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Abstract

data becomes available.

Background: Quantitative transcriptome data for the malaria-transmitting mosquito Anopheles gambiae covers a
broad range of biological and experimental conditions, including development, blood feeding and infection. Web-
based summaries of differential expression for individual genes with respect to these conditions are a useful tool
for the biologist, but they lack the context that a visualisation of all genes with respect to all conditions would
give. For most organisms, including A. gambiae, such a systems-level view of gene expression is not yet available.

Results: We have clustered microarray-based gene-averaged expression values, available from VectorBase, for
10194 genes over 93 experimental conditions using a self-organizing map. Map regions corresponding to known
biological events, such as egg production, are revealed. Many individual gene clusters (nodes) on the map are
highly enriched in biological and molecular functions, such as protein synthesis, protein degradation and DNA
replication. Gene families, such as odorant binding proteins, can be classified into distinct functional groups based
on their expression and evolutionary history. Immunity-related genes are non-randomly distributed in several
distinct regions on the map, and are generally distant from genes with house-keeping roles. Each immunity-rich
region appears to represent a distinct biological context for pathogen recognition and clearance (e.g. the humoral
and gut epithelial responses). Several immunity gene families, such as peptidoglycan recognition proteins (PGRPs)
and defensins, appear to be specialised for these distinct roles, while three genes with physically interacting
protein products (LRIM1/APL1C/TEP1) are found in close proximity.

Conclusions: The map provides the first genome-scale, multi-experiment overview of gene expression in A.

gambiae and should also be useful at the gene-level for investigating potential interactions. A web interface is
available through the VectorBase website http://www.vectorbase.org/. It is regularly updated as new experimental

Background

Genome sequencing [1] and gene expression microarray
technologies have, in recent years, enabled systems-level
research into the malaria-transmitting mosquito Anopheles
gambiae. By measuring transcript levels with respect to
biological events, such as blood feeding, development,
parasite infection and mating, one can identify genes that
are likely to be involved in the underlying processes. How-
ever, due to the wealth of information produced by indivi-
dual experiments and the numerous leads that require
further investigation, it is understandable that research
groups rarely perform so-called meta-analysis of gene
expression data, whereby multiple experiments are ana-
lysed simultaneously. Furthermore, meta-analysis is
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impeded by incompatibilities between different versions of
genome annotations, microarray technologies, file formats,
experimental designs, data processing pipelines and statis-
tical analyses. Several ongoing projects are aiming to elimi-
nate these inconsistencies and produce uniform processed
and analysed data for the end user. Human curators at the
two major microarray repositories, NCBI GEO [2] and
Array Express [3], are working to produce enriched
resources known as GEO Datasets and the Gene Expres-
sion Atlas [4], respectively. The VectorBase consortium [5]
produces a similar unified gene expression resource for
the invertebrate vector community.

Web-based expression summaries provide useful and
concise biological overviews for individual genes of
interest, however a common requirement is to know
which other genes are expressed in a similar manner to
a particular gene. GEO and ArrayExpress’ curated
expression resources provide such “nearest neighbour”

© 2011 MacCallun et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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gene lists, but within a single experiment only, not
across multiple experiments. Some years ago, gene
expression data from 553 Caenorhabditis elegans two-
colour microarray experiments was clustered simulta-
neously to produce a 2D map known as TopoMap [6].
It was found that TopoMap clustered many genes of
similar function, such as lipid metabolism, heat shock
and neuronal genes. TopoMap is integrated into the
WormBase genomics resource, but the underlying
expression data is not available, reducing its utility. To
the best of our knowledge, no large-scale meta-analysis
of expression data has been made public for any other
species.

Here we present a simple method for clustering expres-
sion data from a diverse set of microarray experiments.
We have used data from A. gambiae, but the method is
applicable to any organism. The results are visualised on
a 2D map, and we show that many regions of the map
are strongly linked to biological function. Two case stu-
dies are presented. One focuses on odorant binding pro-
teins, which can be classified into several functional
groups. The second looks at a large number of immu-
nity-related genes, and likewise suggests specialised roles
for members of several immunity gene families.

Results and Discussion

A map of A. gambiae gene expression

Using the VectorBase gene expression resource (1.0.7,
June 2009) [5], gene-averaged expression values were
extracted for 93 experimental conditions (see Table 1)
derived from 11 publications [7-17]. After median-shift
normalisation (see Methods for details), 10194 A. gambiae
genes were clustered according to their expression
data into a 25x20 grid of discrete clusters using the self-
organizing map algorithm [18] with a Pearson correlation
coefficient-based distance measure (see Methods for
further details). The self-organizing map is randomly initi-
alised; its iterative “training” or clustering algorithm is
somewhat related to the k-means clustering method. How-
ever, unlike k-means, the 500 clusters on the self-organiz-
ing map are laid out in a meaningful order (two nearby
clusters will usually have similar characteristics), although
note that the “X” and “Y” axes have no predetermined
meaning. Figure 1 illustrates how the high-dimensional
expression data has been flattened into a two-dimensional
grid, as a result of the competitive learning process. Gene
expression space is highly convoluted, as indicated by the
multiple discrete areas of high expression for many condi-
tions (e.g. adult female, embryo 6 h, fat body, 3 h post
blood meal).

Given the assumed difficulty of mapping such high-
dimensional data into two dimensions, how reproducible
are the maps with respect to the random initialisation
step? A simulation, based on an additional 100 randomly
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seeded maps (not shown), was performed to see how
often genes that are co-clustered in the “main” map
(shown in the figures) would co-cluster in a re-mapping.
It was found that 9907 of 50,000 (20%) randomly selected
co-clustered gene pairs co-cluster again in a randomly
selected re-mapping, while 40,747 (81%) of gene pairs re-
map to the same or “nearby” clusters (< 5 grid units
separation). This indicates that the general topology of
the map is reproducible, although the fine details may
not always be.

