 test Dusp1 0.94 0.92 training

Ddx58 0.99 0.97 training Tnfaip8 0.94 0.88 test

Zfp418 0.99 0.95 test 9330175E14Rik 0.94 0.82 test

Sgk1 0.99 0.94 test Lrrc30 0.93 0.89 test

Jun 0.99 0.93 test Eda2r 0.93 0.85 test

Cdkn1a 0.99 0.92 test Bmf 0.92 0.93 test

Abcc4 0.99 0.91 test Rnf39 0.91 0.92 training

Slc6a9 0.99 0.91 test St6gal1 0.9 0.94 training

Adh7 0.99 0.90 test Zfp36l1 0.89 0.83 test

Usp18 0.99 0.90 test Nr1d1 0.86 0.91 training

Npc1 0.99 0.88 test Irs2 0.86 0.91 test

Casp3 0.99 0.87 test Ets2 0.84 0.86 training

Aldh3a1 0.99 0.86 test Nfe2l2 0.78 0.86 test

Slc35d1 0.99 0.85 test Irf1 0.76 0.91 training

Cyp1b1 0.98 0.97 test Cib2 0.71 0.84 test

Intu 0.98 0.95 training S1pr1 0.7 0.89 training

Pitpnc1 0.98 0.95 training Traf5 0.59 0.89 training

Sesn2 0.98 0.92 training

List of predicted primary targets of Ahr transcriptional regulation. Confidence scores of both membership in cluster 3 (cluster votes) and as a primary Ahr target
(target votes) are given. Known transcriptional regulators (i.e. annotated with relevant GO terms) are bolded. Additionally, assignment to either the training or
test set is indicated for each gene.
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therefore we included TCDD - a non-metabolized Ahr
ligand - in our confirmation experiments. Differential
expression of Tiparp, Tnfaip2, Cdkn1a, Cdkn1b, Cyp2s1,
Nfe2l2, Mpp2, and Klf9 after treatment with B[a]P or
TCDD at different concentrations was investigated by
quantitative real-time PCR (qPCR). After B[a]P and
TCDD exposure, the expression of all genes was

induced as soon as 1 h after the start of treatment in
Hepa1c1c7 cells, while there was no significant induc-
tion compared to vehicle control samples detectable in
tao BpRc1 cells up to four hours after exposure (Addi-
tional File 1, Figure S4). To complement these experi-
ments, the effect of BPDE treatment on the predicted
primary Ahr targets was investigated. After 2 h of
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Figure 3 Clustering with the RF proximity measure. PAM clustering was performed with a supervised, weighted distance measure, derived
during the classification of Ahr primary responders and side effects. Three distinct programs were found, depicted here as clusters (1-3). Color
saturation indicates the importance of the time points for the identity of the cluster. To further emphasize these important time points, this
same information is shown again for each cluster (black to yellow scale). The classification of each gene is shown as the proportion of RF votes.
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exposure to 5 μM BPDE, a time point for which pro-
nounced induction with B[a]P was observed, no signifi-
cant upregulation of these genes by BPDE exposure was
found (see Additional File 1, Figure S9).
Enrichment of Ahr binding in the promoter region of

all chosen genes could be confirmed by ChIP, with fold
changes (compared to vehicle control samples) ranging
from 7.2-152.2 (Additional File 1, Figure S5).
To investigate the impact of Ahr itself on the diverged

pattern of the low and high B[a]P concentration in the
later time course (Additional File 1, Figure S6) we stu-
died Ahr nuclear translocation over time. GFP-Ahr
expressing cells (genetic background: tao BpRc1) were
exposed to either 50 nM or 5 μM of B[a]P for up to 24
h. Nuclear translocation was determined as the ratio of
nuclear to cytoplasmic fluorescence. A prolonged
nuclear translocation of the receptor was detectable for
the high concentration, whereas after 24 h of exposure
to 50 nM B[a]P the distribution of single cell ratios
approximated the control distribution (Additional File 1,
Figure S7). This finding suggests a continuous transcrip-
tional activation by Ahr with the higher concentration
of B[a]P corresponding to a prolonged induction of Ahr
target genes as, seen in cluster 3 for 5 μM B[a]P.

