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between two QTL affecting adiposity in chicken
Yuna Blum1,2,3, Guillaume Le Mignon1,2,4, David Causeur3, Olivier Filangi1,2, Colette Désert1,2, Olivier Demeure1,2,
Pascale Le Roy1,2 and Sandrine Lagarrigue1,2*

Abstract

Background: Integrative genomics approaches that combine genotyping and transcriptome profiling in
segregating populations have been developed to dissect complex traits. The most common approach is to identify
genes whose eQTL colocalize with QTL of interest, providing new functional hypothesis about the causative
mutation. Another approach includes defining subtypes for a complex trait using transcriptome profiles and then
performing QTL mapping using some of these subtypes. This approach can refine some QTL and reveal new ones.
In this paper we introduce Factor Analysis for Multiple Testing (FAMT) to define subtypes more accurately and
reveal interaction between QTL affecting the same trait. The data used concern hepatic transcriptome profiles for
45 half sib male chicken of a sire known to be heterozygous for a QTL affecting abdominal fatness (AF) on
chromosome 5 distal region around 168 cM.

Results: Using this methodology which accounts for hidden dependence structure among phenotypes, we
identified 688 genes that are significantly correlated to the AF trait and we distinguished 5 subtypes for AF trait,
which are not observed with gene lists obtained by classical approaches. After exclusion of one of the two lean
bird subtypes, linkage analysis revealed a previously undetected QTL on chromosome 5 around 100 cM.
Interestingly, the animals of this subtype presented the same q paternal haplotype at the 168 cM QTL. This result
strongly suggests that the two QTL are in interaction. In other words, the “q configuration” at the 168 cM QTL
could hide the QTL existence in the proximal region at 100 cM. We further show that the proximal QTL interacts
with the previous one detected on the chromosome 5 distal region.

Conclusion: Our results demonstrate that stratifying genetic population by molecular phenotypes followed by QTL
analysis on various subtypes can lead to identification of novel and interacting QTL.

Background
In the last decade, integrative genomics approaches that
take into account genotypic, molecular profiling and
complex traits in segregating populations have been
developed to dissect the genetics of complex traits such
as human diseases or economically important traits in
livestock or plants. Combining QTL mapping and high
throughput transcriptome data is proving useful for
characterizing QTL regions and elucidating genes and
biological pathways that affect complex traits [1-9]. The

term “Genetical Genomics” or “Systems Genetics” refers
to such a combinatorial approach.
One strategy commonly used by authors working in

this context was based on the identification of genes
having an eQTL that colocalizes with the QTL responsi-
ble for the complex trait of interest. Such a strategy
considers the expression level of each gene available on
a microarray as a quantitative trait and uses genetic
markers to identify genomic regions that regulate gene
expression phenotypes; these regions are named eQTL
(expression Quantitative Trait Loci). The function of the
gene that its mRNA level is controlled by a region can
provide new functional information about the candidate
gene sought in the eQTL region. Colocalization of
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eQTL with the QTL for complex trait can provide rele-
vant information about the causative gene for the com-
plex trait of interest. This strategy has been widely used
in various species (flies [1,10], mice [2-4], rats [5],
human [6], eucalyptus [7], Arabidopsis [8], livestock spe-
cies [9,11] has been reported). When combined with
mathematical modeling proposed by Schadt et al. [3],
this strategy becomes very efficient for distinguishing
causal from reactive genes for the complex trait and for
identifying the “driver” genes and pathways that are
responsible for a complex trait.
Another strategy is based on defining subtypes for a

complex trait using gene expression profiles. It is well
known that a population measured for a complex trait
through one criteria (for example, Body mass index for
obesity) may actually have distinct molecular subtypes
for this complex phenotype. Use of gene expression pro-
files may allow the identification of such biologically dis-
tinct subtypes. The standard procedure is to identify
genes whose expression is correlated to the complex
trait and then perform a classification of individuals in
order to observe specific subtypes. Applied on a segre-
gating population, the identification of subtypes com-
bined with QTL analysis performed for these subtypes
can separately improve sensitivity of QTL detection and
reveal new loci. This strategy was first performed by
Schadt et al. (2003) [4] using a mouse population and
then in 2009 by our team using a chicken segregating
population [12]. In these two studies, two QTL were
observed for the fat mass, one initially observed on the
full F2 set and another one only observed when one
subtype was removed. As illustrated by these studies,
the core of the approach is the determination of sub-
types within a segregating population on the basis of the
genes correlated to the complex trait. In the present
paper, we propose to identify these genes using a
method called Factor Analysis for Multiple Testing
(FAMT) which takes into account the hidden depen-
dence structure that may result from population struc-
ture or/and technical artefact of gene expression
profiling experiment, independent of the trait of interest
([11], [13]). We then show the utility of this method to
define phenotype subtypes more accurately and to reveal
interaction between 2 QTL.

