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Abstract

Background: Gene variants within regulatory regions are thought to be major contributors of the variation of
complex traits/diseases. Genome wide association studies (GWAS), have identified scores of genetic variants that
appear to contribute to human disease risk. However, most of these variants do not appear to be functional. Thus,
the significance of the association may be brought up by still unknown mechanisms or by linkage disequilibrium
(LD) with functional polymorphisms. In the present study, focused on functional variants related with the binding
of microRNAs (miR), we utilized SNP data, including newly released 1000 Genomes Project data to perform a
genome-wide scan of SNPs that abrogate or create miR recognition element (MRE) seed sites (MRESS).

Results: We identified 2723 SNPs disrupting, and 22295 SNPs creating MRESSs. We estimated the percent of SNPs
falling within both validated (5%) and predicted conserved MRESSs (3%). We determined 87 of these MRESS SNPs

were listed in GWAS association studies, or in strong LD with a GWAS SNP, and may represent the functional
variants of identified GWAS SNPs. Furthermore, 39 of these have evidence of co-expression of target mRNA and
the predicted miR. We also gathered previously published eQTL data supporting a functional role for four of these
SNPs shown to associate with disease phenotypes. Comparison of Fsy statistics (@ measure of population
subdivision) for predicted MRESS SNPs against non MRESS SNPs revealed a significantly higher (P = 0.0004) degree
of subdivision among MRESS SNPs, suggesting a role for these SNPs in environmentally driven selection.

Conclusions: We have demonstrated the potential of publicly available resources to identify high priority
candidate SNPs for functional studies and for disease risk prediction.

Background

microRNAs (miRs) are small 20-24 nucleotide (nt) non-
coding RNAs that mediate translational repression by
binding to miR recognition elements (MREs) found in
the 3’'UTR of their mRNA targets [1]. The most critical
region for binding and repression of mRNA by a miR
are positions 2-7 of the MRE, referred to as the seed
site. Although there are examples of miRs targeting
mRNAs without perfect Watson-Crick complementarity
to the MRE seed site (MRESS), a collection of evidence
supports the MRESS as the most important feature for
prediction and function. In some cases single 7mer seed
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sites are sufficient for a miR to repress translation, and
ex-vivo experiments have shown single point mutations
in the MRESS may reduce effectiveness or abolish miR
mediated repression [2]. Further highlighting the impor-
tance of this sequence, it has been demonstrated that a
higher degree of negative selection occurs within pre-
dicted conserved MRESSs compared to conserved non
MRESS control sites [3]. Given the importance of the
MRESS, it has been proposed that single nucleotide
polymorphisms (SNPs) mapping within the MRESS, or
which create novel MRESS (CNM), may have functional
consequences resulting in phenotypic variation [4].
Moreover, SNPs that create or abrogate MRESSs may
modulate gene transcript and protein levels relevant to a
phenotype of interest, generally, or under the influence
of particular environmental conditions.
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It has long been thought that disease causing variants
act through alteration of exon sequence resulting in
altered protein function. However, SNPs may also act to
modulate gene expression, and this has been demon-
strated for many promoter SNPs in which the risk allele
alters the affinity of a transcription factor to its binding
motif [5,6]. Furthermore, several published examples
show functional variants in MREs that modulate risk for
a variety of disease states, such as breast cancer, Tour-
ette’s syndrome, and hypertension among others [4].
Two studies have demonstrated a gene by environment
interaction where a MRESS SNP modulates individual
response to drug and dietary intakes [7-9]. A survey of
the frequency of predicted and validated MRESS SNPs,
identified an appreciable number of SNPs falling within
MREs across the human genome [10]. However, the
number of risk alleles identified with plausible mechan-
isms for modulation of gene expression is outweighed
by SNPs falling in gene desert regions [11]. It could be
that these SNPs fall within distant but bona fide enhan-
cer or suppressor elements resulting in the modulation
of gene expression, as was demonstrated for the variant
within the 8q24 gene desert and its effects on TP53
expression in prostate [12]. Alternatively, it may be
these SNPs are in LD with variants not yet identified or
available on GWAS chips. For example, sequencing of
the HLA-C 3’'UTR revealed a SNP modulating an MRE
for the binding of miR-148. Furthermore, this SNP was
shown to be in LD with rs9264942 which is found 35
kb upstream of HLA-C and associates with control of
HIV [13]. These data demonstrated that rs9264942 is a
marker for a functional SNP that was not contained in
commercial SNP arrays. Further underscoring this point,
recent chromatin studies have identified novel non-cod-
ing gene regulatory regions, some of which contain top
scoring hits for disease associating SNPs [14].

Currently over 1000 human miR sequences are
reported in the miRbase catalog [15]. Estimates suggest
that over 30% of human protein-coding genes are regu-
lated by miRs, and that each miR may potentially regu-
late hundreds of target transcripts [16,17]. Given this
large number of potential miR targets in the human
genome, identifying allele-specific miR-mRNA interac-
tions may help elucidate functional roles for a portion
of the many SNPs identified in genome wide association
studies (GWAS) that lack obvious functionality.

With such information in mind, one aim of the 1000
Genomes Project is to catalog over 95% of human varia-
tion in order to inform association studies of all poten-
tial causal SNPs [18]. Furthermore, initial studies in the
1000 Genomes pilot indicated that a substantial number
of variants are in LD with known disease markers and
that these variants are not well covered on commercial
arrays. Importantly, the data currently available in the
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1000 Genomes Project provides unprecedented access to
millions of SNPs, some of which may elucidate func-
tional mechanisms for the many risk alleles identified in
GWAS.

Here we have performed a genome-wide survey for
SNPs falling within both experimentally validated and
computationally predicted conserved MRESSs, by utiliz-
ing these data (dbSNP build132) [18]. In addition to this
analysis, we have surveyed these data for predicted
CNM SNPs. Furthermore, we have examined all SNPs
identified in GWAS for functional variants in relation to
predicted MRESSs and CNM SNPs using the data from
the 1000 Genomes Project. Combing with several other
publically available data sources, we identified numerous
MRESS SNPs as possible modulators of disease relevant
phenotypes. Our work demonstrates the utility of the
data generated from the 1000 Genomes Project and pro-
vides insight into the frequency and relevance of MRE
SNPs in human disease and may provide some clues
regarding environmentally driven human selection.