Confirmation of BPDE dependency
To confirm that the differential expression observed for
genes of either cluster 1 or 2 is indeed dependent on

BPDE, we used the previously mentioned in vitro set-up
(Hepa1c1c7 vs. tao Bprc1 cells). The relevant BPDE con-
centration was determined by comparing the effect of 5
μM B[a]P on Hepa1c1c7 cell proliferation to that of dif-
ferent BPDE concentrations in the same cell line. While
BPDE concentrations up to 1 μM had only a marginal
effect on proliferation, 5 μM BPDE induced an effect
very similar to that seen with 5 μM B[a]P (Additional
File 1, Figure S1). Therefore, subsequent qPCR experi-
ments for representative genes were performed with 5
μM B[a]P or BPDE respectively. The chosen genes
showed transcriptional responses in Ahr-deficient cells
only when exposed to BPDE itself. In Hepa1c1c7 cells B
[a]P treatment induced effects similar to BPDE, however
with a pronounced time lag (Additional File 1, Figure
S8).

Discussion
Exposing cells to xenobiotic compounds like drugs or
environmental pollutants often induces a complex tran-
scriptional response, made up of both specific and
unspecific regulatory mechanisms. Distinguishing the
transcriptional profiles associated with the primary tar-
get effect from those acting in parallel is essential for
understanding possible side effects of such chemicals.
As an example of such a case, we investigated Ahr,

one of the most prominent ligand-activated TFs
involved in xenobiotic-induced signaling. The cellular
response to Ahr activation can be seen as a mixture of a
primary response and side effects. The side effects are
due in part to stress caused by the formation of active
metabolites of the Ahr ligand, while the primary
response is related to Ahr binding to gene regulatory
sequences. A subsequent transcriptional cascade down-
stream of Ahr might be activated by other TFs, which
are themselves regulatory targets of Ahr (Figure 1).
We have employed a time-course design involving

early and late time points to capture both primary and
downstream effects. These effects are separated on the
time axis, but it is not obvious a priori where to draw
the line, i.e. up to which time point expression changes
reflect primary responses. The use of machine learning
allowed us to identify the relevant time points in a data-
driven way. In addition to weighting time points with
respect to their relevance for distinguishing Ahr target
genes, this analysis also identifies specific expression
patterns that are characteristic of primary Ahr targets.

Ahr target genes
Previously well-described members of the Ahr gene bat-
tery like Cyp1a1, Nqo1 Cyp2s1, Aldh3a1, Aldh4a1 and
Cyp1b1 [1,20,21] were predicted as primary responders
to Ahr. In addition to this qualitative confirmation of
the effectiveness of our computational approach, we
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Figure 4 Enrichment of each cluster for Ahr mutant-perturbed
genes. Using data from previous Ahr mutant studies [7,19], we
assessed whether each cluster was enriched (relative to the other
clusters) for genes perturbed by an Ahr mutation. Only genes not
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enrichment. Cluster 3 was highly enriched for perturbed genes,
suggesting that it is enriched for Ahr targets.
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could demonstrate Ahr dependency experimentally by
chromatin immunoprecipitation (ChIP) and qPCR.
Further, we found the set of predicted targets to be
enriched for genes that showed significant Ahr genoty-
pe*ligand interaction (i.e. 2-way ANOVA) effects based
on previously published data [7,19] (Figure 4).
B[a]P is likely to induce side effects caused by B[a]P

metabolites independent of direct Ahr activation, there-
fore we included TCDD - a non-metabolized Ahr ligand
- in our confirmation experiments. All of the genes cho-
sen for the qPCR verification confirmed the predicted
Ahr-dependency (Additional File 1, Figure S4).
We performed a GO enrichment analysis for a func-

tional evaluation of the predicted target genes. The
regulated genes in cluster 3 were enriched for 15 differ-
ent biological functions including terms related to cell
cycle control and proliferation. This influence on the
cell cycle is also manifested on the protein level, as we
were able to show in a previous study [22]. Experimental
confirmation of two of these genes, the cyclin-dependent
kinase inhibitors Cdkn1a and Cdkn1b, showed an exclu-
sive induction in wild type cells, together with an
enrichment for Ahr binding at the corresponding pro-
moters. Another gene known to be involved in cell cycle
regulation, but less well-defined, is the palmitoylated
membrane protein 2 (Mpp2). Mpp2 was also strongly
induced by TCDD and B[a]P in Ahr-expressing cells,
while no differential expression was elicited in the
mutant tao BpRc1 cells. A more indirect effect on cell
cycle regulation originates from the TNF alpha activated
signaling cascade. Five genes (Tnfaip2, Tnfaip8, Traf5,
Casp3, Ddx58) involved in this pathway were predicted
to be primary responders to Ahr.
Tnfaip2 and Casp3 were investigated in our indepen-