Results and discussion
Identification of animal subtypes for fatness trait using
the FAMT method
The first step was to identify which of the 11213 genes
expressed in the liver were correlated to the trait of
interest, the abdominal fat weight (AF), in the 45 related
offspring’s. Pearson correlation between hepatic tran-
script levels and AF trait identified 287 genes signifi-
cantly associated at the nominal p-value of 0.05 without

any correction for multiple tests. To increase the size of
this list, Le Mignon et al. [12] added to this first list,
genes significantly differentially expressed between the
10 leanest and fattest birds in the family. As such, a list
of 660 genes was obtained with a significance threshold
of 0.05 (Student’s t-test p-value and Pearson correlation
test p-value) without any correction for multiple tests. It
should be noted that applying correction for multiple
testing resulted in no gene being differentially expressed.
This result might be explained by either a poor genetic
variability between animals, which are half sib offsprings,
or dependence between genes. Indeed, standard meth-
ods to find significant correlation between gene expres-
sions and a variable of interest ignore the correlations
among expression profiles [14]. This dependence struc-
ture leads to correlation among test statistics, which
leads to under representation of the smallest p-values
[15]. This can be explained by a number of unmeasured
or unmodeled factors independent of the variable of
interest (in our study, the AF trait) that may influence
the expression of any particular gene ([16], [13]). These
factors may induce additional variability in the expres-
sion levels and decrease the power to detect the true
correlation with the variables of interest. Recently, sev-
eral studies have introduced models taking into account
this gene dependence. In particular, Friguet et al. [13]
propose to model this sharing of information by a factor
analysis structure in a method called Factor Analysis for
Multiple Testing (FAMT). The estimated factors in the
model capture components of the expression heteroge-
neity independent of the effects of the variable of inter-
est. We applied this method to our data: 688 transcripts
significantly correlated to the AF trait were identified
taking into account the existence of six factors contain-
ing a common information shared by all genes and
independent from the AF trait. The interpretation of
these factors was analyzed and discussed in Blum et al.
[11]. For the further analyses in the present paper, we
subtracted the linear dependence kernel defined by the
six factors from the 688 raw gene expressions to obtain
688 factor-adjusted expressions as in Blum et al. [11].
The second step was to identify the best gene list that

distinguishes potential subtypes for the AF trait within
the 45 offspring. Separate hierarchical clustering of the
birds was performed using either the 287 (Figure 1A)
and the 660 genes obtained by classical methods in step
one (Figure 1B), or the 688 genes obtained by the
FAMT method (Figure 1C). For the latter we used the
FAMT adjusted expression values in the clustering algo-
rithm. The results of the three clusterings are shown in
Figure 1. The set of 688 genes is clearly more efficient
to separate fat and lean birds, and to generate different
subtypes for the AF trait. As indicated in Figure 1C, this
gene list allows us to clearly distinguish two subtypes
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for the fat birds and two other subtypes for the lean
birds in addition to one subgroup mixing lean, inter-
mediate and fat birds. This gene list includes almost all
of the genes of the 287 genes (93%) but is twice as
large. This larger number suggests that correlation
between many gene expressions and the variable of
interest is underestimated due to the hidden dependence
structure. Finally, this gene list is quite different from
the 660 gene set with only 69% common genes, suggest-
ing a notable number of false positive genes in the latter
due to the absence of correction for multiple testing
and for gene dependence.
These results clearly show the importance of taking

into account the gene dependence due to additional
sources of variation, especially when the expression var-
iation related to the variable of interest may be low and
therefore easily impacted by these additional sources.