Map nodes and regions are enriched with respect to
gene function

The gene sets corresponding to each map node were
tested for enrichment in annotated function through a
Gene Ontology (GO [19]) term over-representation ana-
lysis [20]. A large number of biological processes, mole-
cular functions and cellular components were found to
be enriched. Genes annotated with a small selection of
these GO terms are highlighted in Figure 2, where the
coloured pie slices within the grey circles indicate the
proportion of genes with these GO terms. Components
of macromolecular complexes, such as the ribosome and
proteasome are among the most highly enriched terms,
which is expected since these proteins need to be pro-
duced in stoichiometric amounts and are therefore likely
to be coregulated. Non-complex associated genes are
also highly clustered by the map, such as those involved
in polysaccharide metabolism and odorant binding. A
full list of highly significant GO terms is provided in
Table 2.

Highly enriched gene functions are frequently found
in multiple distinct regions of the map, indicating major
differences in their expression and hence the biological
context in which the genes operate. Some examples are
discussed below.

The strongest enrichment of function is seen for the
ribosomal proteins on the left hand edge of the map.
However, there is a second group of ribosomal protein
genes in the centre of the map that is characterised by
high expression in ovaries and is therefore likely to be
involved in egg production.

Genes involved in DNA, RNA and protein synthesis
are generally found above the diagonal from lower-left
to upper-right. Temporally, spatially or functionally
related metabolic functions are often co-located on the
map. For example, near the centre of the map, clusters
enriched in protein synthesis (ribosome), protein folding
and protein degradation (proteasome) are found
together. Additional file 1, Figure S1 shows a wider
selection of DNA/RNA/protein metabolic functions and
their relationships (e.g. the proximity of DNA replica-
tion and repair, transcription and RNA processing, and
protein synthesis and protein transport).
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Table 1 Experimental conditions

Experiment

condition(s)

Developmental series [10]

Adult female tissues [10]
Odumasy vs. Kisumu strain [9]
Blood meal time series [8]

Blood-fed adult female tissues [8]
Alimentary canal compartments [11]
Larval salivary glands [16]

Blood meal after 15 days [8]

Male vs. female [8]

Two consecutive blood meals [8]
Larval and adult stages [8]

Male vs. female [10]

Plasmodium berghei midgut invasion
time-series [7]

Plasmodium berghei midgut invasion
stage comparisons [7]

M and S form 4th instar larvae [15]
M and S form virgin females [15]
M and S form gravid females [15]
Permethrin-resistant strain [12]
Mated females [13]

Chloroquine exposure [14]
Embryonic development [17]
Embryonic serosa [17]

embryo:12-14 hours, larva:48 hours, larva:96 hours, larva:144 hours, larva:192 hours, larva:240 hours,
pupa:240 hours, adult:312 hours

head, midgut, ovaries, carcass
Odumasy v Kisumu

Non-blood-fed, Blood-fed 3 h, Blood-fed 24 h, Blood-fed 48 h, Blood-fed 72 h, Blood-fed 96 h, Blood-fed
15 d

midgut, fat body, ovaries

gastric caeca, anterior midgut, posterior midgut, hindgut, whole organism
salivary gland, whole organism

Non-blood-fed 18 d, Blood-fed 15 d

male, female

Non-blood-fed, Blood-fed 24 h, Blood-fed twice

larva, adult

male, female

wild-type parasite infection v invasion-deficient parasite infection:before midgut invasion, wild-type
parasite infection v invasion-deficient parasite infection:during midgut invasion, wild-type parasite
infection v invasion-deficient parasite infection:after midgut invasion

wild-type parasite infection:during midgut invasion v before midgut invasion, invasion-deficient parasite
infection:during midgut invasion v before midgut invasion, wild-type parasite infection:after midgut
invasion v during midgut invasion, invasion-deficient parasite infection:after midgut invasion v during
midgut invasion

M form, S form, M form:M-GA-CAM, M form:Mali-NIH, S formKIST, S form:Pimperena

M form, S form, M form:M-GA-CAM, M form:Mali-NIH, S form:KIST, S form:Pimperena

M form, S form, M form:M-GA-CAM, M form:Mali-NIH, S form:KIST, S form:Pimperena
permethrin-selected v unselected

virgin 0 h, mated 2 h, mated 6 h, mated 24 h

chloroquine v none:Plasmodium berghei infected, chloroquine v none:uninfected

2h,4h6h 7h8h10h13h 16h, 19h,22h,25h,285h,31 h,34h, 37h 40 h, 43 h, 46 h
embryonic serosa, embryo

The 93 experimental conditions used in the VectorBase release 1.0.7 expression map are listed.

One additional gene function analysis was performed.
The null hypothesis asserts that the genes annotated with
a particular GO term are randomly distributed across the
map, and this is tested empirically. Table 3 lists the 59
GO terms for which this null hypothesis is rejected at P
<0.01 (after multiple testing correction), that is, functions
which are non-randomly distributed on the map.

Multi- vs. single-experiment maps

Some of the experiments included in this analysis, for
example the life-cycle series [10], blood meal time series
[8] and embryonic developmental series [17], have a
large enough number of experimental conditions to
allow effective clustering of genes on their own. Using
an identical self-organizing map approach on data from
these individual experiments, we found significant
enrichment of gene function in the resulting clusters, as
shown in Figure 3. However the number of enriched
GO terms (reflecting the breadth of biology visualised in
the map) was lower than that obtained with the all-
experiment (VectorBase release 1.0.7) map. The differ-
ence is particularly clear at the P <1 x 10 threshold.