dent experimental confirmation. For both genes induc-
tion of expression was only detectable in Hepa1c1c7
cells, while the Ahr-deficient counterparts showed no
significant differential regulation. Actual binding of Ahr
to the promoter sites could be confirmed by ChIP. Pri-
mary regulation by Ahr of the important regulators of
the cell cycle Cdkn1a, Cdkn1b as well as Mpp2 together
with targeting of the TNF alpha signaling pathway
emphasizes the impact of Ahr on endogenous cellular
functions outside of xenobiotic metabolism. Further,
these findings suggest that the observed reduction in
proliferation after exposure to B[a]P is not only a
response to DNA damage, but is also, at least in part, a
direct consequence of Ahr activation.
The early time points proved vital in distinguishing Ahr

targets from genes induced as side effects (Figure 3),
emphasizing the importance of planning experiments such
that the immediate effects are captured. Although pertur-
bation at early time points determined the Ahr primary
response for both B[a]P concentrations, the consistency of

expression between the concentrations diverged later in
the time course (Additional File 1, Figure S6). We investi-
gated if indeed Ahr itself might be important for this dif-
ference. Comparing the translocation behavior of Ahr we
could show a persistent nuclear localization of Ahr for
high B[a]P concentrations for up to 24h of exposure, while
for low concentrations of B[a]P cells showed fewer and
less pronounced translocation events. Obviously many
mechanisms might be responsible for the concentration-
dependent differences in the transcriptional pattern, like
the balance between mRNA production and decay. Never-
theless, persistent Ahr translocation suggests persistent
mRNA production, thereby shifting this balance.

An Ahr transcriptional cascade
Twelve of the genes in cluster 3 (i.e. the Ahr target clus-
ter) are known transcriptional regulators. These regula-
tors could constitute a transcriptional cascade that
begins with the activation of Ahr.
In a recent study, Dere et al. [23] integrated ChIP-chip

and transcriptional data of murine liver tissue after
TCDD exposure. Interestingly, over 70% of the genes we
predicted by our approach as primary Ahr responders
were also identified in their study to be located in
regions of Ahr enriched binding. More importantly, ele-
ven out of the twelve transcriptional regulators identi-
fied by our method were also found in such Ahr
enriched binding regions. This not only underlines the
quality of our Random Forest classifier, but suggests a
more general transcriptional network initiated by Ahr,
independent of the activating ligand.
Ahr has been connected to hormone-induced signaling

as was reinforced by our GO enrichment analysis that
identified “regulation of hormone levels” as one of the
biological functions. Crosstalk with the estrogen recep-
tor has been studied extensively [24-26] and glucocorti-
coid receptor (GR)/Ahr crosstalk has also been
suggested [27,28]. Our classifier predicted the glucocor-
ticoid receptor (Nr3c1) itself as an Ahr target together
with Sgk1, a GR-regulated kinase. In addition, the TF
Klf9, known to be induced by GR and involved in adipo-
genesis, was predicted to be a direct Ahr target. Besides
Klf9, further Ahr targets were predicted with an involve-
ment in lipid synthesis and lipid transport, i.e. the tran-
scriptional regulators Ppard and Lpin play a role in
mammary lipid synthesis, and Npc1, Osbpl2, and
Pitpnc1 are involved in lipid transport. The role of GR
in lipid homeostasis and metabolism is well-established
[29-31]. From our analysis we can deduce a possible
Ahr-activated network of genes directly influencing lipid
status and its regulation by the glucocorticoid receptor.
The interaction of Ahr with another TF Nfe2l2 (aka

Nrf2) might also have an influence on lipid status, speci-
fically on adipogenesis [32]. A bidirectional regulation of
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these two pathways has been described previously [33].
Both TFs have been shown to bind in the other’s pro-
moter region, thereby directly influencing transcription
[32,34]. Therefore, the prediction of Nfe2l2 being an
Ahr target is very well corroborated by previous studies
and was indeed verified by our experimental follow-up.
In addition, a recently described interaction of Nfe2l2
and Ahr confirms one other predicted Ahr target gene:
Abcc4. Xu et al. showed that this multidrug resistant
protein is directly activated by Ahr and Nfe2l2 in liver
[35].
In our analysis we were only able to reliably classify

1,389 of the 2,338 regulated genes as either primary Ahr
targets or as genes responding to BPDE stress. We
found that the unclassified genes were enriched (P =
0.019) for genes perturbed by an Ahr mutation. A possi-
ble explanation for this enrichment is that there are
genes that are downstream targets of Ahr (e.g. via the
other transcriptional regulators that are primary respon-
ders to Ahr; see Figure 1, panel C) among this set. Since
the classifier was not trained on such examples of
downstream Ahr targets, we expect that it would not
reliably classify these genes.