A new QTL revealed by removing one of the two lean
subtypes: genetic characterization of this subtype
Based on the clustering obtained using the FAMT
adjusted expression (Figure 2A), we performed linkage
analyses for the AF trait on the chromosome 5, either
with the whole family or by removing successively one
of the five subgroups (Figure 2B). As indicated in Figure
2B, the majority of analyses gave the same LRT curves

with the expected AF QTL located around 168 cM on
the chromosome 5 [12]. However, after removing the
lean subtype called lean2, a new significant QTL (p-
value < 0.05) was detected on a proximal chromosome 5
locus around 100 cM with an effect of 1.19 phenotypic
standard deviation. Alternative and not necessarily
exclusive hypotheses can be drawn to explain the detec-
tion of the second QTL after the exclusion of the lean2
group:
1) The first hypothesis is the presence of animals hav-

ing an AF value in disagreement with the paternal Q/q
haplotype in the excluded lean2 group. Removing such
birds, especially when their AF values are extreme, can
largely increase the power of QTL detection when the
design analyzed has a low size. We determined for each
offspring the Q/q haplotype corresponding to the proxi-
mal QTL (see Methods section). Two out of the 7 birds
of the lean2 subtype have the Q paternal haplotype that
contributes to a high fat mass (L2 and L7 birds) (Figure
2C). However, we can notice that the lean1 subtype is in
the same configuration with 2 extreme lean birds as well
(L4 and L5) with the Q haplotype at the new QTL
(Table 1) but does not allow to reveal this latter after
being removed.
2) The second hypothesis is that the proximal and dis-

tal QTL on chromosome 5 interact with each other. In
our specific case, this means that the allele configuration
of the distal QTL at 168 cM influences the effect of the
proximal QTL and therefore masks it when the whole
family is used. To investigate this explanation further,
we analyzed the paternal haplotype at the QTL around
168 cM for the different birds of the lean2 subtype (Fig-
ure 2C). We determined the paternal haplotype for 5
out of the 7 birds belonging to this subtype considering
a probability > 99%. Interestingly, all of five birds have
the same haplotype q. This observation suggests that the
two QTL are interacting: the presence of the Q allele at
the distal locus enhances the allelic effect at the proxi-
mal QTL and the presence of q allele at the distal locus
weakens the allelic effect at the proximal QTL.

Interaction testing between the proximal and distal AF
QTL on chromosome 5
Considering a transmission probability greater than 99%,
we determined the paternal haplotype for the proximal
and distal QTL in 29 birds (40 and 34 birds for the dis-
tal QTL (at 168 cM +- 15 cM) and proximal QTL (at
100 cM +- 20 cM)) respectively as shown in Table 1.
Using these 29 birds, we first performed a two-way

analysis of variance considering the two QTL as two
fixed factors with an interaction between them. As indi-
cated in Figure 3A, the analysis shows clearly a signifi-
cant interaction between the two QTL (p-value < 0.01).
The difference between Q versus q for the proximal

Figure 1 Dendrograms of birds using different gene lists
related to fatness and obtained by different statistical
methods. (A) 287 genes correlated to the fatness trait obtained by
a classical approach. (B) 660 genes correlated to the fatness trait
and/or differentially expressed obtained by classical approaches [12].
(C) 688 genes correlated to the fatness trait obtained by FAMT
method [11]. Orange/blue bars indicate the 20 fattest/leanest
animals respectively. Darkest bars correspond to the 10 extreme
animals of the 2 fattest/leanest groups. Colorless bars correspond to
the 5 intermediate chickens.
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QTL is higher when the haplotype is Q at the distal
QTL (+15g) than when the haplotype is q (-4g).
We also tested the QTL interaction using the

QTLMap software with the “interaction model” ([17],
[18]). The procedure tests the model: “No QTL” versus
“1 QTL in interaction with another known QTL”. We
chose to set the location of the distal QTL at 168 cM,
corresponding to the maximum LRT. Compared to the
analysis of variance, the advantage of this QTL analysis
is to set the location for only one of the two QTL pre-
sumed in interaction, increasing the number of birds
analyzed (40 versus 29 animals) and then allowing to
better localize the second QTL. As depicted in Figure
3B, the green curve corresponding to the interaction
model analysis shows clearly a significant QTL in the
proximal region (p-value < 0.05) in interaction with the
fixed QTL at 168 cM. Furthermore, an additive model
testing the hypothesis “one QTL” versus “2 QTL” does
not highlight the proximal QTL (grey curve, Figure 3B),
which is consistent with our expectation that the two
QTL are in interaction.