Results and Discussion
Approximately 5% of validated MREs contain SNPs in
their seed site
To assess the frequency of SNPs falling in validated
MRESSs, we first determined the genomic DNA (gDNA)
coordinates of 606 validated mRNA target seed-sites for
all mRNA-miR interactions, from the miRecords database
[19]. For a site to be included in this list we required func-
tional evidence for the target site (eg, loss of function
experiment through a reporter assay system). We searched
each reported validated site for 4 classes of “canonical”
seed sites. Here we define canonical seed sites as having,
at least, perfect pairing among seed site positions 2-7 (6-
mer) in addition to three other classes with binding site
characteristics at positions 1 or 8, demonstrated to
improve likelihood of repression; 8mer (an A nt at posi-
tion 1, and a complementary nt at position 8), 7mer-8m
(complementary nt at position 8), and 7-mer-Al (an A nt
at position 1) [1]. We then determined if the gDNA coor-
dinates of all 3’UTR SNPs (from dbSNP132) fell within
the gDNA coordinates of each validated MRESS from
above. We identified 31 SNPs (5%) that lie in validated
MRESSs corresponding to 28 target transcripts (Table 1).
No population frequency data are available for 29% of
the MRE SNPs (9 of 31), a value that will change as
whole genome sequence data from more individuals sur-
face and with completion of more encompassing GWAS
studies. Nine SNPs have minor allele frequencies (MAF)
< = 2%, and may be considered rare in the general
population and therefore unlikely as common factors in
complex disease. The 13 remaining SNPs have allele fre-
quencies above 2% in at least one population listed in
dbSNP (Table 1). Of note, 7 of the 31 (22%) SNPS
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Table 1 SNPs found within validated MRESSs

Rsi# Coordinates Maj Min  MAF Site type  Pos in MRE  miR Gene pubmed id
rs3783620 1: 101204463 G A 005 (YRI.PT) 8-mer 7th hsa-miR-126 VCAM1 18227515
rs1059479 1: 113243892 T G 01 (CEPH) 8-mer Tst hsa-miR-138 RHOC 20232393
rs12392 2: 198351529 G A NA 7-8mer 2nd hsa-miR-1 HSPD1 17715156
rs5186* 3: 148459988 A C 306 (CEU.PT) 7-8mer 4th hsa-miR-155 AGTR1 16675453
rs56109847* 3: 183824557 G A 992 (CEU.P1-LO) 8-mer 4th hsa-miR-510 HTR3E 18614545
rs3731563 3: 48199695 T C 017 (GIH) 8-mer 8th hsa-miR-21 CDC25A 19826040
rs1434536* 4: 96075965 C T 545 (TSC-CSHL) 7-8mer 1st hsa-miR-125b BMPR1B 19738052
rs6875894 5: 112179965 C T 027 (YRI) 7-8mer 4th hsa-miR-135b APC 18632633
rs6875894 5: 112179965 C T 027 (YRI) 7-8mer 5th hsa-miR-135a APC 18632633
1579468771 6: 135539805 T A NA 8-mer 7th hsa-miR-15a MYB 18818396
rs33986155 6: 152420685 C G 083 (CEU.PT) 7-8mer 8th hsa-miR-206 ESR1 17312270
rs11551509 6: 34505633 C A NA 8-mer 8th hsa-miR-510 SPDEF 18922924
rs8829 7: 148504618 A C 1 (CEPH) 8-mer 2nd hsa-miR-101 EZH2 20478051
rs78899540 7: 27181092 A C 04 (YRILPT) 7-mer-Al 2nd hsa-miR-130a HOXAS 17957028
rs117556949 7: 27194074 T C 992 (CEU.P1-LO) 8-mer 8th hsa-miR-196a HOXA7 15105502
rs12720208* 8: 16850399 G A 125 (CEU.PT) 8-mer 6th hsa-miR-433 FGF20 18252210
rs78202059 8: 26228382 G T 144 (YRIP1-LQ) 7-mer-Al 8th hsa-miR-222 PPP2R2A 20103675
rs1058153 2: 46987391 C T NA 8-mer 2nd hsa-miR-21 SOCS5 17991735
rs72808106 10: 74035161 A G NA 7-mer-Al 4th hsa-miR-221 DDIT4 20018759
rs16917496* 12:123893830 C T 22 (CEPH) 7-mer-Al 2nd hsa-miR-502-5p SET8 19789321
rs111842797* 12: 123893831 A G NA 7-mer-Al 8th hsa-miR-502-5p SET8 19789321
rs76290581 12: 6760093 T C 051 (YRIP1-LO) 8-mer 1st hsa-miR-650 ING4 20381459
rs77080081 15: 40382144 A G 014 (CEU.PT) 7-8mer 1st hsa-miR-125b BMF 19471102
rs28521337* 15: 88521280 @ G 467 (CEU.PT) 8-mer 8th hsa-miR-485-3p  NTRK3 19370765
1572481816 15: 88521572 G C NA 8-mer 8th hsa-miR-765 NTRK3 19370765
1s72481814 15: 88522372 T C NA 7-8mer 4th hsa-miR-509-3p NTRK3 19370765
1528574753 16: 28109760 G A 076 (YRI-P1T) 7-8mer 2nd hsa-miR-122 XPO6 19296470
rs75817141 17: 12044581 C T 02 (YRLPT) 7-8mer 1st hsa-miR-15b MKK4 19861690
1562062994 17: 48261978 G T NA 8-mer 3rd hsa-miR-29¢ COL1AT1 18390668
rs3218074 19: 30315176 A G .01 (PDR90) 8-mer 8th hsa-miR-15b CCNET 18701644
rs3218074 19: 30315176 A G .01 (PDR90) 8-mer 8th hsa-miR-16 CCNE1 18701644
rs6094029 20: 43356176 C T 0 7-8mer 7th hsa-miR-449a WISP2 19351815
rs78301106 20: 62522710 C G 045 (CHB+JPT.P1) 8-mer 7th hsa-miR-122 TPD52L2 19296470

A list comprising 31 validated MREs (with perfect complimentarity in the MRE seed site -positions 2-7) in which a SNP has been identified. The Coordinates
column provides the chromosomal number and position coordinates for each SNPs - all genomic coordinates correspond to Hg19. The MAF column reports the
allele frequency of the minor allele from the population where it was highest, where NA indicates a SNP with unknown allele frequency. The Pos in MRE column

refers to the position within the MRE to which the SNP maps. * SNPs reported to have shown association with disease phenotypes.

identified have shown association with disease traits,
emphasizing the potential importance of MRESS SNPs
as modulators of disease risk.