The mapping was also performed with two older
releases of the expression data (release 1.0.3, January
2009 and release 1.0.5, July 2008), which contain fewer
experiments (see Table 4). In general there is an
increase in the number of enriched GO terms as new
experiments are added, although there is a small drop in
the number of biological process terms from release
1.0.3 to 1.0.5. From this limited data we tentatively pre-
dict that the incorporation of future experimental data
will produce increasingly informative maps. Further dis-
cussion on the inclusion/exclusion of experiments can
be found below (see section Limitations).

Case study: odorant binding proteins

Odorant binding proteins (OBPs [21]), which transport
odorant molecules through the extracellular fluid of che-
mosensilla to transmembrane odorant receptor (OR)
proteins on olfactory receptor neurons, are found in
three main regions of the expression map (Figure 2, two
in purple and one in grey labelled “minimal regulation”,
bottom right). One region is characterised by minimal
differential regulation and presumably represents
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Figure 1 The A. gambiae expression map. Expression data from all publicly available experiments, representing 93 assay conditions, was
summarised for 10194 genes and clustered using the self-organizing map algorithm. The area of the grey circles represents the number of genes
mapping to each discrete node on the map (minimum 1, maximum 114). The four panels show the same map with different annotations that
indicate regions of the map associated with high expression in various conditions: a Development from embryo to adult male and female [8,10]; b
Embryonic development [17]; ¢ Organs and tissues [8,10,11,17]; d Uninfected blood meal time course [8] (BF: blood fed, NBF: non-blood fed).
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constitutively expressed genes (although we cannot rule
out differential expression in some yet-to-be-performed
experiment). Another region rich in OBPs is charac-
terised by high expression in non-blood fed females,
suggesting a role in mating or host seeking for these
genes. The third cluster is expressed after blood feeding
and may be implicated in locating suitable sites for egg
laying. A similar functional hypothesis for OBPs, based
on blood meal data alone, has already been proposed
[8], however this only identified three of the most differ-
entially expressed genes, whereas the expression map
classifies the majority of this large family into three, or
perhaps more (see below), functional groups. In contrast
however, the vast majority of ORs (as defined by Inter-
Pro domain IPR004117) appear to be unregulated (data
not shown, but easily available via the web interface).

We observe a large degree of overlap between OBP
expression map clusters and paralogous groups (OBP-
PGs) defined in the VectorBase comparative genomics
database (Figure 4). This is to be expected since gene
duplication events are likely to involve “upstream” regu-
latory DNA, and so transcripts of duplicated genes are
likely to be co-regulated. However, paralogous OBPs are
somewhat divergent (20- 25% pairwise identity at the
protein level is common) so it is notable that their tran-
scriptional regulation has been conserved. The phyloge-
netic analysis splits the “high in non-blood fed females”
region (Figure 2, middle right) into two sub-regions
(Figure 4): on the left, two clusters containing most
members of OBP-PG3 and OBP-PG4, and on the right,
a cluster dominated by OBP-PG5, which consists of a
tandem array of five hitherto unannotated [21] OBPs
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Figure 2 Regions of the map are enriched with different gene functions. Genes annotated with a selection of (highly enriched on a per-
node basis) Gene Ontology terms are indicated by the coloured pie charts in each node. The corresponding regions marked with coloured lines
are described according to their gene expression characteristics. The Gene Ontology terms are as follows: orange, GO:0003735, structural
constituent of ribosome; light blue, GO:0051082, unfolded protein binding; green, GO:0000502, proteasome complex; yellow, GO:0006260, DNA
replication; dark blue, GO:0031497, chromatin assembly; vermillion, GO:0015078, hydrogen ion transmembrane transporter activity; purple,
GO:0005549, odorant binding; black, GO:0042302, structural constituent of cuticle.

(AGAP008280-AGAP008284) with no known ortholo-
gues in Drosophila melanogaster or other mosquitoes.
AGAP008280 is more highly expressed in males while
AGAP008281-AGAP008284 have very much higher
expression in females. This combination of sex-specific
expression and species-specific phylogeny suggests a
role for OBP-PG5 genes in mating, perhaps supplemen-
tary to wing-beat frequency matching [22]. Given that
members of OBP-PG3 and OBP-PG4 have Drosophila
orthologues, these OBPs may be involved in sugar-based
meal seeking rather than blood meal host seeking. OBP-
PG1 members have only mosquito orthologues, which
supports the suggestion above that these genes may be
involved in oviposition site selection (the larval habitats
of fruit flies and mosquitoes are very different).

Case study: immunity genes
In Figure 5, immunity-related genes, including Toll, IMD,
JAK/STAT and siRNA pathway members, and anti-
microbial effectors such as defensins and cecropins are
marked on the expression map. These genes show a very
clear non-random distribution (P < 0.001), and occupy
several distinct regions of the map. Genes from the four
main immune pathways are generally intermingled,
rather than in pathway-specific separate clusters. This
possibly reflects the shared or similar biological contexts
(e.g. timing and tissues) in which the various immune
challenges are encountered and cleared. The intermin-
gling may also suggest crosstalk between the pathways.
The genes RELI and REL2, encoding the core tran-
scription factors of the Toll and IMD pathways
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Table 2 Over-represented Gene Ontology terms P <1 x 10

