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Abstract

Background: miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of
the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them.
While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system
has witnessed limited development. Most of them have been centered around exact complementarity match. Very
few of them considered other factors like multiple target sites and role of flanking regions.

Result: In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA
target identification, utilizing position specific dinucleotide density variation information around the target sites, to

miRNA target identification.

yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-
TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better
performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from
species like Arabidopsis, Medicago, Rice and Tomato, and detected them accurately, suggesting gross usability of p-
TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome,
supported by expression and degradome based data. miR156 was found as an important component of the Rice
regulatory system, where control of genes associated with growth and transcription looked predominant. The
entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast
processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop
computer in concurrent mode. It also provides a facility to gather experimental support for predictions made,
through on the spot expression data analysis, in its web-server version.

Conclusion: A machine learning multivariate feature tool has been implemented in parallel and locally installable
form, for plant miRNA target identification. The performance was assessed and compared through comprehensive
testing and benchmarking, suggesting a reliable performance and gross usability for transcriptome wide plant

Background

miRNAs have emerged as a major regulatory compo-
nents of cell system, which are active in almost all of
the multicellular organisms. These noncoding RNA ele-
ments are around 21 bp long and bind the target
mRNA sequences which share complementarity with
the targeting miRNA sequences. However, for a long
time it has been believed that miRNA targeting in plants
requires almost complete complementarity while in ani-
mal it is incomplete complementarity where seed
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regions play the critical role in binding and subsequent
targeting [1,2]. Some recent studies have emerged out
where translational repression and some inexact com-
plementarity have been suggested to be existent in plant
miRNA targeting too [3-5]. Some groups, encouraged
with these findings, have started looking into such
aspects in more detail, studying interactions which may
not display exact complementarity as well as instances
which are left undetected by existing plant miRNA tar-
get prediction tools [5,6]. Li et al conducted an experi-
ment, where they suggested that complementarity and
homology based target identification tools, which com-
pose the major approach of target identification in
plants, may miss out several valid targets in plants. Such
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targets actually may not obey conservation, homology or
exact complementarity [7]. The major drawbacks of
most of the existing plant miRNA target prediction
tools have been that they follow the exact complemen-
tarity, most of them do not consider any flanking region
sequence contribution to better the target prediction,
they hardly leverage from machine learning like power-
ful approaches to handle multiple features for target
prediction more accurately. Most of them lack the rea-
listic time approach to handle the genome or transcrip-
tome wide data to facilitate faster target predictions as
most of them are serially coded and web-server based.
A major reason could be a predominant belief that
unlike animal system, targeting in plants has been not
much complex. Pertaining to this, exact complementar-
ity search centered tools were used for plant target pre-
dictions while animal target identification witnessed
large number of innovations [8]. Few of the most fre-
quently used plant miRNA target prediction tools relied
strongly upon exact pattern search and local alignments.
PatScan [9] was a tool developed to look for exact simi-
lar matching patterns for target, where users could mod-
ify the match and mismatch values as well as select for
wobble. However this tool did not consider bulge or
seed specific scoring and its use has been nonspecific as
it is used for other pattern match based purposes too,
besides target finding. Another tool, miRNAassist, used
BLAST search for complementary regions of miRNAs
[10]. Using BLAST, already known miRNAs from other
species were used as a database to search against Bras-
sica EST sequences. Following almost similar approach,
Carrington group proposed another protocol where
BLAST was replaced by FASTA34 [11]. They also intro-
duced some scoring rules of alignment to separate the
seed region from rest of the regions as well as relaxed
values for mismatches and wobbles. However BLAST
based approaches are good for instances where the
query length is longer as for smaller sequences, hits
come up with very low significance making a random
hit case. Considering this Zhang [12] developed a new
tool, miRU, which replaced BLAST with Smith-Water-
man local alignment, weighting more for seed regions
and allowed bulges. These all tools were centered
around complementarity search. Acknowledgement for
limitations of exact complementarity and alignment
based methods was conspicuous with release of new
generation tools like TAPIR [13]. TAPIR worked with
two different options: 1) Scan for targets using FASTA
program based alignment or 2) By applying more sensi-
tive approach of running RNAhybrid [14] and consid-
ered thermodynamic and mismatch factors together.
Use of RNAhybrid in the back-end also ensured that
unlike previously employed tools, TAPIR was able to
detect multiple target sites in a given mRNA sequence.
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Contemporary to this, Xie and Zhang developed a novel
tool Target-align [15]. Target-align was implemented by
considering some rules while performing alignments.
These rules were about the number of allowed mis-
matches, consecutive mismatches, number of allowed
gaps and strict mismatch conditions in the seed region.
However unlike TAPIR, focus of Target-align was on
Smith-Waterman based alignment for complementarity
search with several conditions. An advantage with Tar-
get-align has been its availability as local standalone ver-
sion, unlike majority of plant miRNA target
identification tools. Very recently, Dai et al acknowl-
edged about the various lacunae in existing plant
miRNA target identification tools, including centrality of
alignment based approach, no proper consideration for
imperfect complementarity, no consideration for role of
flanking regions, inability to detect multiple sites as well
as unavailability of locally downloadable standalone ver-
sion to perform large and genomic scale studies [16].
Considering the various existing demerits, this group
implemented the role of target site accessibility and
flanking regions by using RNAup [17]. RNAup is a tool
to predict RNA-RNA interaction, considering single
strandedness of a given RNA sequence while deriving
partition function for various nucleotides in secondary
structures. RNAup and similar approaches have been
used frequently in animals for miRNA target identifica-
tion with likes of Sfold [18], PITA [19] and MicroTAR
[20]. However, applications of such tools have some lim-
itations, as they are based on single sequence secondary
structure and energy based features, whose accuracy and
reliability drop drastically with increase in the length of
sequences [21,22]. Considering this, Heikham and Shan-
kar [23] had proposed a novel approach to consider the
flanking region sequence information, bypassing the
chances of getting trapped into the issues arising from
limitations of thermodynamics and structure based
modeling. It successfully applied varying dinucleotide
density profile with respect to putative target positions
to decipher the role of flanking region in miRNA target-
ing in animal system. In case of plants, considering such
approach becomes more relevant as unlike animals,
where targeting is preferred in the 3’ UTR regions, in
plants miRNA targeting can occur to any region of the
full length mRNA.

In the present work, these findings have been
extended with flanking regions sequence information
role in determining miRNA targets [23], by applying
and assessing the theory on plant system too. Here a
machine learning based reliable approach with multiple
features oriented statistical learning has been applied,
having a clear edge over rule based approaches. Arabi-
dopsis thaliana has been used as the source to derive
plant specific features which were modeled using
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Support Vector Regression to classify as well as to
implement an effective scoring scheme through regres-
sion score. Besides this, a concurrent architecture with
multi-threads has been implemented, making the tool
application easily deployable even on simple desktop
machine in concurrent mode, enabling it to scan plant
mRNA sequences for targets in transcriptome wide
manner.