Previous studies have estimated MRESS SNP density
to be lower than that observed in regions outside the
MRESS, suggesting a higher rate of negative selection
on MRESS [3,10]. In light of the updated account of
variation in the human genome available in dbSNP
build132, we estimated the frequency of SNPs falling
within MRESS and those falling outside of MRESSs
using the 606 sequences from validated target sites iden-
tified from the above analysis. We performed a sliding
window search of 6 bases, (the size of seed positions 2-
7) starting 18 bases upstream and continuing to 24

bases downstream of each validated MRE site, sliding at
a 1 base step. The 0 mark of the x-axis in Figure 1
demarcates the second position of the MRESS (or first
position of the 6mer seed site). Our data indicate that
the MRESS contains the lowest amount of variation
across the region, an observation in agreement with
prior analyses [3,10]. Although there is less variation
across the MRESSs there appears a considerable density
of SNPs (5.5/kb) falling within what is thought to be the
most important sequence for miR-mRNA interactions.

Genome wide survey of predicted MRESS and CNM SNPs
Although many variants have been associated with the
modulation of phenotypes relevant to disease in GWAS
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Figure 1 A measure of SNP density (SNPs/kb) generated from the analysis of a 6 base window sliding over a 42-base region -
centered on the first position of the seed site - of 606 validated MREs. The black line indicates the number of SNPs/kB across the 42 base
region. The red line indicates the average SNP density across the 6 windows of seed positions 2-7.

studies, the challenge of determining which of them
may be casual remains [20]. To identify potential causal
variants mediated by MRESS creation or disruption we
first performed a genome-wide survey for SNPs falling
within computationally predicted conserved MRESSs.
To do this, we utilized the http://microRNA.org portal
to access a collection of predicted miR-mRNA interac-
tions. These predictions were derived using an algo-
rithm that incorporates an array of the most recent miR
prediction guidelines, such as seed-site pairing, site con-
text, free-energy, and target conservation across multi-
ple vertebrates [21]. We focused our analysis on
MRESSs conserved across mammals as these are more
likely to be of functional significance (see methods)
[16]. By comparing the gDNA coordinates of each pre-
dicted MRESS against the gDNA coordinates of
dbSNP132 SNPs, we identified 2723 MRESS SNPs inter-
rupting 5797 conserved predicted interactions. To
further prioritize these hits, we classified them by the
type of seed match the MRESS SNP was predicted to
interrupt; 8mer (2245), 7mer-8m (3251), 7-mer-Al
(180) or 6mer (121). Although there is overlap in the
degree of efficiency of repression by these different seed
type classes (likely dependent of site sequence context),
there remains a hierarchy with 8mer sites being most
efficient [1]. Interestingly 38% (2245) of MRESS SNPs
fall within predicted 8mer MRESSs. It has been esti-
mated that ~50% of predicted MREs are potentially
functional and it is likely that a portion of the SNPs
identified here fall within bona fide MREs [22]. Overall,
we estimate that 3% of high confidence predicted con-
served MRESSs contain SNPs.

In addition to SNPs that may interrupt MRESSs, SNP
alleles may also create MRESSs. To identify potential
CNM SNPs we performed a genome-wide computa-
tional survey for predicted MRESSs that are created
when the mRNA sequence contains the non-reference
allele of hgl9. Using the Ensembl variation API tools we
retrieved the flanking 22 nt sequence from both
upstream and downstream of the non-reference allele of
every 3’'UTR dbSNP132 SNP. Each sequence containing
the non-reference allele was analyzed for potential miR-
target sites using the miRanda software [23]. This analy-
sis provided us with 22295 CNM SNP creating 49047
miR-mRNA predictions which where also categorized by
the seed-type they created; 8mer (10333), 7mer-8m
(36188), and 7-mer-A1 (526) or 6mer (2000). It should
be noted that there are many more predictions for
CNM than MRESS SNPs. This is due to the fact that no
conservation constraint was imposed on the CNM SNP
predictions (See methods). Considering that many CNM
SNPs presumably arise to create new regulatory sites,
filtering our hits on conservation status would be coun-
ter-intuitive. Of note, we found that approximately 28%
(6946/25018) of predicted MRESS and CNM SNPs iden-
tified here were first identified by the 1000 Genomes
project.

Some SNPs identified in GWAS are in LD with predicted
conserved MRESS and CNM SNPs

GWAS have been a powerful approach to identify
genetic variants that contribute to disease risk. However,
a functional role for many of the SNPs identified has
not been elucidated. It is likely some of these SNPs are
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in strong LD with unknown functional ones, some of
which could be among the predicted conserved
MRESS and CNM SNPs. To investigate this possibility,
we searched the resulting MRESS and CNM SNP data
for variants in LD with SNPs showing association, of
GWAS significance, with disease traits and related
phenotypes. To do so, we retrieved a dataset of 4817
reported associations, collected from GWAS studies,
between 3943 unique SNPs and disease traits shown to
have P-values meeting a threshold of < 1.0 x 10-5 [24].
These data were processed through SNAP http://www.
broadinstitute.org/mpg/snap/ldsearch.php  which
yielded a list of SNPs (including those from the pilot
1000 Genomes Project data) in LD with those reported
in the GWAS. We limited our search to an r* of > 0.8
for the CEU population. The results of this query were
searched against both the MRESS SNP and the CNM
SNP predictions. This query identified 35 instances of
an MRESS SNP (some MRESS SNPs are in LD with
more than one reported GWAS SNP associating with
multiple phenotypes), in LD (r* > 0.8) with a least one
reported GWAS SNP or an original GWAS SNP, asso-
ciating with disease phenotypes (Additional file 1). In
total there were 14 MRESS SNPs in 11 genes associat-
ing with 16 traits. We also identified 124 instances of a
GWAS SNP that associates with disease traits and is in
LD (r* > 0.8) with CNM SNPs (Additional file 2).
There were 73 CNM SNPs in 73 genes associating
with 52 traits.