P Accession Type Description
0 GO:0003735 MF structural constituent of ribosome
0 GO:0005840 CcC Ribosome
0 GO:0006412 BP Translation
8.37899%¢-40 GO:0000502 CcC proteasome complex
2.895e-25 GO:0004298 MF threonine-type endopeptidase activity
6.398e-25 GO:0015077 MF monovalent inorganic cation transmembrane transporter activity
7.681e-24 GO:0005811 CcC lipid particle
8.87e-24 GO:0030163 BP protein catabolic process
1.163e-19 GO:0005549 MF odorant binding
1.358e-19 GO:0005829 cC Cytosol
5.04%-19 GO:0051082 MF unfolded protein binding
2496e-18 GO:0043632 BP modification-dependent macromolecule catabolic process
2496e-18 GO:0034962 BP cellular biopolymer catabolic process
1.657e-16 GO:0004888 MF transmembrane receptor activity
2.507e-16 GO:0006457 BP protein folding
2.709e-16 GO:0006508 BP Proteolysis
1.096e-15 GO:0007586 BP Digestion
1.178e-14 G0:0019829 MF cation-transporting ATPase activity
1.236e-14 GO:0009201 BP ribonucleoside triphosphate biosynthetic process
1.236e-14 GO:0009205 BP purine ribonucleoside triphosphate metabolic process
1.236e-14 GO:0009145 BP purine nucleoside triphosphate biosynthetic process
1.245e-14 GO:0055085 BP transmembrane transport
1.245e-14 GO:0016469 CcC proton-transporting two-sector ATPase complex
1.788e-14 GO:0006818 BP hydrogen transport
2.24%-14 GO:0016651 MF oxidoreductase activity, acting on NADH or NADPH
4651e-14 GO:0006119 BP oxidative phosphorylation
8.567e-14 GO:0009152 BP purine ribonucleotide biosynthetic process
2.569-13 GO:0016675 MF oxidoreductase activity, acting on heme group of donors
2.569¢-13 GO:0015002 MF heme-copper terminal oxidase activity
3.205e-12 GO:0007606 BP sensory perception of chemical stimulus
1.248e-11 GO:0005783 CcC endoplasmic reticulum
5.56e-11 GO:0000786 CcC Nucleosome
6.352e-11 GO:0031497 BP chromatin assembly
1.354e-10 G0:0034728 BP nucleosome organization
1421e-10 GO:0015672 BP monovalent inorganic cation transport
3.172e-10 GO:0042302 MF structural constituent of cuticle
9.588e-10 GO:0009109 BP coenzyme catabolic process
9.936e-10 GO:0006084 BP acetyl-CoA metabolic process
1.003e-09 GO:0065004 BP protein-DNA complex assembly
1.181e-09 G0O:0009060 BP aerobic respiration
4.353e-09 GO:0004252 MF serine-type endopeptidase activity
5.505e-09 GO:0033554 BP cellular response to stress
1.191e-08 GO:0006040 BP amino sugar metabolic process
1.359¢-08 GO:0005976 BP polysaccharide metabolic process
2.448e-08 GO:0006260 BP DNA replication
7.826e-08 GO:0006974 BP response to DNA damage stimulus
8.827e-08 GO:0008061 MF chitin binding
1.51e-07 GO:0005739 CcC Mitochondrion
2.35e-07 GO:0045184 BP establishment of protein localization
2.664e-07 GO:0034613 BP cellular protein localization
4.102e-07 GO:0031326 BP regulation of cellular biosynthetic process
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Table 2 Over-represented Gene Ontology terms P <1 x 10" (Continued)

6.422e-07 GO:0005344 MF oxygen transporter activity

6.535e-07 GO:0003676 MF nucleic acid binding

6.985e-07 GO:0010556 BP regulation of macromolecule biosynthetic process

7.582e-07 GO:0019219 BP regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

A list of GO terms found to be over-represented in the genes of at least one of the 500 clusters on the map. Only GO terms associated with four or more genes
per cluster and with a corrected P-value less than 1 x 10 are shown. Child and parent terms with higher P-values than those shown are omitted for clarity. BP =
biological process, MF = molecular function, CC = cellular component.

Table 3 Non-randomly distributed Gene Ontology terms P <0.01

GO accession # Genes GO description

GO:0003677 339 DNA binding

GO:0006355 238 regulation of transcription, DNA-dependent
GO:0006118 229 electron transport

G0:0004252 223 serine-type endopeptidase activity
GO:0003700 167 transcription factor activity
GO:0006412 157 translation

GO:0004872 138 receptor activity

GO:0045449 137 regulation of transcription
GO:0005549 126 odorant binding

G0:0003735 117 structural constituent of ribosome
GO:0003723 116 RNA binding

GO:0004871 114 signal transducer activity
GO:0005840 113 Ribosome

G0:0008233 102 peptidase activity

G0:0006811 100 jon transport

G0:0007242 94 intracellular signaling cascade
GO:0004930 94 G-protein coupled receptor activity
GO:0007186 93 G-protein coupled receptor protein signaling pathway
GO:0042302 80 structural constituent of cuticle
GO:0005216 77 ion channel activity

GO:0001584 77 rhodopsin-like receptor activity
GO:0030529 75 ribonucleoprotein complex
GO:0006350 73 transcription

GO:0007608 71 sensory perception of smell
GO:0004984 70 olfactory receptor activity
G0:0004386 70 helicase activity

GO:0006886 64 intracellular protein transport
G0:0007476 55 imaginal disc-derived wing morphogenesis
G0:0030528 52 transcription regulator activity
GO:0008061 49 chitin binding

GO:0006030 49 chitin metabolic process
GO:0048477 48 Oogenesis

G0:0008026 48 ATP-dependent helicase activity
G0O:0007018 39 microtubule-based movement
GO:0006814 39 sodium ion transport