Implementation

Basic working approach

p-TAREF has been designed specifically to detect plant
miRNA targets, applying the following basic steps: A)
Conversion of target:miRNA pairing into single dimen-
sion encoded pattern for interactions, which retains the
various interaction features combinations found in plant
system. This is done for experimentally validated as well
as predicted RNA:miRNA interactions. An uniform
alignment step precedes it to maintain a common align-
ment approach B) Using target:miRNA binding thermo-
dynamic, implemented through RNAhybrid, initial set of
targets are generated. This is followed by an optional fil-
tering step. The library of experimentally known
encoded patterns is scanned against the predicted inter-
action patterns as combinations of match, mismatch,
wobble and bulge may hold interaction state informa-
tion for target:miRNA C) Evaluation of putative miRNA
target site as a potential target site based on plant speci-
fic flanking region dinucleotide density profile variation
in position specific manner with respect to the possible
target site. It uses multivariate classifier with capability
to transform between non-linear and linear spaces.
When applied with Support Vector Regression, the posi-
tion specific dinucleotide density profile variation pat-
terns were found to possess strong discriminative power
to precisely classify targets and non-targets. Dinucleotide
density variation pattern also retains nearest neighbor
information for nucleotides, a property useful in deter-
mining the accessibility and structural conditions of
RNAs. The entire process has been implemented in a
parallel mode. Figure 1 shows the working implementa-
tion of p-TAREF along-with concurrency. The following
sections give more details about the implementation of
the entire approach.

Sequence data

The present work has used several sequence resources.
miRNA sequences for plants were downloaded from
Mirbase version 16 [24]. 243 mature miRNA sequences
were retrieved for Arabidopsis, 414 for Oryza, 234 for
Populus, 51 for Medicago and 37 for Tomato. All these
miRNAs have been integrated in the presented tool.
Experimentally validated Arabidopsis thaliana miRNA
targets and their corresponding targeting miRNAs were
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retrieved from ASRP database [25] as well as from the
list of miRNA:target pairs validated through RACE PCR
as reported in the supplementary material provided by
Beauclair et al [5]. Arabidopsis sequences were down-
loaded from TAIR, version 10. Experimentally validated
targets for Medicago and Rice were retrieved from var-
ious literatures [7,26]. Negative instances of false targets
were built from the dataset used previously as well as
random sequences [13,23].

Plant specific encoded interaction pattern generation
Instances were extracted, using the list of RACE PCR
validated miR:target interactions for Arabidopsis, sub-
mitted by Beauclair et a/ [5] in their supplementary
material. Experimentally validated miRNA and target
interactions for other plants species like Rice, Medicago,
Tomato, Populus, were also derived from various litera-
tures [7,26,27]. All miRNAs and target partners were
retrieved for a separate run of RNAhybrid. RNAhybrid
predicts miRNA:Target interaction by considering ther-
modynamic parameters for interactions and multiple-
sites while applying information from statistical distribu-
tion in its backdrop. Also RNAhybrid run is a common
step between encoded interaction pattern generation for
experimentally validated instances as well as during the
prediction run over any unknown query sequences. This
way, it maintains a common approach. Output of RNA-
hybrid over experimental datasets provided exact bind-
ing pictures of interactions, which was further refined
by applying Needleman-Wunch global alignment algo-
rithm based local alignment tool, Stretcher, from
Emboss-package. In order to consider the G:U wobble,
the scoring matrix was adjusted accordingly with +1
advantage for G:U wobble, gap opening penalty of -15
and extension penalty of -5. Through this, sequence
similarity as well as thermodynamic considerations was
implemented to derive the interaction patterns. Using
local scripts, all such interactions were converted into
single encoded patterns, where information was reduced
to single dimension alone, with match states of nucleo-
tides i.e. bulge on miRNA strand, bulge on target strand,
mismatch, match and wobble. All experimentally vali-
dated interactions were finally represented into only this
form. Same protocol was used by the tool to generate
interaction patterns for the predicted targets automati-
cally. For every predicted target, the entire library of
experimentally validated encoded patterns is scanned for
similarity with scope to look for inexactness. This step
defines the primary filtering step based on similarity of
interaction patterns with experimentally known interac-
tions. At present, total 268 different interaction patterns
have been included considering miRNA:target interac-
tion cases from Arabidopsis (157), Medicago (7), Populus
(42), Tomato (11) and Rice (51).
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Figure 1 p-TAREF workflow. The figure illustrates the various working stages involved in p-TAREF along with concurrency.

J
Support Vector Regression (SVR) model building for much superior for the process of classification. Among
plants them, Support Vector Machine (SVM) has appeared as

Unlike rule based approaches of identification and clas-  highly reliable one as it can handle large number of fea-
sification, machine learning approaches have emerged tures together to derive a suitable classifier using
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multivariate statistical learning, which is comparatively
tough to achieve by rule based approach of classifica-
tion. Another advantage of SVM has been that unlike
other machine learning approaches it concentrates upon
evolving a classifier boundary with maximum margins,
lowering the chance of misclassification and error drasti-
cally. This property is also controlled by the type of ker-
nel selected for training and classification purpose, as
linear kernel applies linear boundary, Gaussian kernel
applies normal distribution boundary while polynomial
kernel has capability to evolve convolute boundary to
handle the cases where instances from different classes
are very mixed up for the given set of features. The final
classification by SVM assigns the classified instances
their respective class as either 1, 0 or -1. However, this
does not come with any clear confident value for the
classification. This degree of confidence could be
derived through some scoring scheme, which is pro-
vided by the Support Vector Regression (SVR). In the
current study, a more evolved Support Vector approach,
the SVR, has been used to implement training and clas-
sification along with a scoring scheme, regressions
score. For training purpose, a sequence dataset compris-
ing 104 experimentally validated Arabidopsis sequence
instances reported by Beauclair et al [5] (Supplementary
Material, 2010) as well as negative target instances used
by Heikham and Shankar [23] was formed. The negative
target sequences has randomly generated sequences as
well as some experimentally validated negative targets
which were predicted as targets but experimentally vali-
dated as false positives. 75 bases flanking regions around
the target sites in negative as well as positive instances
are considered through 20 bases long sliding windows,
estimating the dinucleotide density and its variations
with respect to the target-site. Discrimination through
dinucleotide density variation with respect to position
was found to be the best for window size of 20. Mean
distribution based feature selection procedure was
applied to learn about the most discriminating features
in plants. The Support Vector Regression Machine was
applied through SVMTorch [28], where every learning
instance was converted into position specific dinucleo-
tide density variation profile with respect to the (possi-
ble) target sites. Training and model generation were
performed separately for three different Kernel classes:
Linear, Gaussian and Polynomial. The best emerging
models for plant systems for each Kernel class were
saved and integrated into the plant target identification
tool developed. This way the user gets three choices of
plant models to select from.

Expression data support integration and visualization
Various array expression experiments and data (Affyme-
trix Rice Genome Array, Affymatrix Arabidopsis Tilling
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Array 1.0 R and AT-TAX) were used in the present
study. Data normalization was done using gcRMA
method implemented in “R” Statistical Package. The
expression data (.CEL’ format) was downloaded from
GEO for Oryza sativa. Expression studies and data for
17 Oryza miRNA families (156, 159, 160, 166, 168, 172,
396, 444, 528, 806, 810, 820, 1318, 1875, 2055, 2906,
395) and 57,359 RNA sequences (excluding miRNAs)
were used. For Arabidopsis miRNAs, the available
expression related studies and data for 31 miRNA
families (156, 157, 159, 163, 164, 165, 166, 167, 169,
171, 172, 319, 390, 391, 393, 394, 396, 398, 399, 401,
403, 404, 405, 406, 407, 413, 414, 417, 447, 824, 834)
and 30,166 mRNA transcripts were considered. For sev-
eral of these array based experimental data, RT-PCR
based validations for sets of associated representative
genes were reported by the submitting authors. The
RNA sequences for Arabidopsis were downloaded from
TAIR and Oryza RNA sequences from RiceGE.

To calculate correlation coefficient, the submitted tar-
get(s) is first searched in the locally installed database of
Oryza or Arabidopsis (to be opted by the user) using
BLASTn. The top most hit amongst all the hits, found
by BLASTn, is extracted. The identifier of best hit is
scanned across the inbuilt library of expression data files
to finally calculate the Pearson Correlation Coefficient
for co-expression. Modules for scanning and data par-
sings for expression correlation analysis part were
implemented through codes developed in PERL, PHP
and Java. miRNA:target association graph was generated
using graphviz and Java libraries, JgraphT and JGraph.