In total we identified 87 SNPs (14 MRESS and 73
CNM SNPs) in very strong LD with SNPs reported
as associating with disease related phenotypes. These
87 SNPs represent 2.22% of the total unique SNPs
reported in the GWAS data. Using the SNAP pair-
wise LD tool we determined that 6 of the 3943
GWAS SNPs are in LD with each other, giving us
3940 SNPs or regions associating with disease traits.
To determine the possibility of this number occur-
ring by chance we first filtered dbSNP 132 for SNPs
having a minor allele frequency (MAF) > = 1%,
which was the lowest MAF reported in the GWAS
data. We next selected randomly 3940 SNPs and, as
we did with the GWAS data, ran them through
SNAP to determine the SNPs in LD. From this list
we determined the number of SNPs found in our
MRESS and CNM SNP data, and this analysis was
repeated 1000 times. From these 1000 simulations
the mean number of SNPs found in the MRESS and
CNM SNP data was 24.99 and the standard deviation
6.19. The probability of finding 87 SNPs by chance
based on this distribution was calculated to be 1.08 x
107?%. These SNPs may be considered the likely puta-
tive functional variants which represent proxy SNPs
identified by GWAS.
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Co-expression data identify functional candidates
Support for a prediction of a miR regulating an mRNA
target is strongly lent by co-expression of both RNAs.
Therefore, to further refine this list of 87 cases where a
SNP is predicted to create or abrogate a MRESS and be
in LD with a GWAS SNP, we searched for evidence of
co-expression of the miR and mRNA using the mimiR
web tool [25]. In addition, we also searched the biome-
dical literature using the PubMed database with the
terms of miR name and “expression.” To search for
mRNA expression in the cognate tissue we queried the
NCBI Geoprofiles. These queries revealed miR-mRNA
co-expression evidence for 39 of the 87 SNP predictions
consisting of 12 MRESS SNPs and 27 CNM SNPs.
Table 2 and Additional file 3 indicate the number of tis-
sues in which there is evidence for co-expression
between miR and mRNA for which the SNP is predicted
to modulate an interaction.

eQTL data support several MRE target predictions when a
MRESS or CNM SNP is present

Variation in gene transcript levels is thought to be an
important modulator of disease risk in humans and
SNPs that may mediate this variation are thought to be
of great functional significance [26]. To investigate the
contribution of SNPs associating with disease traits to
transcript level variation, a number of expression Quan-
titative Trait Loci (eQTL) studies have been performed
[27-29]. These results have demonstrated a number of
SNPs associating significantly with expression differ-
ences across collected tissue samples. Importantly, these
studies have noted differences in the amount of tran-
script variation across tissue samples, suggesting SNPs
may modulate regulatory mechanisms, in some cases, in
a tissue specific manner [30]. Interestingly, a recent
study has estimated that > 80% of miRs act to lower
mRNA levels demonstrating mRNA destabilization is
the primary mode of action of miRs on target mRNAs
[31].

To determine if the 39 miR predictions with co-
expression data identified in the previous section are
supported by eQTL data we utilized the Genevar eQTL
database web tool [32]. Genevar allows for querying and
visualization of eQTL data for loci of interest using data
from various studies. We utilized the results from the
recent MuTHER study which reports eQTL data from
twin pairs in 3 tissue types; 78 twin-pair lymphoblastoid
cell line (LCLs) biopsies, 80 twin-pair skin cell biopsies
and 83 twin-pair fat cell biopsies [29]. Searching for
eQTL data on each of the 39 MRESS and CNM SNPs
we found 11 of the 39 had genotype specific transcript
level data in at least one of the 3 tissue samples investi-
gated in the MuTHER study for which there was also
evidence of co-expression in mimiR for this tissue. Four
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Table 2 MRESS SNPs in LD with GWAS variants and showing co-expression of miR and mRNA.

GWAS SNP P-value Phenotype PID LD PhastCon Proxy Maf FST Gene miR Allele SVR S-T Co eQTL
rs10089 2.00E-06 lleal carcinoids 21139019 1 0.6692 rs10089 035 008 SLC12A2 hsa-miR-421 C/T -0.682 8mer 23 NA
6504340  6.00E-07 Primary tooth dev 20195514 0.9 06635 rs1042822 018 NA HOXB2  hsa-miR-186 G/T -1.341 8mer 62 NA
rs328 9.00E-23 HDL cholesterol 18193044 093 0.685 rs1059611  0.13 0.03 LPL hsa-miR-136 T/C ~ -0635 7mer-m8 36 NA
rs10503669 4.00E-19 18193043 093

r1s12678919  2.00E-34 19060906 0.93

rs17482753  3.00E-11 20031538 093

1s325 8.00E-26 20864672

rs6590330  2.00E-25 Systemic lupus erythematosus 19838193 1 0.8332 rs1128334 006 044 ETSI hsa-miR-381 /T -1.166 7mer-m8 33 F
rs1128334  2.00E-11 20169177