GO:0007517 38 muscle development

GO:0006334 34 nucleosome assembly
GO:0005694 34 chromosome

GO:0003777 34 microtubule motor activity
GO:0007049 33 cell cycle

GO:000639%6 32 RNA processing

GO:0006281 31 DNA repair
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Table 3 Non-randomly distributed Gene Ontology terms P <0.01 (Continued)

GO:0003774 29 motor activity

GO:0000786 29 nucleosome

GO:0007156 28 homophilic cell adhesion

GO:0048749 27 compound eye development

GO:0005198 27 structural molecule activity

G0:0015986 26 ATP synthesis coupled proton transport

GO:0004175 26 endopeptidase activity

GO:0046961 25 proton-transporting ATPase activity, rotational mechanism
GO:0046933 25 hydrogen ion transporting ATP synthase activity, rotational mechanism
GO:0043234 25 protein complex

GO:0016469 25 proton-transporting two-sector ATPase complex
GO:0006260 24 DNA replication

G0:0003899 23 DNA-directed RNA polymerase activity

GO:0001745 23 compound eye morphogenesis

GO:0000785 23 chromatin

GO:0006461 22 protein complex assembly

GO:0005643 22 nuclear pore

A list of GO terms for which the genes annotated with them are found to be non-randomly distributed on the map. Only GO terms associated with between 20
and 400 genes were analysed. The test for non-random distribution and multiple testing correction is described in the Methods section.
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Embryonic Developmental Blood meal All experiments All experiments All experiments
develobment series time-series release 1.0.3 release 1.0.5 release 1.0.7

Figure 3 Multi-experiment maps cluster genes by function to a greater extent than single experiment maps. The number of enriched
non-redundant Gene Ontology terms is shown for three significance thresholds for six different maps: three single experiment maps, two maps
made with older versions of the VectorBase expression data, and the map using current data as shown in previous figures. The multi-experiment
maps show substantially more clustering of genes by biological process and molecular function than the single experiment maps. Full details of
the maps and datasets can be found in Table 4.




MacCallum et al. BMC Genomics 2011, 12:620
http://www.biomedcentral.com/1471-2164/12/620

Table 4 Map information
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Map name # Conditions Publications # Genes Map dimensions
Embryonic development 17 [17] 9959 25%20
Developmental series 8 [10] 3125 15%10
Blood meal time-series 7 [8] 9959 25%20
All experiments release 1.0.3 46 [7-11] 10194 25%20
All experiments release 1.0.5 71 + [12-15] 10194 25%20
All experiments release 1.0.7 93 + (16, 17] 10194 25%20

Details of the number of experimental conditions, publications (as citations), number of mapped genes (genes with experimental data) and map size are

provided as a supplement to Figure 3.

respectively, have very different expression profiles. This
is perhaps expected since RELI, an orthologue of Droso-
phila dorsal, and other Toll pathway members have well
documented roles in dorso-ventral pattern formation in
the early embryo, and indeed we see TOLLIB, TOLLS5A,
RELI, and CACT in the early embryo region of the
map. Notably, TOLLIA, 1B, 5A and 5B are co-ortholo-
gues of Drosophila Toll, which codes for a transmem-
brane receptor with developmental and immune roles.

One can speculate that, of these four mosquito recep-
tors, TOLLIB is the most likely functional orthologue of
Toll as it clusters closely with RELI on the map. How-
ever, the location of TOLL5B close to many other
immunity genes (Region labelled “High: fat body, NBF”,
middle right) as well as that of TOLL5A close to
TOLL1B, REL1 and CACT may imply that at least three
of the four co-orthologues of Toll play central, but likely
distinct, roles in mosquito immunity.
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Figure 4 Odorant binding proteins (OBPs) are found in several distinct regions of the expression map, which generally correspond to
paralogous groups. The OBP paralogous groups (OBP-PGs) are defined (top). OBPs are shown as coloured pie sections on the expression map
(centre) with regions of interest are outlined and annotated in terms of two major expression characteristics. The pie charts of four map nodes
dominated by OBPs are shown at greater magnification (bottom left and right).

OBP2 OBP3 OBP7 OBP15 OBP17 OBP8 OBP9 OBP11 OBP12
OBP13 OBP14 OBP22 OBP27
OBP66 AGAP006278

AGAP008278 OBP68

A blood-fed 48h
A ovaries

\ -
18

A non blood-fed | ’
Vblood-fed 3h L= *
; Map node 24,8
Afemale

HE=

Map node 11,0

V¥ blood-fed 3h

27




MacCallum et al. BMC Genomics 2011, 12:620
http://www.biomedcentral.com/1471-2164/12/620

Page 10 of 15

High: emhryo 2-4h

-l Low: BF 3h

SIAT2CACT

IMD
N SREN
High:“embryo 19h SRPN
TSN SRBN
cUPPGRPS1
SRPN CLIP JSRPN
TEP13 ént LYSC1
High: BF 3h, High: embrye 31h
fat body, ser - GNBPB1
CcLIP GAEPE
Low: larval gut
Aml)rjo 2h THP15 sPz2
L AL S o
cLip sc,'{.'a'L o] sebEFTEP3GLIPCLP oL oL Sg'T’LN CcTL

cLIP PGRPLYC
SRPN

cLP ngh' larval hindgut,

Figure 5 Immunity genes are highly localised. Genes belonging to various immunity-related pathways and gene families are shown on the
map. Toll pathway members are labeled in dark cyan, the IMD pathway in dark red, JAK/STAT pathway in yellow, siRNA pathway in bright
green, anti-microbial peptides and effectors in magenta, and LRIM1, APL1C and TEPs are labeled in dark green. CLIP-domain serine proteases,
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are rich in immunity genes are outlined and described by their dominant gene expression characteristics.
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Many of the major immunity gene family members
are quite widely dispersed on the map. For example, the
anti-microbial cecropin genes CEC1, CEC2 and CEC3
are tightly clustered in a region characterised by strong
midgut expression and low expression 3 h post blood
meal (top right), while CEC4 is located quite far away in
a region with less overall differential expression and a
mild positive response at 3 h post blood meal (lower
right). This suggests that cecropins 1-3 have similar
roles but are perhaps specialised to counter a range of
pathogens, while CEC4 has evolved to perform a differ-
ent role. The four defensins have a similarly informative
distribution: DEF]I is with the main cluster of cecropins
suggesting it has a similar function, while the others are
in the lower right corner where the 3 h post blood meal

response is strong. In particular, DEF3 is clustered with
a large number of cuticle genes, suggesting a role in
immunity during blood meal induced cuticle expansion,
perhaps against fungal infection.