Introduction of Concurrency

Concurrency enables the system to perform the same
task with higher speed by harnessing the available logi-
cal processors on a given machine. Currently, even a
simple desktop or laptop comes with multicore CPUs,
having two or more processors/cores, which can go
upto more than 50 in current generation servers. Imple-
mentation of concurrency was done using Java Concur-
rent Library (JCL) while applying multi-threaded
processing of tasks. The developed tool provides the
user an option to select the total number of processors
to be used for target scanning. Accordingly, multi-
threads are created to process the query sequences. A
single query sequence is chopped into several small sub-
sequences with minimum 50 bp length (considering that
usually a miRNA:target interaction stays below 50 bp),
in overlapping manner and distributed across the num-
ber of processors selected, to run the following steps of
target identification. For every such processor and batch
of allocated sequences, RNAhybrid is run separately;
output is manipulated and parsed for coordinates, sepa-
rately and concurrently. Similarly, the alignment step is
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run concurrently. Only the Support Vector Regression
step is not concurrent as it is quite faster. The RNAhy-
brid, alignment, parsing and union steps are quite time
consuming and application of concurrency saves the
time by providing manifolds acceleration while perform-
ing analysis on large amount of data.

Standalone and Server Implementation

The entire tool has been developed as a web-server as
well as Linux based standalone GUI version. The web-
server version has been developed using Linux-Apache-
PHP, along with concurrency. The standalone version
has core programs and scripts written in Python, PERL,
Java and C, while its GUI wrapper has been developed
using QT C++ GUI library. The standalone version, too,
supports concurrency.

Performance measurement

Six major different tests were done to assess the perfor-
mance of the developed tool, p-TAREF, for miRNA tar-
get-identification: 1) Testing for performance on dataset
containing training set (total 104 positive and 119 nega-
tive instances) 2) Dataset containing 287 Arabidopsis
positive instances from ASRP database. 3) Dataset con-
taining experimentally validated targets from Rice, Medi-
cago, Populus and Tomato 4) Comparison of p-TAREF
with TAPIR and Target-align, for performance over
TAPIR/Target-align reference dataset 5) Performance
comparison between p-TAREF, Target-align and
psRNATarget [29]. 6) Comparison between Target-align
and p-TAREF for time performance on a given set of
sequences. The performance measure terms, Sensitivity
(Sn), Specificity (Sp), Accuracy (Ac) and Mathew Corre-
lation Coefficient (MCC) were calculated using the fol-
lowing equations:

Sn = TP/ (TP + FN)

Sp = TN/ (IN + FP)
Ac = TP + TN/(TP+TN+FP+FN)
MCC = {(TP*TN) — (FP*FN)}/SQRT{(TN + FN) (TN + FP) (TP + FN) (TP + FP)}

ROC curve based on 10 fold cross validation was done
to estimate the performance and robustness of the clas-
sifier models and associated tests.

Gene Ontology and enrichment studies

Gene Ontology information for Rice transcriptome was
derived from Ensemble Plants. Enrichment analysis for
gene categories predominant in miRNA target system
was conducted through two different ways: A) Using
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multiple Binomial tests. B) Using Hyper-geometric exact
tests. The null hypothesis was derived using the distri-
bution of various GO categories and their terms in
whole transcriptome of rice. For multiple Binomial tests,
we developed in-house script in “R”, while hyper-geo-
metric tests were conducted using Cytoscape module of
Bingo [30].

Result and Discussion

Web interface of p-TAREF server and GUI Standalone
p-TAREF comes as a server as well as standalone ver-
sion. The web-server takes single as well as batch mode
submission of the query sequences. However, consider-
ing the connectivity dependence upon network, it is
quite advisable to use the web-server version for single
sequence or small number of sequences. The input of
sequence requires FASTA manner entry where the first
line starts with “>“ followed by “AT” and accession ID
or numeric digits to identify the sequence, without any
gap, followed by next line having the sequence. Query
could be either pasted directly or uploaded through
some text file. The users are given with three choices 1)
Type-I: Just submit the query sequence and run the tool
from beginning, starting from RNAhybrid step. 2) Type-
II: Submit the target mRNA sequence along-with pre-
dicted target sequence. 3) Type-III: Choose some
miRNA from a drop down menu to identify targets on
the submitted query sequences. Type-I facilitates the
user to perform all tasks on the given query sequence,
while Type-II is more for confirmation and validation of
already predicted target by some other method, applying
support vector regression module directly. Unlike Type-
II, Type-I is more computationally intensive as it
involves time consuming step of RNAhybrid, dynamic
programming based alignment step, pattern encoding
and search as well as large amount of parsing. Consider-
ing this, the option of concurrency has been given to
the user for Type-I, where the user could choose the
number of processors to be used to run the server con-
currently and get results faster. Type-I also provides the
user with options to select the allowed number of mis-
matches while estimating similarity between the pre-
dicted and experimentally validated encoded patterns
for interactions between miRNA and targets. The maxi-
mum allowed level goes upto four mismatches. Higher
the mismatch level cut-off, more number of total targets
may emerge out. There is an option to set the threshold
energy cut-off parameter for RNAhybrid run, which is
-10 kcal/mol by default. A decisive step in parameter
selection is the selection of plant model according to
the Kernel (Choice of Kernel). Here, p-TAREF provides
three options to choose from: Linear Kernel, Radial
Basis Function (Gaussian) and Polynomial function. Lin-
ear function runs straight with least accommodative
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power, Gaussian is moderately stringent and Polynomial
tries to cover more spread and deviating instances cor-
rectly. The Type-II option is more for validation pur-
pose in case if a user wishes to confirm the predicted
target by some other tool or method, by applying SVR
approach. In this case, the user has to paste the pre-
dicted target region sequence as well as the sequence in
which the target was predicted. Based upon the dinu-
cleotide density profile variation method for refinement,
SVR scores will be generated for the query. Figure 2
provides the look for Type-I form of the server. Besides
this the server provides Type-II option to perform SVR
validation for already predicted targets. It takes the pre-
dicted target sequence as well as the mRNA sequence,
to which the target region belongs. Type-III option pro-
vides a list of miRNAs to opt from and perform analysis
on the user submitted query sequence.

The server version also provides a provision to scan
for possible expression data based expression correlation
measurement for the given user query and associated
miRNA, found targeting it. The user is asked to select
the species to which the sequence belonged or is
expected to share a homologous sequence. The server
has inbuilt, normalized, expression data for plant miR-
NAs as well as genes, currently for Arabidopsis and
Rice. Along-with the expression data, the associated
mRNA sequences are also formated for similarity search
tools like BLAST, which is enabled to run on multiple
processors. The user opts for the species to be scanned
for the target gene, in turn, the server preforms a
BLAST run to consider the longest and most identical
hit, most similar to the query sequence. The corre-
sponding expression data for the target and targeting
miRNA is retrieved for expression correlation measure-
ment, which is displayed to the user. The publicly avail-
able expression data for all known plant miRNAs and
genes will be continuously updated with every release
and for various species. It needs to be mentioned that
array expression data could be not of much use in case
of translational repression by miRNA. A possible analo-
gous facility may be provided in future for targeting
cases where translational repression could be involved.
The final output page displays the target sequence ID,
targeting miRNA, the predicted interaction pattern and
closest experimentally validated pattern along-with the
partner miRNA, SVR score and choice to scan for
expression analysis based validation across different spe-
cies. The SVR score comes positive for potential miRNA
targets while it is negative for non-targets. Higher the
absolute value of the SVR score better is the confidence
of classification.