110941694 9.00E-06 Chronic kidney disease and serum creatinine concentration 20686651 1 0.7345 rs12522910 0.14 NA  HCNI1 hsa-miR-653 T/C -1.352 8mer 9 NA
15326 5.00E-12 Triglycerides 18193046 096 0.6217 rs13702 0.14 042 LPL hsa-miR-410 T/C -1.159 8mer 19 NA
152083637  2.00E-10 Metabolic Syndrome 20694148 0.92

rs10105606 4.00E-26 Hypertriglycerdemia 20864672 0.82

rs1008953  1.00E-07 Psoriasis 20953189 1 0.651 152245717 086 04  SYSI hsa-miR-150 T/G ~ -0.704 8mer 49 L, F
151443512 6.00E-16 Waist-hip ratio 20935629 0.81 0.581 rs4759058  0.78 HOXC13 hsa-miR-503 C/A -0.755 7mer-m8 29 NS
rs504963 2.00E-08 Crohn's disease 20570966 1 0.5968 rs485073 063 NA FUT2 hsa-miR-186 A/G ~ -1.181 7mer-m8 63 NA
15281379 7.00E-12 21102463 09

rs504963 2.00E-08 Crohn's disease 20570966 1 0.5968 rs603985 063 NA FUT2 hsa-miR-186 T/C -1.181 7mer-m8 63 NA
rs281379 7.00E-12 21102463 09

rs10923931 4.00E-08 Type 2 diabetes 18372903 1 0.5784 rs835576  0.07 NOTCH2 hsa-miR-218 T/C ~ -0.718 8mer 31 F L
151295686 1.00E-07 Asthma 20860503 096 0.581 1s847 076 031 IL13 hsa-miR-381 T/C -1.159 7mer-m8 33 F
1520541 500E-15 Psoriasis 19169254 0.96

All minor allele frequencies (MAF) reported are for the CEU pilot panel of the 1000 Genomes Project, except where indicted. Abbreviations: PID = PubMed accession, SVR = miRSVR score, PhastCon = conservation
score, S-T = seed type. Co = The number of cell and tissue samples in the mimiRNA database for which co-expression of miR and mRNA were found. eQTL = Reports available eQTL data in the mUTHER study, where
F = -Fat cell biopsy (n = 160), L = LCL cells (n = 166), and S = skin cell biopsy (n = 160).
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of these 11 SNPs showed marginally significant trends in
the differences in transcript levels across genotypes (Fig-
ure 2).

SYS1 transcript levels were shown to be significantly
different among rs2245717 genotypes from LCL in one
of the two twin study groups (Figure 2). Although, the
second twin group failed to achieve significance, the
direction of the effect was in agreement with the first
group. Furthermore, the lower transcript levels associate
with the allele predicted to create the miR-150 binding
site. Neither of the two twin adipose tissue sample
groups for GFOD2 transcript levels showed a significant
difference among rs12449157 genotypes. Interestingly,
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both p-values are of nominal significance and the direc-
tion of the effect supports the predicted miR interaction
and subsequent effect of the CNM SNP (Figure 2).
IKZF3 transcript levels measured in LCL cells showed
significant differences among the rs907091 genotypes in
both twin groups. Lower IKZF3 levels were observed in
carriers of the G allele which is predicted to create a
miR-326 MRESS. However, a second probe found on
the Illumina whole genome expression array, used in
the study, shows conflicting data where there is no dif-
ference between transcript levels in either group. The
rs3810291 SNP in the ZC3H4 3'UTR shows no signifi-
cant difference in transcript levels between alleles in
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adipose samples used in the MuTHER study. However,
literature mining for “eQTL, “ and the corresponding
gene and phenotype identified an additional study show-
ing eQTL data that supports an allelic difference, in the
correct direction, and in adipose tissue for rs3810291
[33]. Taken together, this information suggests these
four SNPs may have functional significance.

MRESS and CNM SNPs in Positive Selection

Genetic variants that have been subject to selection are
most likely the functional variants [34,35]. The fixation
index (Fst) statistic measures population differentiation
and provides a test for the influence of selective pres-
sures, where higher Fgr values indicate local positive
adaptation and lower values negative or neutral selection
[36]. As adaptive genetic variants have been driven to
higher frequencies by environmental factors (i.e, positive
selection), SNPs showing high Fst values may be con-
sidered high priority candidates for association studies
for gene by environment studies. Such variants also may
play a role in the observed variation and potentially
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influence disease prevalence across populations [37,38].
To determine if the identified 3’UTR SNPs that create
or disrupt predicted MRESSs may be under positive
selection we first downloaded genome wide Fsr calcula-
tions for HapMap Phase 3 data [39]. We found a signifi-
cant difference (P = 0.0004) between the mean
transformed Fgt values of combined MRESS and CNM
SNPs (n = 2448) and the remaining (i.e. non-MRESS or
non-CNM) 3’'UTR SNPs (n = 19906) for which Fgr data
were available. Figure 3 shows the number of Fsr values
between MRESS and CNM SNPs and non-MRE SNPs
across 10 Fgr bins. As Fgr values increase there is a
clear increase in MRESS and CNM SNPs compared to
the remainder. This observation further supports that
MRESS and CNM SNPs are likely functional variants.

To identify Fsr outliers we selected all SNPs falling 2
standard deviations (SDs) or more from the mean
(Table 3). In total, 24 MRESS or CNM SNPs were iden-
tified falling 2 SDs from the mean. Among these is the
GFOD2 SNP, rs12449157 (Fgr = 0.8399) for which we
show evidence of co-expression and eQTL effect.

SNPS/bin

0 01 0.2 03

(P = 0.0004).

Fst Bins

Figure 3 A plot showing the number of combined MRESS and CNM SNPs or non MRESS and non CNM 3’UTR SNPs across 10 Fsr bins.
Data plotted compares 2448 MRESS and CNM SNPs with Fst data and a random sample of 2448 Fst values from the remainder of 3'UTR SNPs. A
significant difference between mean FST values for combined MRESS and CNM SNPs and FST values for the remaining 3'UTR SNPs was observed

® Random

= MRE SNPs

05 0.6 0.7 0.8 09




Richardson et al. BMC Genomics 2011, 12:504 Page 9 of 14

http://www.biomedcentral.com/1471-2164/12/504

Table 3 MRESS and CNM SNPs showing highest levels of population sub-division

MRESS SNPs FST Gene miR CNM SNPs FST Gene miR

rs3822506 0.8743 TCERGI miR-590 157665492 0.8942 ENAM miR-3916

rs1217382 0.8469 BCL2L15 miR-17 rs1043809 0.8900 EPN2 miR-3616-3p

rs3087542 0.8428 EMCN miR-197 rs2470102 0.8859 MYEF2 miR-1180

rs3742988 0.8385 CDANI1 miR-378 rs7290134 0.8695 TNFRSF13C miR-1205

rs1071738 0.8298 PALLD miR-182 rs8057598 0.8596 NOL3 miR-769-3p
rs1969589 0.8545 RGMA miR-593*
rs1246014 0.8476 COPS7B miR-1273d
1512449157 0.8399 GFOD2 miR-125a-3p
rs16990309 0.8398 SLC23A2 miR-760
rs3742988 0.8385 CDANT1 miR-326
1s2292549 0.8361 GPBAR1 miR-936
rs1995939 0.8338 STARD9 miR-3943
13199486 0.8321 STARD9 miR-2278
rs873258 038312 TSPAN14 miR-873

MRESS and CNM SNPs showing highest levels of population sub-division among HapMap phase 3 data- All SNPs falling 2 SDs from the mean Fsr of 3'UTR SNPs.