The peptidoglycan recognition proteins (PGRPs) are
another gene family whose functional diversity is
reflected in the map. All PGRPs, as their name implies,
are able to bind microbial peptidoglycan specifically but
some are believed to have catalytic activity due to the
conservation of three active site amino acids [23-25]. In
A. gambiae, the putative catalytic members of the family
are PGRPLB, PGRPS2 and PGRPS3. Interestingly these
three genes all map to the right-most edge of the map.
PGRPLB lies in a region populated by other effector
genes and peptides (GAMI1 (AGAP008645), LYSC7,
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DEF1 and cecropins 1-3), supporting its proposed role
as an antimicrobial agent. PGRPS2 and PGRPS3 map
close to DEF2 and DEF4 respectively, suggesting parallel
but as yet unidentified roles.

The recently described physical interactions between
two leucine-rich repeat (LRR) proteins LRIM1
(AGAP006348) and APL1C and the complement C3-like
protein TEP1 [26] are mirrored in the expression map;
the two LRR genes map to the same grid node while
TEP1 maps to the node below. These proteins are impli-
cated with the activation of the mosquito complement
system, with TEP1 being shown to localise around invad-
ing Plasmodium berghei ookinetes. This region of the
map (Figure 5, green outline, middle right) has the high-
est density of immunity genes, including many other
TEPs (1,2,9,10,12,17), CLIP-domain serine proteases, and
one additional member of the recently characterised
LRIM family [27], LRIM17 (LRRD?7), which has been
shown through RNAi mediated knockdowns to affect
Plasmodium ookinete invasion [28].

Limitations

Although the clustering of genes based on their expres-
sion in many different experiments appears to be suc-
cessful—as assessed by the co-clustering of genes with
similar function, at least—the methodology has some
potential shortcomings which merit discussion.

Since data from so many experimental conditions is pre-
sented in one place there is the possibility that users could
over-interpret map cluster expression summaries. For
example, genes in cluster 22,9 could be (wrongly) inter-
preted as having “high expression in the fat bodies of non
blood-fed females”. However, the fat body assays used tis-
sue from blood-fed females, so the correct summary
should be “high expression in non blood-fed females and
the fat bodies of blood-fed females”. Users should be
aware that very few of the possible combinations of experi-
mental conditions have actually been assayed.

The use of different mosquito strains from one labora-
tory to another may also make interpretation of the map
more difficult. First, polymorphisms may differentially
alter microarray hybridisation efficiency in one strain
relative to another for certain genes. However, this would
appear to have a minimal confounding effect, since
microarray studies have directly compared different
strains and the results have been successfully validated
with quantitative PCR [15,29]. Second, strains may actu-
ally exhibit biologically meaningful differences in expres-
sion (e.g. a gene may be highly expressed in the midgut
of one strain but not in another). On first impressions
this may seem like a problem, but it is actually an advan-
tage because the differential (inter-experiment) expres-
sion resulting from strain differences (and other sample
characteristics, such as sex, rearing conditions, etc)
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simply provides data with which finer-grained clustering
can be obtained. The web interface, however, could be
enhanced in future versions to display all available sam-
ple characteristics. Currently only the most pertinent
information is available in the experiment titles (e.g.
“Adult female tissues”).

While we have re-analysed all data in order to standar-
dise the statistical treatment there is still a possibility that
technical differences between microarray technologies
(platforms) could affect the meta-analysis. For example,
platforms with a wider range of detection are capable of
producing data with greater dynamic range. If high and
low dynamic range datasets are mapped together, the
high dynamic range data will have a greater influence on
the clustering of genes. However, the dynamic range of
expression data can also be influenced by the relative
severity of the experimental conditions being tested (for
example a 10°C heat shock will cause greater magnitude
gene expression changes than a 1°C heat shock [30]). The
VectorBase 1.0.7 expression data set contains both high
and low dynamic range experiments (Additional file 2,
Figure S2). The low dynamic range experiments tend to
involve less severe conditions, such as strain compari-
sons. If datasets were range-normalised prior to mapping,
the biological relevance of very highly regulated genes
would be lost.

Another limitation is that we discard/ignore the statis-
tics relating to the mean expression values used as input
data to build the map. For instance, the numbers of repli-
cates and standard deviations could be used to filter out
bad data or to produce Gaussian models for each expres-
sion value (with which the map could be trained). Such
enhancements, if implemented, would likely improve the
quality of the mapping still further.

We have tried to keep the number of parameters in our
approach to a minimum, however the size and shape of
the map has a major effect on the outcome and was
decided somewhat arbitrarily. In general, small maps pro-
duce large gene clusters, while large maps produce smal-
ler clusters. For any given biological annotation, the
extent of its enrichment within clusters will depend on
cluster size and the number of genes annotated as such
(i.e. in a large map, members of a large gene family may
be spread across many neighbouring nodes but not be
significantly enriched in any one node; while in a smaller
map, significant enrichment in one large cluster may be
seen). Thus, no map size is optimal in all cases. The
dimensions of the VectorBase A. gambiae expression
map (25 x 20) were chosen to give an average of 20
genes per cluster—a manageable number. Alternative
map sizes could be provided by VectorBase in the future.