The Standalone GUI version of p-TAREF was devel-
oped considering the realistic approach to scan large
amount of transcriptome data for miRNA targeting.
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Performing such task on web-server is a time consum-
ing approach which takes lots of time in loading the
data itself and fetching it back, while both of the pro-
cesses are connection and INTERNET availability
dependent. In that way, Standalone GUI version could
be very helpful in running p-TAREF locally and in user
friendly manner. The entire interface has been devel-
oped using QT C++ Library which is also available for
download from the server page’s download section. The
Standalone GUI is easily deployable even on a simple
laptop or desktop machine as well as on high-end ser-
vers. In case, if the required dependencies are not pre-
installed on user’s machine, p-TAREF installation system
verifies this and automatically installs all the per-requi-
sites itself. The standalone GUI version provides an
option to load sequence query file in a batch mode,
adjust the mismatch level for experimentally validated
interactions similarity search, options to adjust the bind-
ing free energy cut-off, options to choose for kernel
dependent plant models as well as adjust the number of
processors to be used to implement concurrency. A pro-
gress bar appears to display the running job status and
amount of sequences scanned. Figure 3 shows the run-
ning state of Standalone GUI version of p-TAREF.

Performance

As already discussed in the introduction section, unlike
the animal system based miRNA target identification
tools, plant miRNA target identification tools have wit-
nessed limited growth till recently. Many of them
revolved around complementarity search, using either
heuristics like BLAST and FASTA or Smith-Waterman
in their core. Most of them are web-server based and
barring psRNAtarget, none of them provides the scope
of concurrency to enable analysis of large amount of
sequence data. Considering the revolutions made by
next generation sequencing and systems biology
approach, it becomes imperative to analyze transcrip-
tome/genome level data at one go, with high accuracy
as well as speed. BLAST and FASTA dependent meth-
ods do not require concurrency due to innate advantage
of FASTA and BLAST to be much faster, though at the
cost of accuracy and reliability. For that, some authors
tried Smith-Waterman local alignment to detect com-
plementarity, which becomes sharply slower with incre-
ment in the number and length of sequences to be
searched and more so if all to all search has to be per-
formed without the prior knowledge of the miRNA. We
compared one such tool, Target-align, with p-TAREF,
for time performance as among the very few tools avail-
able as the standalone version, Target-align is a recently
published software with widespread use. We executed
Target-align and p-TAREF on 205 plant genes from
Arabidopsis and recorded the time taken to finish the
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Figure 2 The p-TAREF webserver. The web-server provides a friendly interface to load query sequences, with various parameter settings which
include selection of energy cut-off, mismatch level allowed, SVR Kernel to be used, number of processors to be used, etc. Its performance tab
contains detailing about all performance measures done for p-TAREF performance benchmarking and comparison with other tools.

Download People Involved Contacts

e

job. Though p-TAREF run could be accelerated through
concurrency and use of more processors, no such facil-
ity was available with Target-align, making us to run it
with single processor and compare the performance for
time taken. Table 1 summarizes the time performance
and impact of introduction of concurrency. Figure 4 dis-
plays the plot showing reduction in execution period on

introduction of concurrency when run over 790 mRNA
sequences associated with plant secondary metabolite
pathway. The processing speed of p-TAREF shot up
with inclusion of more processors, making it a better
choice to look for whole transcriptome wide scanning.
Besides p-TAREF, only psRNAtarget provides the
advantage of concurrency. However, comparison
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Figure 3 Snapshot of standalone GUI version of p-TAREF. Like its web-server counterpart, the standalone GUI version too provides
concurrency and most of the features, enabling quick standalone scanning of batch and large amount of sequence data. It also shows a
progress bar to intimate about the status of analysis.

Table 1 Impact of concurrency in p-TAREF.

# of processor/Mismatches 8 4 2 1
4 1 Hour 43 min 3 Hours 21 min 5 Hours 01 min 8 Hours 37 min
3 1 Hours 17 min 3 Hours 00 min 4 Hours 34 min 6 Hours 07 min
2 46 min 2 Hours 21 min 3 Hours 53 min 5 Hours 42 min
1 42 min 1 Hours 52 min 3 Hours 14 min 4 Hours 21 min
0 37 min 1 Hours 14 min 2 Hours 05 min 3 Hours 01 min
Target-Align NA NA NA 92 Hours 26 min

p-TAREF was run over total 205 genes, with different number of processors, having Intel Xeon processors with 2.5 Ghz clock speed. The last row compares it with

another tool Target-align, which is available as standalone, serially coded alignment based tool.
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in performing accurate transcriptome wide analysis.

# of Processors Used

Figure 4 Impact of concurrency over execution speed. p-TAREF was run over a set of genes for target identification, with different number
of processors added through concurrency. As can be found, concurrency caused drastic reduction in processing time, which is highly beneficial

between them for execution speed was not possible as
psRNAtarget is available only as a web-server and its
concurrency has been implemented through cluster
computers having several processors and large volumes
of memory. Unlike psRNAtarget, p-TAREF is easily
deployable on any level of machines and can run con-
currently even on simple desktop machine.

Contrary to the strictly similarity search based tools, as
described above, p-TAREEF, takes advantage from three
different approaches: Similarity based, Thermodynamics
based (RNAhybrid) and Machine Learning based. Barring
psRNATarget, hardly any of the existing plant miRNA
target identification tools consider the thermodynamic
aspect as well as contribution of flanking region in decid-
ing the target. In animal system it is now well proven
that flanking regions reasonably participate in determina-
tion of the target site [23,30]. However unlike psRNAtar-
get, which measures the miRNA-RNA interaction and
gross secondary structure of the mRNA using RNAup
program [17] at its back-end, p-TAREF prefers to apply
dinucleotide density variation profile around the target
site as the multivariate feature set for discrimination
through statistical machine learning approach, Support

Vector Regression. Our previous work with animal sys-
tem had already shown the effectiveness of detecting
miRNA targets in animal system without getting trapped
into the limitations of RNA structure prediction [21,23].
In overall, p-TAREF was compared with psRNATarget
[29], Target-align [15] as well as TAPIR [13], through
several tests. In the first two tests, p-TAREF was com-
pared with Target-align and psRNAtarget, over the data-
set created using experimentally validated targets
reported in the supplementary material of Beauclair ez al
[5] as well as experimentally validated instances reported
in ASRP database [25] along-with the mentioned negative
dataset. Performance of p-TAREF was measured for
three different kernel based models. It was found that
even the lowest performing linear kernel based plant
model performed better than psRNAtarget as well as
Target-align for the given datasets. Table 2 presents the
result of this performance comparison along with Addi-
tional File 1 (Table 2). This is to mention that while per-
forming this assessment, the instances taken in training
sets were entirely different from the one used in training,
keeping it clear to test its performance on a dataset with
never seen before instances.
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Table 2 Performance comparison between psRNA-target, Target-align and p-TAREF.

psRNA target Target-align P-TAREF (polynomial kernel)
Beauclair et al. ASRP Beauclair et al. ASRP Beauclair et al. ASRP

TP 81 119 64 103 104 262

FN 23 168 40 184 0 25

N 119 119 119 119 119 119

FP 0 0 0 0 0 0

Sn 77.88 41.16 61.53 35.888 100 91.29

Sp 100 100 100 100 100 100

MCC 0.81 04146 0678 04586 1 0.86

ACU% 89.68 58620 82.06 50.800 100 93.84

*TP = True Positive, FP = False positive, TN = True Negative, FN = False negative, Sn = sensitivity, Sp = Specificity, MCC = Mathew Correlation Coefficient; Ac =

Accuracy.