Conclusions

In the work presented here, we utilized the latest release
of dbSNP, including the 1000 Genomes Project data, to
perform a genome-wide scan of human variation within
validated and predicted miR binding sites, our hypoth-
esis being that genetic variants at miR binding sites are
functional, and important contributors to phenotypic
variation and disease susceptibility. We have taken care-
ful measures to assign SNPs as creating or altering miR-
mRNA interactions. We identified 5797 instances of a
SNP falling within a conserved predicted MRESS based
on stringent filtering of conservation and interaction
scores predicted by Betel et al [21]. Interestingly, 38% of
these predicted disruptions were identified in 8mer tar-
get predictions. 8mer target sites have been shown to
have the highest efficacy of target repression and there-
fore are considered higher priority predictions than
those with lesser complimentarity [1]. Overall, we esti-
mate that 3% of predicted conserved MRESSs contain
SNPs. Our analysis also identified 49407 instances of a
SNP creating an MRESS. Given that no conservation
restraint was utilized for identification of these CNM
SNPs, we must be cautious for it is likely many of them
are potential false positives. We also determined that 87
of the MRESS and CNM SNPs identified are in LD with
SNPs identified in GWAS. We demonstrate that 2.2% of
GWAS SNPs are, or are in LD with, MRESS or CNM
SNPs. However, this may be a conservative estimate,
given that 1) we limited our SNP selection based on
conservation and other strict cutoffs, 2) the catalog of
GWAS SNPs investigated is not all encompassing 3)
that these GWAS studies do not consider gene by envir-
onment interactions and 4) LD estimates only cover
SNPs up to the 1000 Genomes Project pilot study 1
data.

Recently, it has been demonstrated that SNPs pre-
viously identified in GWAS are in LD with SNPs found
in enhancer motifs regulating gene expression [14].
Furthermore, other studies have linked SNPs falling in
gene regulatory motifs, and not found on commercial
SNP arrays, to be in LD with top scoring GWAS hits
[12,13]. In a similar fashion, we suggest that many of
the SNPs found in this study to be in LD with GWAS
SNPs may have functional significance. To further
explore this possibility we utilized several publicly avail-
able data sets and tools and showed 39 of these 87 var-
iants found to have evidence of co-expression of target
mRNA and the predicted miR. We found that four
SNPs from this list have supporting eQTL data demon-
strating variation in transcripts between alleles.

Our analyses have identified four SNPs predicted to
modulate allele-specific miR-mRNA interactions which
are supported by co-expression and eQTL data. The
rs907091 SNP falls in the IZKF3 transcript and is in LD
(r2 > 0.90) with eight SNPs associating with increased
risk for a variety of autoimmune diseases. IZKF3 is a
transcription factor important for B-cell activation, and
mice lacking this gene develop a lupus like syndrome,
suggesting a role for IZKF3 in autoimmunity [40]. The
rs907091 minor T allele is predicted to create a CNM
for mir-326. There is evidence for expression of miR-
326 and IZKF3 in human B-lymphocytes. Interestingly,
miR-326 is important for T-cell differentiation and has
been implicated in the pathogenesis of autoimmune
multiple sclerosis [41]. A study investigating transcript
levels between the T and C alleles of rs907091 in a lym-
phoblastoid cell line (LCL) demonstrate significantly
lower levels of IZKF3 in subjects carrying the T allele
[29]. These data suggest that carriers of the T allele may
have reduced levels of IZKF3, in part through miR-326.
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In addition the minor allele of rs3810291 is predicted
to create an MRE for mir-502-3p within the ZC3H4
transcript and associates with BMI. ZC3H4 is a poorly
characterized zinc finger protein. There is eQTL evi-
dence supporting this prediction where minor allele car-
riers have reduced ZC3H4 expression compared to non-
carriers, in adipose tissue [33]. Both mir-502-3p and
ZC3H4 are expressed in adipose [42]. The rs2245717
SNP, predicted to create an MRE for miR-155 in the
SYSI transcript, is in perfect LD with rs1008953 a SNP
associating with psoriasis [43]. The MRE-creating allele
of SYSI is also associated with lower SYSI transcript
levels in LCL cells [29]. While a role for SYS1 in
immune function could not be found in the literature, it
is known that miR-155 is involved in the immune
response [44]. The rs12449157 SNP is found in the
poorly characterized glucose-fructose oxidoreductase
domain containing 2 (GFOD?2) transcript showing asso-
ciation with HDL-C [45]. Our analysis predicts that the
minor allele of rs12449157 creates a CNM for mir-125a-
3p and that it is associated with reduced GFOD?2 levels.
Interestingly, both RNAs are expressed in adipose tissue
[42]. Further, we identify rs12449157 as an Fgr outlier
suggesting this SNP may be undergoing population spe-
cific selection.

In addition to these four SNPs, we identified 39 others
with data indicating co-expression with the predicted
target mRNA and these should be considered as candi-
dates for functional studies. Of these 39 candidates, a
SNP within the HOXB2 loci has shown eQTL peaks
identified from lymphoblastoid cell lines [28,46]. While
our analysis has generated many MRESS and CNM SNP
predictions for which no miR expression data are avail-
able, it is likely that as more miR expression and eQTL
data become accessible, particularly for different cell
types and specific conditions, many of these SNPs could
be seen as functionally relevant. Recent data indicate
some miRs may act intracellularly, carried by HDL par-
ticles to recipient cells [47]. Therefore, it may be that
co-expression is not essential for all predicted miR-
mRNA interactions.