To obtain a better estimate of the proximal QTL loca-
tion, we developed six novel informative SNP markers
in the proximal region at 67, 77, 80, 86, 89 and 95 cM
respectively and genotyped the 40 animals accordingly.
As indicated in Figure 3B, where the red curve corre-
sponds to the interaction model performed with addi-
tional markers, the most probable position of the
proximal QTL in interaction with the distal QTL on the
chromosome 5 was found at 85 cM (p-value < 0.05)
with a Confidence Interval (CI) from 78 to 102 cM.
Among the selected 688 genes, we identified 4 genes

having a similar QTL profile as the abdominal fatness
trait on the chromosome 5 (Table 2). These genes have
a distal eQTL colocalizing with the AF distal region
(observed by using the classical QTL additive model).
They also have a proximal QTL colocalizing with the
AF proximal region, with an interaction with the distal
eQTL (p-value < 0.1 by using the “interaction model” of
QTLMap software and the novel markers). Interestingly,
one of these genes has the highest correlation with the
AF trait (-0.58 Pearson correlation coefficient).

Figure 2 HCA and linkage analysis using subtype combination. (A) Heatmap using the 688 genes (Y axis) and the 45 chickens (X axis). (B)
Interval mapping for the AF trait on chromosome 5, with the whole family (blue) and without one subgroup observed by HCA (other colors).
The graph gives the statistical test (Likelihood Ratio Test) related to the test “no QTL” versus “one QTL” (y-axis”) for every tested location on the
chromosome (centiMorgan, x-axis). The chromosome-wide significance threshold at the 5% level obtained for the analysis including all animals
(blue) and for analysis without one of the five subgroups: fat1 (green), fat2 (yellow), lean1 (light blue), mixed (red) or lean2 (brown) are
displayed. The genetic distances (cM) and likelihood ratio test (LRT) are shown on the X-axis and Y-axis, respectively. (C) The two letters indicate
the Q or q haplotype inherited from the sire, with a probability > 99% for the proximal QTL (first letter) or the distal QTL (second letter); ×
indicates a probability < 99%. The probability of inheriting the paternal Q versus q haplotype was calculated only on the basis of marker
information in the region of interest.

Blum et al. BMC Genomics 2011, 12:567
http://www.biomedcentral.com/1471-2164/12/567

Page 4 of 8



Table 1 Haplotype determination for the distal and proximal AF QTL on chromosome 5.

Animal ID Subgroup Proximal AF QTL haplotype Distal AF QTL haplotype Both AF QTL haplotypes

L1 lean2 q q q-q

L2 lean2 Q q Q-q

L3 lean1 q Q q-Q

L4 lean1 Q q Q-q

L5 lean1 Q q Q-q

L6 lean1 q x X

L7 lean2 Q x X

L8 lean1 q Q q-Q

L9 mixed q q q-q

L10 lean1 x q X

L11 lean1 x q X

L12 lean1 q q q-q

L13 fat2 x Q X

L14 lean1 Q q Q-q

L15 lean1 x Q X

L16 lean2 q x X

L17 lean2 Q q Q-q

L18 mixed Q Q Q-Q

L19 lean2 Q q Q-q

L20 fat2 q q q-q

I1 mixed x Q X

I2 fat2 x Q X

I3 mixed q q q-q

I4 mixed Q Q Q-Q

I5 mixed Q q Q-q

F1 fat1 Q Q Q-Q

F2 mixed Q Q Q-Q

F3 fat2 Q Q Q-Q

F4 fat2 Q Q Q-Q

F5 fat1 Q x X

F6 fat1 q q q-q

F7 fat1 Q Q Q-Q

F8 mixed x Q X

F9 fat1 Q x X

F10 fat1 q q q-q

F11 fat2 x q X

F12 fat2 Q Q Q-Q

F13 mixed q q q-q

F14 fat1 x Q X

F15 fat2 x Q X

F16 lean2 q q q-q

F17 fat1 x Q X

F18 fat2 Q Q Q-Q

F19 fat2 Q Q Q-Q

F20 mixed q Q q-Q

34 animals 40 animals 29 animals

Animal labels F1 to F20 indicate the 20 fattest chickens, L1 to L20 the 20 leanest chickens and I1 to I5 the 5 intermediate chickens.