Side effects
Genes in clusters 1 and 2 are predicted to be perturbed
not as a result of Ahr regulation, but by the presence of
the metabolite BPDE. This genotoxic metabolite of B[a]
P is known to cause DNA damage by DNA-adduct for-
mation [36,37]. DNA repair processes are initiated, fol-
lowed by re-initiation of DNA replication (one of the
eleven GO categories enriched in cluster 1). Further,
many MAP kinases were differentially regulated, and all
of them are members of clusters 1 or 2. The idea that
MAP kinases are Ahr-independent is supported by Tan
et al. [38], who could show that Ahr ligands could acti-
vate MAPKs independent of Ahr.
To further support the predictions of our classifier, we

selected some representative genes from clusters 1 and
2 (Agfg1, Anapc1, Nfkb, and Parp1) and measured their
expression in response to exposure to B[a]P or BPDE in
wild type (Hepa1c1c7) or mutant (tao BpRc1) cells
(Additional File 1, Figure S8). These experiments
demonstrate that BPDE causes differential expression
with and without Ahr, while B[a]P only perturbs expres-
sion in the presence of Ahr, i.e. when metabolism of B
[a]P to BPDE is made more efficient by a functional Ahr
pathway. These results demonstrate, as predicted, that
these genes are affected by the presence of BPDE and
are not a primary response regulated by Ahr.

Utility of weighted clustering
One unique and desirable aspect of the type of learning
approach applied here is a side effect of the learning

process - the proximity measure. The RF proximity is a
type of similarity measure between subjects (in this case
genes), based on how often two genes take the same
path down the decision trees of the forest. It is in effect
a weighted similarity measure because only time points
that are useful in the learning process are used in the
calculation of the proximity. This is in contrast to the
widely used Euclidean distance or Pearson correlation,
in which all features make an equal contribution.
A weighted (dis)similarity measure is advantageous in

clustering gene expression time series, especially in
complex transcriptional responses of higher eukaryotes,
as presented in this work. Additional systems are pre-
sent in higher eukaryotes that influence the synthesis,
stabilization, and degradation of mRNA. These addi-
tional systems make it less likely that functionally
related genes share precisely the same characteristic
expression profile over time. For instance, functionally
related genes, induced by a common TF, may share
similar expression patterns shortly after induction, but
may then diverge as other factors come into play, such
as microRNAs. A supervised, weighted metric such as
RF proximity de-emphasizes the diverging time points
while emphasizing the common phase of induction,
resulting in the grouping of the functionally related
genes. Conversely, such expression profiles are unlikely
to fall into the same cluster when using e.g. the Eucli-
dean distance, and could be a contributing factor to the
mixed success of past attempts [3,15-17] to cluster Ahr-
induced gene expression time courses in a way that is
biologically interpretable.
One technique that is frequently used to address pro-

blems such as those described here is biclustering
[39-43]. Briefly, biclustering is a strategy that seeks to
cluster in two dimensions simultaneously, e.g. genes and
time points. The goal is to find genes that show similar
expression in some (though not necessarily all) condi-
tions. There are many algorithms and heuristics that
implement biclustering. Strengths and weaknesses of the
approach vary by implementation, but in general most
biclustering methods are unsupervised and are non-
deterministic. Without alleviating assumptions it can
become a computationally intractable problem. It can be
difficult to judge the quality of the resulting clusters,
and clusters are often redundant. In the work presented
here, clustering with the RF proximity presented fewer
potential pitfalls compared to biclustering, since we had
a means of performing supervised learning and the RF
proximity was obtained “for free” since it was part of
the learning process. In addition, the clusters were non-
redundant and judging their quality was fairly straight-
forward by using another Random Forest to predict the
assigned cluster labels of the genes (as described in the
methods section). In addition to the work presented
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here, clustering with an unsupervised RF proximity has
been described in Shi and Horvath [44], and an example
using multivariate response Random Forests to examine
transcriptional programs in yeast can be found in Xiao
and Segal [45]. We have found that PAM clustering
with the RF proximity measure works well in scenarios
where weighted clustering is desirable, and is an alterna-
tive to biclustering that is worth considering. However,
one obvious limitation for any supervised method -
including our use of RF here - is the need for a training
set. In some situations a training set may be difficult or
impossible to assemble - this is an important considera-
tion when selecting a clustering method.