For experimentally validated targets, derived from two different sources, the tools were compared for performance. In the given table, p-TAREF was compared
and found performing better than the compared tools for the given datasets. Performance related testing details are given in text, Additional File 1 as well as at
server's performance page. The observed MCC value suggests about the robustness of model implemented in p-TAREF.

In the next test, performance of p-TAREF was com-
pared with Target-align and TAPIR, for the reference
dataset used by TAPIR [13] and Target-align [15]. Both
the tools had used a common dataset for their perfor-
mance benchmarking. On the same dataset, p-TAREF
was run and found performing better than TAPIR and
Target-align with sensitivity level of 100%, which is
higher than the ones observed for TAPIR (93.14%) and
Target-align (97.05%). Though it does not affect much
even if same set is used for training and testing, in the
present study it has been tried all over to keep the two
sets entirely different and unseen. Here also, the number
of instances which were common between the sets used
for testing by TAPIR and Target-align were searched.
Only seven out 105 instances were found common
between TAPIR/Target-align reference test set and
training set of p-TAREF. For this test, the benchmarking
protocol applied by Bonnet et al for TAPIR [13] and
Target-align [15], was followed exactly, where the pre-
dicted targets falling outside the experimentally vali-
dated regions were considered as the negative instances
to calculate the false positive rates. Compared to these
two tools, Target-align and TAPIR, p-TAREF had lower
false positive rate. Table 3 presents the result for this
benchmarking exercise.

Besides this, p-TAREF was also compared with
psRNAtarget for experimentally validated dataset, which
was used previously for performance benchmarking of
psRNAtarget [31-34]. For all experimentally validated 46
instances of targets, p-TAREF identified 45 of them.
Further experimentally validated target instances specific
for Tomato, Populus and Medicago were collected and
the performance of p-TAREF was measured on them.
For available nine experimentally validated target
instances in Medicago truncatula specific miRNAs, p-
TAREF scored 100%. For all of the available eight
experimentally validated targets from tomato, p-TAREF

attained 100% accuracy. For Populus trichocarpa, 17 out
of 21 experimentally validated and submitted instances
were available, out of which 16 targets were identified
successfully, notching an accuracy of 94.11%. For Popu-
lus euphratica 21 targets out of 24 known instances,
were successfully identified (Accuracy% = 87.5%). All
the details regarding performance, benchmarking and
associated tests are explained elaborately on the perfor-
mance page of the server as well as in Additional File 1.

Using 10-fold cross validation, the performance
robustness of all the three kernels and different tests
was estimated. The Area Under Curve (AUC) values for
most of the tests scored above 0.9, suggesting the
robustness of the working theory, model built under the
three kernels and their reliable performance. Figure 5
shows the Receiver Operating Characteristic curve
(ROC) for the three models along-with their respective
AUC values. The last two ROC plots are about perfor-
mance of Target-align and p-TAREF, for the reference
dataset used for benchmarking of Target-align by its
authors, following the same protocol which they used to
judge the false positive rate. The recorded AUC for p-
TAREF was reasonably higher than the one observed for
Target-align, suggesting more consistent performance by
p-TAREF.

Target identification in Rice transcriptome and
emergence of miR156 as a prominent regulator

In the beginning of this part of the study, the validation
and performance benchmarking process over the already
known and experimentally validated miRNA target
instances in rice transcriptome was done. Recently, Sun-
kar had group performed a degradome sequencing
based study to report 153 miRNA targets [7]. For 29
rice specific miRNAs, the authors had reported 56 tar-
gets. For validation work the same experiment was used
to validate targets identified by p-TAREF in the rice
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Table 3 Performance comparison between TAPIR, Target-align and p-TAREF for Target-align/TAPIR Reference dataset

for benchmarking.

TAPIR Target-align p-TAREF
Fasta RNAhybrid Less stringent More stringent Polynomial kernel
TP Rate % 91.83 93.14 97.05 93.14 100
FP Rate % 8147 8897 84 57.8 56.2

*TP = True Positive;FP = False Positive

The same benchmarking dataset and procedure was used for p-TAREF as had been used previously by the two tools. P-TAREF was found performing better.

transcriptome. The sequence data was found available
for 52 such target genes and p-TAREF identified most
of the targets with overall accuracy of 97.33%. Encour-
aged by this, whole transcriptome analysis for miRNA
targets in rice transcriptome sequences was carried out,
excluding those sequences on which the above men-
tioned analysis had been performed already in order to
avoid redundancy, looking for new targets and save
time.

p-TAREF was run over 57,995 mRNA sequences from
rice transcriptome dataset, with upto 4 mismatch level
between experimental and predicted interaction patterns
and polynomial kernel plant model. Initially, total
36,916 targets were identified for upto four differences
from experimentally validated interaction patterns for
target:miR interactions. Total 7,996 unique genes were
found being targeted. Additional File 2 contains details
of all identifications made at different mismatch levels.
To validate the predicted targets with support of experi-
mental data, the microarray expression data for all of

the predicted target:miRNA pairs was checked. Out of
36,916 predicted miRNA targets, the expression data
was available for 33,709 pairs to estimate the expression
correlation between the target gene and corresponding
miRNAs. After performing the expression correlation
analysis, for 27,586 predicted target:miRNA pairs inverse
expression correlation was observed, for different experi-
mental conditions and tissue types, suggesting strong
concordance with the predicted targets (81.8%). The
expression correlation was compared with their respec-
tive SVR scoring and a reasonable agreement between
the two was found with Pearson correlation coefficient
of 0.7. The remaining 18.2% of identified targets had no
agreement with expression correlation, which may also
include condition like translational repression by miR-
NAs, which can’t be interpreted well through inverse
correlation estimation. While discussing this, it needs to
be mentioned that expression data has certain limita-
tions for inferences. It could be useful in case of tran-
script disruption, which is mostly prevalent in the

True posliive rate
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Figure 5 The ROC plots for classifier models of p-TAREF with 10 fold cross validation. As the plots show, the classifier was found robust in
performance with high AUC values, where the highest one was observed for polynomial kernel model. For cases A-F, two major experimentally
validated data sources, Beuclair et al(2010) and ASRP, were used to prepare the datasets. For cases F and H, tests were performed using the
reference test set as well as protocol used by TAPIR and Target-align. The curves represent the following tests: A) Linear Kernel/ASRP B) Gaussian
Kernel/ASRP C) Polynomial Kernel/ASRP D) Linear/Beuclair E) Gaussian/Beuclair F) Polynomial/Beuclair G)Target-align/(Tapir/Target align dataset)
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plants. Though unlike animal system where translational
repression has been reported more prevalent than tran-
script decay during miRNA targeting, recent studies
have reported existence of translational repression in
plants too, as discussed above. In such condition array
expression data could not be much of help in inferring
the process of targeting by microRNAs.

For this run, targets were found mainly for ~20 differ-
ent miRNA families, with over-representation by certain
miRNA families (Figure 6). All such targeting miRNAs
and associated target genes, along-with their available
expression correlation, mismatch level for nearest inter-
action patterns and SVR scores are listed in Additional
File 3. For the identified miRNA targets, showing strong
inverse correlation with the associated miRNAs, the tar-
gets were grouped according to the miRNAs targeting
them, and separate Gene Ontology analyses were per-
formed over every such group. The related data is given
in the Additional File 4.