As new variants arise in a population and are exposed
to different environmental conditions, those variants
may be subject to forces of selection. Moreover, if these
SNPs alter gene expression they may modulate the indi-
vidual’s response to the environment and potentially the
risk for particular disease state. Based on this, we
hypothesized that allele-specific miR-mRNA interactions
would show a greater level of selection than SNPs not
classified as MRESS SNPs. We show that, as a group,
predicted MRESS and CNM SNPs have a significantly
higher mean Fst than do those SNPs which do not cre-
ate or disrupt a predicted MRESS. We identify those
MRESS and CNM SNPs showing the highest degree of
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population subdivision and suggest these SNPs and the
interactions they are predicted to modulate, as candi-
dates for functional studies.

We show that the frequency of MRESS SNPs in vali-
dated MREs (5.5 SNPs/kb) is less than in surrounding
regions and this supports prior work showing a higher
degree of negative selection on MRESSs [3,10]. Although
the level of variation within this region is lower, we do
show that the occurrence of variation across validated
MRESSs is not rare (~5%). Supporting the notion that
miR SNPs are high priority candidates for functional
consequence we show that 22% of SNPs falling within
validated MRESSs have reported associations related to
a disease phenotype or risk. Of note, our results differ
somewhat from the MRESS SNPs reported in Saunders,
et al [10]. This is most likely due to the fact that we uti-
lized a more current database of validated MRE targets,
and also that we required functional evidence of MRESS
for inclusion.

There are several web based MRE SNP prediction
databases available to query a SNP for creation or dis-
ruption of a MRESS, however these tools incorporate a
relatively limited amount of functional annotation
(GWAS, co-expression and eQTL data) for identification
of the most promising MRESS SNPs [48-50]. SNPinfo, is
a web tool which offers the calculation of LD between
query SNPs and GWAS SNPs in addition to functional
prediction of these SNPs for abrogation or creation of
potential MRESS [50]. Approximately 70% of the SNPs
found in Tables S1 and S2 are also identified at SNPinfo
web portal as being a SNP in LD with a GWAS SNP,
and SNPinfo also includes prediction of that SNP as a
MRESS SNP. Importantly, our work differs from what
may be found at SNPinfo and others, in that we present
a more comprehensive summary of potential MRESSs
SNPs, being the first to investigate 1000 Genomes data
for MRESS SNPs. Furthermore, we use this MRESS SNP
information in combination with a variety of publically
available web tools and data sets (including co-expres-
sion and eQTL data), not currently incorporated in
other resources, to determine which of these SNPs are
most likely functional. Our data demonstrates the utility
of using multiple publically available datasets and
resources to identify functional candidates.

In Summary, we have surveyed the most current
human SNP data and identified variants that provide
functional hypotheses for observed GWAS associations.
Our work also suggests that a considerable number of
SNPs create or abrogate MREs in the human genome.
Our results further suggest MRE SNPs that modulate
gene expression are likely to be under selective pressure.
With relevance to human disease we show that publicly
available resources can be used to identify high priority
candidate SNPs for functional studies.
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Methods

Retrieval and use of dbSNP information

We retrieved all dbSNP build 132 SNP (as of 11-31-10)
information by downloading the vcf file available
through the 1000 genomes home page [18]. To ensure
we only surveyed variation in the form of SNPs and not
indels and/or copy number variants we removed all
SNPs not reported as bi-allelic. A subset of data con-
taining all 3’'UTR SNPs (n = 210042) was extracted
using Perl. This dataset was used for all subsequent ana-
lyses. To determine the percentage of SNPs that were
submitted to dbSNP by the 1000 Genomes Project we
used UCSC Genome Browser to identify all dbSNP
build 132 SNPs where the submitter status handle was
equal to only the 1000GENOMES tag. This data set was
then searched against our MRESS and CNM data sets
to identify those SNPs contributed by the 1000 Gen-
omes Project. To retrieve allele frequency data on SNPs
reported in MRESSs and CNMs, we utilized the Perl
API variation tools accessing the latest human genome
variation data, build 61. All data analysis was performed
on the NUGO information network [51].

Identifying MRE SNPs in validated targets

miRecords hosts a collection of validated miR-mRNA
interactions built from an exhaustive literature search
and the database of records was download in a tab-
delimited format [19]. We next annotated each hit for
target site functionality, by checking the literature
source for evidence of a loss of function experiment,
which provided us with 606 validated MRE targets. To
identify SNPs falling within these 606 validated targets
sites, a Perl script was written to search each SNP
gDNA coordinate against the gDNA coordinates of each
target transcript MRESS, retrieved from Ensembl.

SNP Density determination

To calculate SNP density, a Perl script was written to
perform a sliding window search (W = 6 bases as this
corresponds in size to bases 2-7 of the MRESS) of the
606 validated MREs for SNPs, starting 18 bases upstream
of the first base of the MRESS and ending 18 bases
downstream of the last base of the MRESS. We report
the number of SNPs for each position of the window
across this sequence. Values are reported as SNPs/kb.

Identification of conserved MRESS and CNM SNPs

To identify SNPs falling in conserved MRESSs, we
downloaded the “good mirsrv_score conserved
miRNA” datafile from the http://microrna.org website.
This file contains all predicted mRNA target motifs for
targeting microRNAs which belong to conserved
microRNA families. Conservation signal is used to
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predict functional MREs, however it has been deter-
mined that a conservation signal above background for
MREs of the most recent mammalian specific miRNA
families (non-conserved) was unlikely due to the rela-
tively short time between the emergence of these miRs
and the occurrence of new MREs within 3 ‘UTRs [16].
Therefore, to eliminate false positives that would arise
from this form of analysis we utilize predictions for
only conserved miR families - which are contained in
the “good mirsrv_score conserved miRNA” datafile. To
add an additional measure of conservation, we imple-
mented a conservation score cutoff for predicted miR
targets using a Phastcon score of > = 0.57, which
authors of the work estimate corresponds to conserva-
tion across the mammalian genomes used in their
study [21,52,53]. The Phastcon scores are provided in
the predictions data file from http://microRNA.org.
Additionally, predictions generated by the http://
microRNA.org tool provide a ranking score (mirSVR
score) which is calibrated to correlate linearly with the
extent of down regulation of a miR on its target.
Importantly, these scores may be interpreted as an
empirical probability of down regulation. From these
data we selected a mirsvr score cutoff < = -0.6, repre-
senting the top 12% of all predictions. A Perl script
was then used to compare the gDNA coordinates of
each predicted MRESS (n = 197287) against the gDNA
coordinates of each 3'UTR SNP in dbSNP132.