The two letters indicate the Q or q haplotype inherited from the sire, with a probability > 99% for the QTL at 84 cM (first column) or the QTL at 168 cM (second
column); x indicates a probability < 99%. The probability of inheriting the paternal Q versus q haplotype was calculated by QTLMap software only on the basis of
marker information in the region of interest.
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Moreover, all 4 genes were differentially expressed (p-
value < 0.1) between the two lean subtypes previously
detected (lean1 and lean2). This observation can be
interpreted as another illustration of the interaction
effect between the proximal and distal AF QTL, but at
the gene expression level. Taken together, these observa-
tions suggest that at least one of these 4 genes may be a
signature of the causative mutation underlying the adip-
osity trait. These genes produce unknown proteins and/
or proteins not particularly related to the adiposity.
Further investigations will be necessary to confirm such

a signature and clarify the role of these genes in lipid
metabolism and adiposity.

Conclusion
In this study, we show the value of determining pheno-
type subtypes underlying a complex trait by using gene
expressions. This subtype identification combined with
QTL mapping improves the characterization of QTL
responsible for adiposity, by revealing a new QTL in
interaction with a previous one. This study also high-
lights the interest to use FAMT procedure to define

Figure 3 Interaction testing. (A) Interaction graph is given by a two-way analysis of variance considering the two QTL as two fixed factors
with an interaction between them. The “Q-q” QTL effect at the proximal QTL is more important when the animals have the Q allele at the distal
QTL (-4g/+15g with the q/Q allele at the distal QTL respectively). (B) The table gives the resulting p-value for both factors and the interaction.
(C) QTL analysis using the “interaction model": the blue curve corresponds to the classical model testing the hypothesis « No QTL versus 1 QTL»,
the grey curve to the model testing «One QTL versus 2 QTL», the green curve corresponds to the interaction model « No QTL versus 1 QTL in
interaction with another one fixed at 168 cM » and the red corresponds to the interaction model after adding the six novel markers. For each
case, the significance threshold at the 0.05 level is displayed.

Table 2 Genes for which RNA level is controlled by the two proximal and distal regions in interaction similarly to the
adiposity phenotype

Classical Model Interaction Model Test Lean1/lean2

oligo ID HGNC corr location maxLRT location maxLRT DE p-value

RIGG00027 BPNT1 -0.36 182 9.6* 95 9.8+ -/+ +

RIGG05332 NULL -0.39 178 6.3+ 77 11.5* -/+ *

RIGG07405 P4HA2 -0.38 185 7.3+ 73 12.0* -/+ +

RIGG12578 NULL -0.58 158 11.7* 86 9.3+ +/- +

For each gene, are given the oligonucleotide identifier (oligo ID), the HGNC abbreviation (HGNC), the Pearson correlation with the abdominal fatness (corr), the
maximum LRT location in cM and the maximum LRT (maxLRT) using either the classical model or the interaction model. The two last columns are related to the
statistical test comparing the expression between the lean1 and the lean2 subtypes: the differential expression between the two subtypes (DE = lean1/lean2) and
the p-value associated are indicated. * and +: p-value at the chromosome level <0.05 and <0.1 respectively.
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more accurately these subtypes for a complex trait com-
pared to classical methods. At the core of the approach
proposed here is the phenotype subtype identification,
which is still rarely used in the Genetical Genomics field
and was reported once a few years ago by Schadt and col-
leagues [4]. In our report we show the advantage of using
such approach in revealing interaction among QTL and
discovery of new QTL underlying complex traits.