Conclusion
We explored the time-resolved transcriptional response
induced by exposure to the environmental pollutant B
[a]P and mediated by the transcription factor Ahr. As
with many microarray experiments involving cellular
stress, we observed an immense degree of differential
expression, which often complicates biological interpre-
tation. However, by using machine learning approaches,
we successfully teased apart the specific, receptor-driven
transcriptional response from the more general toxic
response. Genes predicted to be part of a primary recep-
tor-driven response were validated by extensive experi-
mental work, further supporting the predictive power of
our classifier. In addition to the specific results that
further characterize the Ahr regulatory battery, our
work here offers a useful strategy for distinguishing
receptor-dependent responses and side effects based on
expression time courses.

Methods
Cell culture and sample preparation
Murine hepatoma cells, Hepa1c1c7 as well as the
mutant tao BpRc1 cells (both LG Standards GmbH,
Wesel, Germany), deficient in endogenous Ahr, were
used for all experiments. Cells were cultured in phenol
red-free DMEM supplemented with 7% FCS, 1% gluta-
mine and 1% penicillin/streptomycin. Ahr translocation
was investigated in a stable cell line based on tao BpRc1
cells expressing GFP-Ahr under tetracycline control.
Cells were stimulated with different concentrations of
benzo-[a]-pyrene (B[a]P; Sigma Aldrich, Steinheim, Ger-
many), BPDE (Midwest Research Institute, NCI Chemi-
cal Repository, Kansas City, MO, USA) and TCDD
(Sigma-Aldrich, Steinheim, Germany) dissolved in
DMSO respectively.

Microarrays
To investigate the differential kinetic behavior of the
transcriptome after B[a]P exposure, and to identify the
primary Ahr response, we used two different setups: (1)

short term exposure, Hepa1c1c7 cells were treated with
50 nM B[a]P for 0, 1, 2, and 4 hours and (2) long term
exposure, Hepa1c1c7 cells were treated with 50 nM or 5
μM B[a]P for 2, 4, 12 and 24h. Corresponding time-
matched vehicle controls were generated. All experi-
ments were performed in triplicate. Cells were lysed in
Trizol reagent (Invitrogen, Darmstadt, Germany) and
RNA extracted using RNAeasy kits (Qiagen, Valencia,
CA, USA). RNA was quantified and integrity verified on
a Bioanalyzer (Agilent Technologies, Palo Alto, CA).
Sample preparation for Affymetrix GeneChip Mouse
Exon 1.0 ST arrays (Affymetrix, Santa Clara, CA, USA)
was performed following the manufacturer’s recommen-
dations. Microarray data was deposited in the Gene
Expression Omnibus (GEO) under the identifier
GSE29188.

Detection of differential expression
Microarrays were normalized using RMA and the Uni-
versity of Michigan custom CDF file (version 12.1.0)
with mappings to Ensembl exon IDs. After normaliza-
tion, but before proceeding with the analysis, we sub-
tracted the (log2) DMSO expression values from the
corresponding time point and batch of each of the B[a]P
treatments. Exon expression values were then summar-
ized to their corresponding Ensembl gene IDs, with the
summarized gene expression value being the mean of its
constituent exons. A 2-way ANOVA analysis was per-
formed on each gene, with time and concentration as
the factors. We then corrected for multiple testing by
using the FDR. We considered only genes with an FDR
<0.05 for any of the main effects or time*concentration
interaction. In addition, we admitted genes with an FDR
<0.05 from a simple t-test each B[a]P concentration (all
time points pooled) vs. DMSO. Of these, we only con-
sidered genes that achieved 2-fold (or greater) differen-
tial expression at at least one time point. This left us
with a total of 2,338 genes regulated in the long-term
exposure (24 hour) data set. We interpolated the expres-
sion between the measured time points by averaging the
simple linear interpolation with the spline interpolation.
Since we have no measurement at time 0 hours, we
assume equivalent expression with the DMSO samples,
i.e. the expression ratio at time 0 hours is 0 on the log2
scale. The interpolation gave us a total of 25 values per
gene, 1 value every hour from 0 to 24 hours. Whether
or not the expression values were interpolated did not
significantly affect the results of the classification and
clustering, but we opted to use interpolated values to
aid in visualization and interpretation.