From this study, miR156 family emerged as an impor-
tant miRNA in Oryza system, with largest number of
targets (526 unique genes), many of which also scored
high for negative expression correlation with miR156.
One of the possible reasoning for observing such high
number of targets for miR156 could be attributed to
existence of purine richness (GA/AG tract) in miR156
sequence, causing poly-pyrimidine regions to be counted
as the targets due to complementarity. Though the algo-
rithm design of p-TAREF has capacity minimize the
noise, especially those arising through mere complemen-
tarity, yet a couple of analyses were performed to verify
the above mentioned possibility. Maintaining the con-
stant dinucleotide composition, a permuted miR156
sequence was generated. If the polypyrimidine tracts
could influence the result significantly, one may expect
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to see the frequency of targets for such permuted
miRNA with identical dinculeotide composition as
almost of same level. However, when p-TAREF was run
with most liberal parameters to find the permuted
miR156 targets, only 105 genes were found being tar-
geted and with consideration of only miR156 specific
encoded interaction pattern comparisons, absolutely no
hit was found for the permuted miR156. The same test
was repeated with few more permuted miRNAs and
almost similar pattern of lower number of random tar-
gets were observed, with absolutely no targets reported
when miR156 specific encoded interaction patterns were
considered. This suggests high reliability of identifica-
tions done by p-TAREF, where the user could also
apply the different options parameters to limit the result
of interest. Further, a search for polypyrimidine SSR
regions in the rice transcriptome reported ~1000 genes
with polypyrimidine tracts. When mapped for the target
genes for miR156, only 56 genes were found common
between these two sets of genes. For several of these 56
genes the target site was found non-overlapping with
the polypyrimidine tracts. Therefore, these findings sug-
gest a very limited possible role of repetitiveness/ran-
domness in the observed abundance of miR156 targets.
Also, this needs to be mentioned that the mentioned
number of target genes for miR156 is the gross number
of targets for miR156 obtained with the parameters
described in the beginning of this section. Search could
be refined further by applying various filters and options
provided with p-TAREF, including SVR score cut-off,
interaction pattern differences and expression correla-
tion score, etc. Additional Files 2 and 3 hold all such
details for rice, which could be used to refine the results
further, based upon filters like SVR score/Correlation
Score/Differences in encoded pattern/Selection of

#Target Genes

100 -

o L iii

-

miR3962 miR3981 miR408 miR3980 miR2105 miR528 miR168 miR169 miR2103 miR164 miR167 miR172 miR162 miR444 miR171 miR1846 miR160 miR166 miR3% mIR156

Figure 6 miRNAs target distribution in Oryza sativa. The major miRNA families found targeting the various genes in rice transcriptome.
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miRNA specific encoded patterns etc. Applying one of
such cut-offs for inverse correlation for expression, we
performed an analysis upon the top scoring targets for
miR156, as demonstrated below.

Figure 7 shows a group of identified targets for
miR156 and their corresponding inverse correlation
scores while Table 4 details about the possible functions
and identification of top fifty of these targets along-with
their SVR scores. All these targets scored inverse
expression correlation values higher than 0.8 (i.e
between -0.8 to -1). Gene Ontology studies over the
identified miR156 target genes and associated statistical
testing for enrichment provided some interesting infor-
mations. For miR156 certain biological terms were
found enriched. Table 5 shows the top 20 significantly
enriched GO terms found associated with miR156 tar-
gets in Oryza sativa. Figure 8 shows the result of statis-
tical enrichment analysis using hyper-geometric tests,
for molecular function categories of genes. For this part
of the study, it can be seen that miR156 targeting was
found significantly enriched for genes associated with
process of transcription, nucleotide transfer process dur-
ing transcription and catalytic activities. For further ana-
lysis, targets were searched for instances where a
miR156 target was found being targeted by other miR-
NAs too. For such pairs some enriched miRNA pair
instances were found. miR156-miR160 coexisted in 110
unique genes and transcripts, enriched for molecular
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functions like RNA polymerase activity (P-value: 1.7E-
03). miR156-miR166 coexisted in 25 unique genes and
36 unique transcripts, where genes associated with
molecular functions like Beta-Galactosidase activity (P-
value: 1.6E-03), were found enriched. miR156-miR396
coexisted in 208 unique genes and 263 unique tran-
scripts, showing enrichment for genes associated with
molecular functions like Brassinosteriod-sulfotransferase
activities (P-value: 4.9E-04), Fructokinase activities (P-
value: 7.3E-04), Glucokinase activities (P-value: 7.3E-04)
and UDP-gluco-4-aminobenzoate activities (p-value:
7.3E-04).

Previously done studies have reported critical role of
miR156 in plant growth and developmental stage transi-
tions like flowering, fruit ripening and shoot develop-
ment, controlling some important transcription factors
like SPL [35,36]. Some recent studies now suggest that
miR156 could be an eternal regulator of vegetative
growth in plants and found critical in growth phase
transitions [37]. The present study found strong affinity
of miR156 towards targeting genes involved in the pro-
cess of transcription, growth and development which
goes in sync with findings made previously with men-
tioned studies for miR156.

Conclusion
Like animals, in plant systems too, the role of flanking
regions in determining miRNA targets appears as critical
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Table 4 Identified targets of miR156 in the rice transcriptome.
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Transcript Id Transcript annotation Expression Correlation SVR Score
LOC_0s08g41480.1 SAM domain containing protein, putative, expressed -092 4494426
LOC_0Os10g34064.1 retrotransposon protein, putative, unclassified -0.92 355511
LOC_0s08g38240.1 transposon protein, putative, CACTA, En/Spm sub-class, expressed -0.89 0.305948
LOC_0s02g01250.1 LSM domain containing protein, expressed -0.88 3.846277
LOC_0s03g10850.2 FAD-linked sulfhydryl oxidase ALR, putative, expressed -0.88 3.9567
LOC_0s03g24410.1 conserved hypothetical protein -0.88 4.39943
LOC_0s01g66940.1 kinase, pfkB family, putative, expressed -0.87 3.55511
LOC_0s03g55610.1 dof zinc finger domain containing protein, putative, expressed -0.87 373214
LOC_0s04g28090.1 MYB family transcription factor, putative, expressed -0.87 301288
LOC_0s05g34730.1 ethylene-responsive transcription factor ERF020, putative, expressed -0.87 3.55511
LOC_0Os11g04730.1 DNA-directed RNA polymerases |, I, and Ill subunit RPABC1, putative, expressed -0.87 2.02559
LOC_0Os11g37080.1 h/ACA ribonucleoprotein complex subunit 1-like protein 1, putative, expressed -0.87 373214
LOC_0s02g12580.1 OsPP2Ac-3 - Phosphatase 2A isoform 3 belonging to family 1, expressed -0.86 0.591197
LOC_0s02g38200.1 dehydrogenase, putative, expressed -0.86 3.01288
LOC_0s02g51880.1 amine oxidase, putative, expressed -0.86 3.08791
LOC_0s03g55220.1 bHelix-loop-helix transcription factor, putative, expressed -0.86 131754
LOC_0s03g63730.1 RNA recognition motif containing protein, putative, expressed -0.86 0.742023
LOC_0s03g63730.1 RNA recognition motif containing protein, putative, expressed -0.86 263747
LOC_0Os06g41384.1 zinc finger C-x8-C-x5-C-x3-H type family protein, expressed -0.86 3.08791
LOC_0s08g42620.1 zinc finger DHHC domain-containing protein, putative, expressed -0.86 3.01288
LOC_0s509g29980.2 transposon protein, putative, CACTA, En/Spm sub-class, expressed -0.86 3.01288
LOC_0s12g16130.1 transposon protein, putative, unclassified, expressed -0.86 0.656255
LOC_0s02g26140.1 microtubule-binding protein TANGLED1, putative, expressed -0.85 1.95761
LOC_0s06g02560.1 growth-regulating factor, putative, expressed -0.85 2.543472
LOC_0s10g03640.1 hypothetical protein -0.85 2.54657
LOC_0Os10g41390.1 protein kinase domain containing protein, expressed -0.85 0411063
LOC_0Os12g44130.1 expressed protein -0.85 0.934949
LOC_0s10g41390.1 protein kinase domain containing protein, expressed -0.85 1.64854
LOC_0s12909280.1 RNA polymerase subunit, putative, expressed -0.85 2.54657
LOC_0s01g08200.1 ubiquitin carboxyl-terminal hydrolase 14, putative, expressed -0.84 2.5038
LOC_0s01g50340.1 transposon protein, putative, unclassified, expressed -0.84 1.22697
LOC_0s03g10930.1 ribosomal protein L51, putative, expressed -0.84 0.264129
LOC_0s03g17950.1 expressed protein -0.84 1.17905
LOC_0s06g35530.1 CGMC_GSK8 - CGMC includes CDA, MAPK, GSK3, and CLKC kinases, expressed -0.84 0.996875
LOC_0s07g01540.1 Ser/Thr protein phosphatase family protein, putative, expressed -0.84 2.517799
LOC_0s08g02540.1 adenylate kinase, putative, expressed -0.84 251778
LOC_0s08g02730.1 plant protein of unknown function domain containing protein, expressed -0.84 1.78162
LOC_0s08g04780.1 amine oxidase, putative, expressed -0.84 0.111441
LOC_0s08g44380.1 L1P family of ribosomal proteins domain containing protein, expressed -0.84 254161
LOC_0s09g25620.1 CPUORF8 - conserved peptide uORF-containing transcript, expressed -0.84 208723
LOC_0s09g39020.1 N-rich protein, putative, expressed -0.84 1.58374
LOC_0s10g33230.1 RNA recognition motif containing protein, putative, expressed -0.84 1.95032
LOC_0s12g37380.1 RNA pseudouridine synthase, putative, expressed -0.84 2.08857
LOC_0s01g04730.1 ribosomal protein L24, putative, expressed -0.83 262583
LOC_0s01g09030.1 2-aminoethanethiol dioxygenase, putative, expressed -0.83 263747
LOC_0s01g16220.1 Sad1/UNC-like C-terminal domain containing protein, putative, expressed -0.83 1.68967
LOC_0s01g41880.1 hyaluronan/mRNA binding family domain containing protein, expressed -0.83 2.50997
LOC_0s03g27990.1 STRUBBELIG-RECEPTOR FAMILY 7 precursor, putative, expressed -0.83 203837
LOC_0s03g28410.1 ribosomal protein S2, putative -0.83 1.94684
LOC_0s04930680.1 conserved hypothetical protein -0.83 1.94949