VectorBase strives to be unbiased and include all data
for its core species in the expression database, particu-
larly those with raw data deposited in public repositories.
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However, for technical reasons, total coverage of experi-
ments cannot be guaranteed. Furthermore, in the mos-
quito field there is quite a heavy experimental bias (for
example, the majority of data comes from female mos-
quitoes). As the VectorBase resource expands, questions
arise as to what to do with largely redundant datasets
(there are now three adult tissue experiments: [8,10,31]).
Multiple assays of similar conditions or tissues (albeit
with strain and rearing differences, see above) will pro-
portionally shift the focus of the map towards those con-
ditions or tissues; less space will be available for the
allocation of genes into clusters based on other expres-
sion characteristics. One solution may be to perform
some pruning of redundant datasets, another may be to
produce specialist maps (e.g. developmental studies only)
in addition to the “all conditions” map.

Conclusions

One obvious use for the A. gambiae expression map is
to short-list potential interaction partners for proteins of
interest. For example, one can extrapolate from the
recent findings for LRIM1 [26] that other LRIM family
members will form heteromeric complexes and perhaps
also interact with one or more TEPs, and that these
genes will, like LRIMI, APLIC and TEPI, probably also
be co-located on the map. Similarly, we observe a gen-
eral tendency for CLIP-domain serine proteases and ser-
pin family serine protease inhibitors (marked “CLIP”
and “SRPN” in Figure 5 respectively) to be clustered
together in many areas of the map, which suggests that
the experimental elucidation of enzyme-inhibitor rela-
tionships can be greatly accelerated using the map.

A further advantage of performing clustering on all
available data is that the clusters obtained are likely to
be fine-grained enough for promoter analysis aimed at
the discovery of cis-regulatory DNA sequences responsi-
ble for co-regulation. Post-transcriptional regulatory
mechanisms (e.g. endogenous miRNA) will also be
responsible for some of the observed co-regulation, so
transcript-based signals (e.g. miRNA targets) might also
be detectable in expression map clusters.

Finally, we propose a role for expression maps in com-
parative transcriptomics. Current approaches compare
data from two or more broadly equivalent experiments
that have been performed in two or more organisms (e.g.
developmental stages in A. gambiae and Drosophila mela-
nogaster [10]). If the experiments are performed in differ-
ent laboratories and at different times, the experimental
designs are likely to be different enough to invalidate or at
the least complicate the analysis. However, expression
maps tend to smooth out these differences, so that intra-
map distances between pairs of orthologous genes should
be robustly comparable between species, especially if
the maps have been generated using a similar set of
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experiments. One can also quantify the functional diver-
gence of gene families by measuring their intra-map dis-
persal, and compare these between species.

Availability

The A. gambiae expression map has potential for mak-
ing expression data more accessible and useful to
researchers throughout the field. A web interface is
available at http://funcgen.vectorbase.org/Expression-
Map/Anopheles_gambiae/paper — showing the data pre-
sented in this paper. However, as the resource is
updated as part of VectorBase’s release cycle, newer ver-
sions are also available. While this manuscript was being
revised an expression map for the Dengue vector Aedes
aegypti was also made available. In addition, the source
code for map generation and web visualisation is avail-
able under the GNU General Public License at https://
github.com/VectorBase/ExpressionMap.

Methods

Data preparation

All data was obtained from the VectorBase gene expres-
sion resource, which is a curated collection of published,
publicly available gene expression data for invertebrate
vectors of human pathogens. The standard VectorBase
curation pipeline begins with importing original raw data
files, obtained from GEO [2], ArrayExpress [3] or the
authors, into the microarray data management system
BASE [32]. Low quality data is then removed according
to the authors’ quality flags. Intensity data is normalised
with either the Lowess algorithm [33] for two colour
data, or the RMA algorithm [34] for single channel data,
using the relevant BASE plugin with default parameters.
All ratio or intensity values for a given gene and hybridi-
sation combination (there may be multiple reporters per
gene and/or multiple spots per reporter) are summarised
by their mean. The means from multiple hybridisations
for the same experimental condition (these are usually
biological replicates, or less often, technical “dye swap”
replicates) are then averaged again to give a single value
per gene and condition combination. The number of
averaged data points and their variance are discarded (see
Results and Discussion: “Limitations”).

Some microarray technologies and experimental
designs produce intensity values whose absolute values
cannot always be compared directly from gene to gene.
These include single channel technologies and some two
colour experiments using global reference samples. With
this kind of data, it is only possible to calculate correla-
tion coefficients between gene expression profiles within
a single experiment. Some form of normalisation is
needed to give expression values from different “refer-
ence-less” experiments a common reference point so that
multi-experiment expression profiles can be compared.
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We chose to apply a “median shift” normalisation step to
such ratios and intensity values. In median shift normali-
sation, each expression profile is centred around zero by
subtracting its median value (example: for a gene with
expression values in one particular experiment (say, three
tissues) being 11,4, and 6, the normalised values will be 5,
-2, and 0). The median-shift normalised data for 10194
genes and 93 experimental conditions is available from
the VectorBase download page.