Methods
Animal design and microarray setup
Animal design, genotyping and microarray setup are pre-
viously described by Le Mignon et al. [12]. Briefly, the ani-
mal design corresponds to 45 male offspring produced by
a sire known to be heterozygous for a QTL affecting
abdominal fatness (AF) on chromosome 5 with a location
confidence interval extended from 156 cM to 187 cM and
a significant effect of 1.03 phenotypic standard deviation.
This sire are not heterozygous for other AF QTL on
GGA1, GGA3 and GGA7 previously detected in a three-
generation F0-F1-F2 design performed by intercrossing
two experimental chicken lines divergently selected for
abdominal fatness from which the sire has been produced.
Genotyping for GGA5 chromosome was performed for 10
markers (ADL0292, ADL0023, MCW0238, ADL0233,
MCW0026, SEQF0079, SEQF0080, SEQF0082, SEQF0085,
ROS330 at 83, 100, 125, 151, 162, 166, 175, 187, 190, 192
cM respectively). Markers were chosen from available
markers [19] or developed for this program [12]. The six
additional SNP markers were developed from the chicken
genome sequence assembly and correspond to
rs15678496, rs15683152, rs15685956, rs16689818,
rs15691594, rs14531246 at 67, 77, 80, 86, 89 and 95 cM
respectively. Gene expression measurements were
obtained from the livers of these animals using a 20 K
chicken oligo array (Ark-genomics). 11213 genes (55 % of
the 20461 genes) were selected as expressed in the liver.
The raw and normalized microarray data were deposited
in the Gene Expression Omnibus (GEO) public repository
[20]. The accession number for the series is GSE12319
and the sample series can be retrieved with accession
numbers GSM309564 to GSM309609.
The animal labels were defined as follows: F1 to F20

for the 20 fattest animals, L1 to L20 for the 20 leanest
animals and I for the 5 intermediates.
All experiments were conducted under Licence N°; 37-

123 from the Veterinary Services, Indre et Loire, France
and in accordance with guidelines for care and use of
animals in Agricultural Research and Teaching (French
Agricultural Agency and Scientific Research Agency).

Classical expression analysis
As the variable of interest in the biological study is con-
tinuous, we calculated the Pearson correlation

coefficient for each gene expression and deduced the
number of genes correlated to the trait by considering
the p-values under the cutoff 0.05. To control the False
Discovery Proportion (FDR) we performed the Benja-
mini-Hochberg correction for multiple testing [21].

Factor analysis method
The method takes into account the gene dependence
structure and consequently, the impact of dependence
on the multiple testing procedures for high-throughput
data. Indeed, genes can have similar expression profiles
because they are involved in common pathways but
independently of the variable of interest (AF in our
case). The common information shared by all the vari-
ables (i.e. gene expressions) and independent of the vari-
able of interest is modeled by a factor analysis structure.
An EM algorithm is used to estimate the model. Once
the factor model is estimated, factor-adjusted test statis-
tics are obtained by correction of the classical tests from
the effect of the common factors. David Causeur’s team
showed that the resulting tests statistics are asymptoti-
cally uncorrelated, which improves the overall power of
the multiple testing procedure ([13], [22]). The algo-
rithm is implemented in the “FAMT” R package avail-
able from CRAN. As in Blum et al. [11], the raw
expression data set is adjusted for the estimated inde-
pendent factors, which results in the so-called factor-
adjusted expression data.

QTL and eQTL mapping
QTL (eQTL) mapping consists in mapping on the gen-
ome, regions that control the variation of a complex
trait (expression trait). Before QTL analyses, the AF trait
values of the sire family (71 birds) were adjusted for
hatch and dam effects by two-way variance analysis,
including body weight at slaughter as a covariate (SAS
GLM procedure). For the eQTL analyses, no adjustment
of the gene variables was performed for hatch and dam
effects because of the small size of the population stu-
died (45 birds). QTLMap software based on an interval
mapping method described by Elsen et al. [23], was
used to detect QTL (or eQTL) affecting the AF trait (or
a gene expression phenotype). The statistical variable for
testing the presence of no QTL (or no eQTL) versus
one QTL (or one eQTL) at one location and also of one
QTL versus two, was an approximate likelihood ratio
test (LRT) [24]. Significance thresholds were empirically
determined for AF QTL and transcript level eQTL from
2000 simulations performances assuming a polygenic
model with a given heritability (h2 = 0.5). The widely
used “one LOD drop-off method” was applied to obtain
95% confidence intervals of the QTL location [25].
QTLMap software was also used to test an interaction
between the proximal and distal QTL using the
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“interaction model” testing the hypothesis « No QTL
versus 1 QTL in interaction with another one fixed in
our study at 168 cM » [18]
We considered that a gene has an eQTL colocalizing

with an AF QTL if the CI of the eQTL region was over-
lapping the CI of the QTL region.
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