Classification with Random Forests
We used the R implementation of Random Forests [46]
to perform the two-class classification (Ahr primary
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response vs. side effects), using the time course expres-
sion measurements of significantly regulated genes as
predictors. To derive training labels (Additional File 1,
Figure S2), we used data available from two BPDE stu-
dies in human cell lines [47,48], combining the P values
from the studies using Fisher’s method. We labeled
mouse orthologs of genes with BPDE-perturbed expres-
sion (FDR <0.05) as “secondary” since BPDE does not
bind Ahr, but indicates affected genes further down-
stream of Ahr. We labeled genes as “primary Ahr“ that
showed differential expression (FDR <0.05) in an inde-
pendent gene expression time course of cells exposed to
50 nM B[a]P from 0 to 4 hours, with the additional con-
dition that they were not significantly regulated in the
BPDE data (i.e. orthologs had FDR >0.05). These criteria
led to 28 “Ahr-primary” labeled genes and 559 “side
effect” labeled genes.
With this training set we ran RF with mtry set to 5,

and ntree set to 5,000. We used the built-in outlier mea-
sure and removed genes in the 95th percentile of outlier
scores (resulting in 27 primary response and 530 side
effect training cases), then re-ran RF, this time with
1,000 trees. In both cases, to avoid biased predictions
(since there are far more “secondary” samples) we ran-
domly sampled 20 genes from each class for the con-
struction of each tree in the forest. The overall
misclassification rate for the final forest was 7% (out of
bag error estimate).
Predictions were made for all 2,338 differentially

expressed genes, and genes with a proportion of class
votes greater than 80% were retained for further analy-
sis. This cutoff was chosen because when the training
labels were permuted randomly and a RF trained, no
prediction had a proportion of votes greater than 80%.
Using these criteria, a total of 82 genes were predicted
to be responding to Ahr directly, and 1,365 genes were
predicted to be side effects (e.g. regulated through the
presence of B[a]P metabolites). In addition to predic-
tions, the RF proximity measure was calculated for all
significant and confidently classified genes, yielding a
1,447 by 1,447 matrix.

Clustering
The RF proximity matrix was used as a distance mea-
sure by the transformation D =

√
1 − P , where P is the

original proximity matrix and D is the distance matrix.
This distance matrix was then used as the input for
PAM clustering, available in the R cluster package. We
tested a range of k values and found that specifying 3
clusters gave the best average silhouette.
To assess the degree of confidence in cluster assign-

ment for each gene, an RF was fit to predict cluster
label using the gene expression measurements. The

proportion of votes for the correct cluster is an indica-
tion of how well a gene fits in the cluster. Genes that
were given a lower proportion of votes for the correct
class than expected under the null hypothesis (labels
permuted randomly) were excluded. When including
this additional filtering criterion, the final number of
genes classified as primary responders was 81, with
1,308 genes as side effects. In addition, the importance
measurements obtained in the construction of this RF
give an indication of which time points and which con-
centrations are important parts of the cluster’s identity.
GO enrichment was performed for each cluster (Addi-

tional File 1, Table S3) using the topGO package [49].
Enrichment of the clusters for genes perturbed by an
Ahr mutation was performed using the Kolmogorov-
Smirnov test, using P values derived from differential
expression of genes from [7,19]. P values were calculated
for each study separately, then combined using Fisher’s
method. Genes used to train the RF classifier were
removed prior to calculation of enrichment, to ensure
that the results reflected the actual predictive ability of
the classifier.