Self-organising map

The expression data was clustered using the self-organiz-
ing map algorithm as follows. Unless otherwise stated,
the map dimensions were 25x20, the starting learning
rate was 0.1, and the starting neighbourhood radius was
10. Prior to training, the map was randomly initialised
with values within the range of the expression data. Dur-
ing the training of a self-organizing map, input vectors
are compared with reference vectors at each map node
(henceforth: “node vectors”). These vectors have the
same number of dimensions as the input data (93 in this
case). In this work, the comparison is made with the
Pearson correlation coefficient, and missing values are
simply excluded from the calculation. (The Euclidean dis-
tance measure was also tried and gave similar results.)
The node vector with the highest correlation and its
neighbours within a specified radius are updated towards
the input vector by an amount proportional to the learn-
ing rate. As training proceeds, input vectors are “pre-
sented” to the map at random (with replacement) on
average 20 times each while the learning rate and neigh-
bourhood radius are linearly reduced towards zero.
When training is complete, genes are assigned for a final
time to their closest node. Each node vector can be
thought of as a mean expression vector (or profile) for
the genes mapping to that node. The algorithm attempts
to preserve the topology of the high dimensional input
data in the two-dimensional mapping, however the two
axes of the map have no predetermined meaning.

The algorithm was implemented in Perl and PDL (Perl
Data Language), and the maps are stored in a relational
database through the object oriented Class::DBI inter-
face. All source code is available under the GNU Gen-
eral Public License at https://github.com/VectorBase/
ExpressionMap.

Map outlines

The coloured outlines in Figures 1, 2 & 5 indicate
regions where one or more node vector components
satisfy a simple arithmetic inequality. For example, the
orange outlines marked “embryo” in Figure 1a highlight
map nodes where the node vector component for
embryo expression [10] is greater than 0.25. The choices
of node vector component and thresholds was largely
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arbitrary, with an emphasis on simplicity and clear
visualisation. For Figures 2 & 5, nodes of interest (e.g.
with a large fraction of genes with a particular function)
were chosen manually and vector component thresholds
were determined in a semi-automatic fashion. Different
thresholds may be explored interactively via the web
interface.

Gene function over-representation analysis

The self-organizing map presented in Figures 1, 2 & 5
consists of 500 nodes, each of which can be considered
as a gene cluster. We applied a Gene Ontology (GO)
over-representation analysis as implemented in the pro-
gram Ermine] [20] on each cluster. The analysis uses
Fisher’s Exact Test and the null hypothesis states that
genes with a particular GO term are randomly distribu-
ted between the cluster of interest and the rest of the
map. GO terms that are associated with less than ten or
more than a quarter of the genes on the map were
excluded from the analysis as they are generally not
informative. The GO term database of 2009/03/02 was
used to defined GO term relationships, and the GO
annotations for A. gambiae genes were retrieved from
VectorBase BioMart on the same date.

The P values reported from the GO analysis are cor-
rected for multiple testing (>1000 GO terms are tested)
according to the Benjamini-Hochberg false discovery
rate (FDR) procedure, and correspond to the minimum
FDRs (false positives as a fraction of all positives) at
which the null hypotheses can be rejected. This correc-
tion does not take into account overlaps between parent
and child GO terms.

Additionally, a GO term is only reported as enriched
if four or more genes in the cluster are annotated with
that term.

Empirical non-random distribution test

The over-representation analysis described above is not
ideal in situations where genes with a particular function
are localised within the map, but are not necessarily con-
fined to one map node/cluster. We therefore implemen-
ted a sampling-based test to quantify the general non-
randomness of a gene set on the map as follows. For the
set N of n genes of interest located on the map we calcu-
late the mean, d, of the city block distance to their closest
neighbours within N. Then, sets N’ of n genes are ran-
domly sampled from the map 100 times. For each sample
of genes, their mean distance to closest neighbour 4’ is
calculated as above and compared with the “true” value
d. For a non-randomly distributed set of genes, d’ is not

likely to be smaller than d. The estimated P value is

S[d <d]
100

Bonferroni correction is applied by multiplying the

therefore . Where multiple tests are performed, a
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number of random samplings by the number of tests
(159 in the case of Table 3).

Odorant binding protein paralogous groups

For this analysis, odorant binding proteins are defined as
the 49 VectorBase genes annotated with InterPro
domain IPR006625 (Insect pheromone/odorant binding
protein PhBP). The within-species paralogues for each
gene were retrieved via the Perl API from the Vector-
Base/Ensembl Compara database (7 species, schema ver-
sion 54, August 2009). Paralogous groups (PGs) are
defined as sets of genes with the same mutual paralo-
gues. Six genes have no paralogues, two PGs contain
two genes each, and one PG contains three genes. The
remaining PGs contain five or more genes and are listed
in Figure 4.

Additional material

Additional file 1: Figure S1. DNA/RNA/protein metabolic functions.
Pie charts for each cluster indicate the relative number of genes
annotated with selected GO terms related to DNA/RNA/protein
metabolism. In general, the relative location of the gene functions
reflects the underlying biology. For example, DNA replication and repair
are found close to each other [35], as are translation and protein
transport (translocation to the endoplasmic reticulum is co-translational
[36]). In contrast to previous figures, the pie chart area is not
proportional to the number of genes in each cluster. The colours
correspond to the following GO terms: orange, GO:0006260, DNA
replication; light blue, GO:0006281, DNA repair; green, GO:0006350,
transcription; yellow, GO:0006396, RNA processing; dark blue,
GO:0006412, translation; vermillion, GO:0006457, protein folding; purple,
GO:0015031, protein transport; black, GO:0000502, proteasome.

Additional file 2: Figure S2. Dynamic range of expression map
input data. Box-whisker plots indicating the maximum, minimum,
upper/lower quartiles, and median for the 93 dimensions (conditions) of
the normalised data used to generate the map. Some experiments
exhibit a wide range of expression values, for example the embryonic
developmental series, while others show a more limited range, for
example the M and S form comparisons.
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