The listed targets scored at least 0.8 inverse expression correlation or higher.
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Table 5 Top 20 most significant GO terms found associated with miR156 targets in the rice transcriptome.

Rank Cellular component Molecular Function Biological function
Go Terms Significance Go Terms Significance Go Terms Significance
(P-value) (P-value) (P-value)
1 cell wall 220e-16 RNA binding 2.20e-16 cellular protein metabolic 2.20e-16
process
2 cytosolic large 2.20e-16 copper ion binding 2.20e-16 DNA replication 2.20e-16
ribosomal subunit
3 ribosome 2.20e-16 aspartic-type endopeptidase activity 2.20e-16 response to cadmium ion 2.20e-16
4 ribonucleoprotein  2.20e-16 aspartate kinase activity 2.20e-16 DNA integration 2.20e-16
complex
5 mitochondrial 2.20e-16 DNA-directed DNA polymerase activity 2.20e-16 translation 2.20e-16
inner membrane
6  Golgi apparatus 2.20e-16 zinc ion binding 2.20e-16 cellular amino acid 2.20e-16
biosynthetic process
7 cytosolic small 2.20e-16 ubiquitin thiolesterase activity 2.20e-16 microtubule-based 2.20e-16
ribosomal subunit movement
8  nuclear pore 2.20e-16 microtubule motor activity 2.20e-16 cellular amino acid 2.20e-16
metabolic process
9  mitochondrion 2.20e-16 triose-phosphate isomerase activity 2.20e-16 intracellular protein transport 2.20e-16
10 cytoplasm 2.20e-16 branched-chain-amino-acid transaminase 2.20e-16 protein import into nucleus, 2.20e-16
activity docking
11 cytosol 2.20e-16 structural constituent of ribosome 2.20e-16 shoot development 2.20e-16
12 cytoskeleton 2.20e-16 nucleic acid binding 2.20e-16 proteolysis 2.20e-16
13 cytosolic 2.20e-16 translation initiation factor activity 2.20e-16 branched chain family 2.20e-16
ribosome amino acid metabolic
process
14 nucleolus 2.20e-16 DNA binding 2.20e-16 ubiquitin-dependent protein  2.956e-16
catabolic process
15 plasma 5.21E-015 glyceraldehyde-3-phosphate dehydrogenase  2.20e-16 embryo development 1.114e-15
membrane activity ending in seed dormancy
16 proteasome 1.09e-14 NAD binding 4.27E-015 vesicle-mediated transport 3.006e-15
complex
17 COPI vesicle coat  1.20e-13 glyceraldehyde-3-phosphate dehydrogenase  1.649e-14 rRNA processing 1.756e-14
(NAD+) (phosphorylating) activity
18  outer membrane  1.3%e-12 ligase activity 1.96e-14 translational elongation 2.675e-14
19  protein complex  143e-15 unfolded protein binding 2.25E-014 protein folding 447E-014
20 small ribosomal 3.20e-12 hydrolase activity, acting on acid anhydrides, 2.67e-14 response to hormone 1.870e-13

subunit

in phosphorus-containing anhydrides

stimulus

The top scoring 20 terms associated with three GO categories are given with their associated significance scores (p-value).

one. This was successfully tested for plants and imple-
mented through the developed tool, p-TAREF. It works
on statistical machine learning principle, deriving maxi-
mum margin classification decision boundary while con-
sidering multiple variables, which in the present work
has been plant specific dinucleotide density profiles var-
iations with respect to the possible target position. The
confidence over that assigned class is derived through
the scoring scheme of Support Vector Regression score.
Besides this, implementation of concurrency provides p-
TAREF an accelerated processing capability to harness
multiple processors even on simple desktop machine as
well as on big servers. p-TAREF web-server provides
scope for expression based evidence for predicted tar-
gets, providing confidence on prediction, besides SVR
scoring system to gather confidence on identification.

The expression data and other associated publicly avail-
able information will be updated regularly with release
of new data sources. The expression analysis and data in
the present work were mainly based upon array experi-
ments, which have some innate limitations. Though
such array experiments may not produce the most accu-
rate expression results, they have been used extensively
for expression and abundance analysis at genome wide
level and may provide a reasonable estimation of expres-
sion. For several of these experiments, RT-PCR based
validation had been reported for the representative
genes. More sensitive expression data from NGS and
RT/q-PCR could be added in the upcoming versions of
p-TAREF, depending upon the kind of experiments per-
formed on these platforms and their public availability.
For performance assessment, one of the most
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Figure 8 Hypergeometric tests for enrichment of GO functional categories terms for molecular function. The observation was made for
enrichment of molecular functions found enriched and associated with targets of miR156. The colored nodes are functional categories whose
genes were found significantly enriched in the pool of miR156 targets. Darker the color, more significant is the enrichment.

comprehensive performance measurements and compar- Other requirements: Web-server is recommended for

isons with most recent and contemporary tools for single or small number of sequences. For batch mode

miRNA target identification in plant system has been  analysis, prefer to use the standalone GUI version.