To identify CNM SNPs, we utilized the Ensembl var-
iation Perl API tools (Build 61) to retrieve the 22 bases
flanking the 5’ and 3’ regions of every 3'UTR SNP in
dbSNP 132. We generated the reverse complement for
those mRNAs transcribed from the negative strand.
These data were then run locally through the miRanda
target prediction algorithm. To limit identification of
potential false positives we implemented an arbitrary
paring score cutoff of > = 150 and an energy cutoff of
< = -20. We identified all predicted MRESS created by
CNM SNPs by filtering hits on the position of their
target prediction on the mRNA, where each SNP is
located at position 23 of 45.

Retrieval of GWAS results and LD calculations

We first downloaded a catalog of human variation asso-
ciating with disease phenotypes (1-25-11) [24]. The list
was then submitted to the SNAP tool http://www.broad-
institute.org/mpg/snap/ldsearch.php using r* of > 0.8 for
the CEU population. The resulting list was then
searched against each of the CNM and MRESS SNP
lists to identify 87 MRESS and CNM SNPs. To deter-
mine the probability of observing this number by
chance, 3940 SNPs were randomly selected from the
dbSNP build 132 data set filtered for SNPs with a MAF
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> = 1% and run through the SNAP tool to identify all
SNPS in LD, using r* of > 0.8 for the CEU population.
This procedure was repeated 1000 times. The probabil-
ity of observing 87 MRESS or CNM SNPs randomly
from the genome was determined based on the normal
distribution generated from the 1000 simulations.
Co-expression

We utilized the mimiRNA web tool to identify miR-
mRNA predictions with co-expression evidence [25].
The mimiRNA tool provides expression data for 564
mRNAs and 636 miRs, normalized across samples, from
four large scale miR expression studies, and one mRNA
expression study. We queried each miR-mRNA pair for
co-expression using the tools provided on the webpage.
Because not all of the miRs implicated in our work are
in the mimiRNA dataset, we also searched the literature
via PubMed using the search terms of the miR-name
and the term “expression.” To determine if the matching
gene was expressed in the same tissue type, we queried
the GEOprofile database.

eQTL survey

To identify association of transcript levels with MRESS
and CNM SNPs we searched eQTL data from the
MuTHER study using the Genevar web tool [29,32].
eQTL data was generated from Fat cell biopsy (n =
160), LCL cells (n = 166) and skin punch biopsy (n =
160) taken from healthy adult female twins (both mono
and di-zygotic). Twin pairs where separated in two to
unrelated groups, thereby performing 2 independent
eQTL analysis, as described in Nica, et al.

Genevar provides Spearman’s rank correlation coeffi-
cient estimates for the strength of relationships between
alleles and gene expression intensities for each study
group. Furthermore, to test the significance of the rela-
tionship, Genevar generates a t-statistic for correlation
analysis. Adjusted non-parametric permutation P-values
are also provided [32].

Fst calculations

Genotype characteristics of 11 HapMap Phase 3 popula-
tions were split into 4 groups of similar ancestry; Asian,
African, European and American. Fg1 values where cal-
culated for each HapMap Phase 3 SNP between these 4
groups and reported in a downloadable file [39]. Using a
Perl script we extracted all MRESS and CNM SNPs
with Fgr values from this dataset. We used the statistical
analysis software (SAS) boxcoxar macro to transform
the Fgr data to fit a normal distribution. We then per-
formed an unpaired Student’s t-test using the trans-
formed values for these two groups to determine if they
were significantly different. To identify MRESS and
CNM Fgr outliers we selected those SNPs with Fgp > 2
SDs from the mean.

Authors have no competing interests to declare.
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Additional material

Additional file 1: SNPs identified to abrogate MRESSs in LD with
GWAS SNPs. All MRESS SNP minor allele frequencies (MAF) reported are
for the CEU pilot panel of the 1000 Genomes Project, except where
indicted. *indicates MAF in low coverage 1000genomes CEU panel.
Abbreviations: GWAS SNP = SNP reported in GWAS, Proxy = MRESS SNP
in LD with GWAS SNP, SNP coord = genomic coordinate of MRESS SNP,
PhastCon = conservation score, PID = PubMed accession, SVR = miRSVR
score, S-T = seed type.

Additional file 2: CNM SNPs in LD with GWAS SNPs. CNM SNPs in LD
with variants association with disease traits. All CNM SNP minor allele
frequencies (MAF) reported are for the CEU pilot panel of the 1000
Genomes Project, except where indicted. * indicates MAF in low
coverage 1000genomes CEU panel. Abbreviations: GWAS SNP = SNP
reported in GWAS, Proxy = CNM SNP in LD with GWAS SNP, SNP coord
= genomic coordinate of CNM SNP, PMID = PubMed accession, PS =
miRanda Pairing Score, ES = miRanda energy score, S-T = seed type.

Additional file 3: CNM SNPs in LD with GWAS variants and showing
co-expression of miR and mRNA. CNM SNPs in LD with variants
association with disease traits. All minor allele frequencies (MAF) reported
are for the CEU pilot panel of the 1000 Genomes Project, except where
indicted. * indicates MAF in low coverage 1000genomes CEU panel.
Abbreviations: PMID = PubMed accession, PS = miRanda Pairing Score,
ES = miRanda energy score, S-T = seed type, miRlit = evidence of miR
and mMRNA expression collected from the literature, where numbers
indicate pubmed ids, except those beginning with GDS, which indicate
the Geoprofile dataset ID for which expression was demonstrated. Co =
The number of cell and tissue samples in the mimiRNA database for
which co-expression of miR and mRNA were found. eQTL = Reports
available eQTL data in the mUTHER study, where F = -Fat cell biopsy (n
=160), L = LCL cells (n = 166), and S = skin cell biopsy (n = 160).
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