Cell proliferation
Long-term exposure studies in Hepa1c1c7 cells treated
with B[a]P versus BPDE were performed using the
xCELLigence System (Roche Diagnostics, Mannheim,
Germany). This system measures electrical impedance
across micro-electrodes integrated on the bottom of 96-
well tissue culture E-plates (Roche Applied Science,
Germany). Shifts in impedance are measured in real
time, indicating changes in cell proliferation. Cells were
monitored every 15 min for up to 24 h after treatment
with 50 nM, 500 nM, 1 μM, 2.5 μM or 5 μM of B[a]P
or BPDE respectively. Each experiment was performed
in triplicate.

qPCR
In a separate experiment Hepa1c1c7 and tao BpRc1 cells
were exposed to B[a]P (50 nM, 5 μM), BPDE (50 nM, 5
μM) and 1 nM TCDD for 0.5, 1, 2, and 4 h. mRNA was
extracted and isolated using the MagNA Pure LC Sys-
tem (Roche Diagnostics GmbH, Mannheim, Germany).
50 ng of mRNA was reverse transcribed according to
the protocol provided with the AMV reverse transcrip-
tase (Promega, Madison, WI, USA). Resulting cDNA
was diluted 1:5 and 4 μl of template used in a 12 μl
PCR reaction. qPCRs were performed for the following
example genes: Tnfaip2, Tiparp, Cdkn1a, Cdkn1b Mpp2,
Cyp2s1, Nfe2l2, Klf9, Lig3, Myst2, Axin2, Agfg1, Anapc1,
Nfkb1, Parp1, and the housekeeping genes 18S rRNA
and Gapdh (primer sequences, Additional File 1, Table
S1). All qPCR experiments were carried out on a
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LightCycler®480 system (Roche Diagnostics GmbH,
Mannheim, Germany) with the following settings:
touchdown amplification with an initial step of 96°C for
10 min; followed by the first cycle at 95°C for 10 sec.
The annealing step started at 68°C for 20 sec (decrease
of 0.5°C/cycle with a step delay of 1 cycle) and reaching
the annealing temperature of 58°C for the last 25 cycles,
followed by 72°C for 20 sec for extension. A total of 45
cycles were performed in each experiment.

ChIP
Hepa1c1c7 cells were exposed to 50 nM B[a]P or
DMSO as the vehicle control for 1 h. Subsequently, cells
were exposed to 50 nM B[a]P or DMSO as the vehicle
control for 1 h respectively. Subsequently cells were
cross-linked for 10 min at 37°C in 1% formaldehyde fol-
lowed by a quenching step for 10 min with 150 mM gly-
cine. After cross-linking, chromatin DNA was sheared
into 200-500 bp fragments by sonication using a Biorup-
tor®Next Gen (UCD-300, Diagenode SA, Liege, Bel-
gium). Sonicated, soluble chromatin was immune-
precipitated with 2.5 μg of an anti-Ahr antibody (Enzoli-
fesciences/Biomol, Lörrach, Germany) or anti-Pol II
(Millipore, Billerica, MA, USA). Control IPs were per-
formed using rabbit IgG (Millipore, Billerica, MA, USA)
corresponding to our specific antibodies. DNA isolates
from immunoprecipitates were used as templates for
real-time quantitative PCR amplification using the pri-
mer pairs listed in Additional File 1, Table S2. All ChIP
experiments were performed at least two times.

Ahr translocation
Stably transfected tao BpRc1c cells, expressing a GFP-
tagged Ahr under tetracycline control, were used to
investigate the differences in translocation behavior for
different concentrations of B[a]P. Cells were seeded in
96-well imaging plates (BD, Franklin Lakes, NJ, USA)
and taken off tetracycline 24 h before exposure to allow
for sufficient GFP-Ahr expression. Final B[a]P concen-
trations were 50 nM and 5 μM respectively, including a
corresponding DMSO control (0.05%). After treatment,
cells were fixed using 3.7% formaldehyde, and the nuclei
stained with Hoechst 33342 (Invitrogen, Darmstadt,
Germany). Imaging was performed on a BD Pathway™I-
mager 855 in a non-confocal mode using a 20X U-Apo
340 objective (Olympus, NA 0.75). Images were binned
2 × 2 and montaged 2 × 2. Further analysis of fluores-
cence intensity was performed using the Attovision soft-
ware (BD, Franklin Lakes, NJ, USA). After segmentation
of the nucleus and the cytoplasm, the ratio of the
nuclear and cytoplasmic fluorescence was calculated for
each cell. Ratios were conflated in 0.01 intervals and
relative frequencies determined. To allow for

comparability the measurements were standardized so
that the mean of the negative control equals 1. For the
statistical analysis, more than 250 cells/treatment were
considered.

Additional material

Additional file 1: supplementary information. A PDF containing
additional details on the experiments and analysis.

Additional file 2: cluster assignment and regulatory predictions for
differentially expressed genes. An XLS file containing the results of our
RF classifier.
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