done, suggesting better performance by p-TAREF. Using License: Free

p-TAREF, whole transcriptome level targets for rice Any restrictions to use by non-academics: None

transcriptome have been identified where miR156 was

found as a critical miRNA in rice system. The reported  Additional material

targets were validated in two ways: using support from

co-expression data as well as accurate identification of Additional file 1: Performance tests and benchmarking related

degradome analysis based targets. The identified targets details. This additional file contains the details about the performance
1d b . tant t t cl ict £ benchmarking and tests done for p-TAREF. In overall six different major

cou ‘e ar} lrr}por ar} resour?e 0 get clearer picture o tests were done for performance benchmarking.

regulation in rice. With all this, p-TAREF could be very Additional file 2: miRNA target predictions made on rice

helpful for the study of gene regulation and becomes transcriptome. This file contains result data on Rice transcriptome

more relevant considering the amount of data being specific miRNA targets, with corresponding targeting miRNA, encoded

. . . interaction pattern differences and SVR score details.
produced by next generation sequencing projects, where
p-TAREF could be applied over novel plant transcrip-

Additional file 3: Expression correlation between miRNAs and
targets. The file contains details about the miRNA targets found in Rice

tomes to discover miRNA targets. transcriptome, along with expression correlation values between the
target and targeting miRNA.
Availability and requirements Additional file 4: miRNA groups and their corresponding functional

. . category enrichments with p-values. miRNA targets in Rice
PI’Ojf.‘Ct name: p-TAREF ) ) transcriptome were grouped according to the miRNA targeting them
Project home page: http://scbb.ihbt.res.in/SCBB_dept/ and their associated GO functional categories for Molecular function and

Software.phphttp://sourceforge.net/projects/ptaref/ Biological processes.
Operating system(s): Platform independent web-ser-
ver version as well as Linux specific standalone version.

Programming language: Python, PERL, Java, R List of Abbreviations
ROC: Receiver Operating Characteristic Curve; miRNA: microRNA; Acc:
Accuracy; Sp: Specificity; Sn: Sensitivity; MCC: Mathew Correlation Coefficient;
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AUC: Area Under Curve; NGS: Next Generation Sequencing; GUI: Graphical
User Interface; JCL: Java Concurrent Library.

Acknowledgements

We thank Heikham Russiachand Singh, Vandna Chawla and Mrigaya Mehra
for helping us in this study. Ashwani Jha is thankful to Department of
Biotechnology ( DBT, Govt. of India ) for his fellowship. The MS has IHBT
communication ID: 2212.

Funding

The work was supported by Department of Biotechnology(DBT),
Government of India, through project grant: BTPR/11098/BID/07/261/2008.

Authors’ contributions

AJ developed the codes, implemented the multi-core parallel versions,
developed the web-server and GUI versions of the tool and conducted the
entire study and performed the analysis part. RS planned and designed the
entire study, developed the computational protocols, algorithms and theory,
core basic codes, performed analysis and supervised the entire study. AJ and
RS drafted the manuscript. All authors read and approved the final
manuscript.

Received: 8 September 2011 Accepted: 29 December 2011
Published: 29 December 2011

References

1. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction
of plant microRNA targets. Cell 2002, 110:513-520.

2. Dugas DV, Bartel B: Sucrose induction of Arabidopsis miR398 represses
two Cu/Zn superoxide dismutases. Plant Mol Biol 2008, 67:403-417.

3. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P,
Yamamoto YY, Sieburth L, Voinnet O: Widespread Translational Inhibition
by Plant miRNAs and siRNAs. Science 2008, 320:1185-1190.

4. Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Cre’ te’ P, Voinnet O,
Robaglia C: Biochemical Evidence for Translational Repression by
Arabidopsis MicroRNAs. Pinat cell 2009, 21:1762-1768.

5. Beauclair L, Yu A, Bouché N: microRNA-directed cleavage and
translational repression of the copper chaperone for superoxide
dismutase mRNA in Arabidopsis. Plant J 2010, 62:454-462.

6. Brodersen P, Voinnet O: Revisiting the principles of microRNA target
recognition and mode of action. Nat Rev Mol Cell Biol 2009, 10:141-148.

7. LiY, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ,
Zhang W, Sunkar R: Transcriptome-wide identification of microRNA
targets in rice. Plant J 2010, 62:742-759.

8. Mendes ND, Freitas AT, Sagot MF: Current tools for the identification of
miRNA genes and their targets. Nucleic Acids Res 2007, 8:2419-2433.

9. Dsouza M, Larsen N, Overbeek R: Searching for patterns in genomic data.
Trends Genet 1997, 13:497-498.

10. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM:
Computational identification of novel microRNAs and targets in Brassica
napus. FEBS Lett 2007, 581:1464-1474.

11, Fahlgren N, Carrington JC: miRNA Target Prediction in Plants. Methods Mol
Biol 2010, 592:51-57.

12. Zhang Y: miRU: an automated plant miRNA target prediction server.
Nucleic Acids Res 2005, 33:W701-W704.

13. Bonnet E, He Y, Billiau K, Peer YV: TAPIR, a web server for the prediction
of plant microRNA targets, including target mimics. Bioinformatics 2010,
12:1566-1568.

14. Kruger J, Rehmsmeier M, RNAhybrid: microRNA target prediction easy, fast
and flexible. Nucleic Acids Res 2006, 34:451-454.

15. Xie F, Zhang B: Target-align: a tool for plant microRNA target
identification. Bioinformatics 2010, 23:3002-3003.

16. Dai X, Zhuang Z, Zhao PX: Computational analysis of miRNA targets in
plants: current status and challenges. Brief Bioinform 2011, 12:115-121.

17. Muckstein U, Tafer H, Hackermdiller , Bernhart SH, Stadler PF, Hofacker IL:
Thermodynamics of RNA-RNA binding. Bioinformatics 2006, 22:1177-1182.

18. Ding Y, Chan CY, Lawrence CE: Sfold web server for statistical folding and
rational design of nucleic acids. Nucleic Acids Res 2004, 32:W135-W141.

19. Kertesz M, lovino N, Unnerstall U, Gaul U, Segal E: The role of site
accessibility in microRNA target recognition. Nat. Genet 2007,
39:1278-1284.

Page 18 of 18

20. Thadani R, Tammi MT: MicroTar: predicting microRNA targets from RNA
duplexes. BMC Bioinformatics 2006, 7:S20.

21.  Gardner PP, Giegerich R: A comprehensive comparison of comparative
RNA structure prediction approaches. BMC Bioinformatics 2004, 5:140.

22. Andronescu M, Zhang Z C, Condon A: Secondary structure prediction of
interacting RNA molecules. J Mol Biol 2005, 4:987-1001.

23.  Heikham R, Shankar R: Flanking region sequence information to refine
microRNA target predictions. J Biosci 2010, 35:105-118.

24. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation
and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-D157.

25.  Tyler WHBackman, Christopher MSullivan, Jason SCumbie, Zachary AMiller,
Elisabeth JChapman, Noah Fahlgren, Scott AGivan, James CCarrington,
Kristin DKasschau: Update of ASRP: the Arabidopsis Small RNA Project
database. Nucleic Acids Res 2008, 36:0982-D985.

26. Jagadeeswaran G, Zheng Y, Li Y, Shukla LI, Matts J, Hoyt P, Macmil SL,
Wiley GB, Roe BA, Zhang W, Sunkar R: Cloning and characterization of
small RNAs from Medicago truncatula reveals four novel legume-specific
microRNA families. New Phytol 2009, 184:85-98.

27. Li B, Qin Y, Duan H, Yin W, Xia X: Genome-wide characterization of new
and drought stress responsive microRNAs in Populus euphratica. J Exp
Bot 2011, 10.1093/jxb/err051.

28.  Collobert R, Bengio S: SVMTorch: support vector machines for large-scale
regression problems. The Journal of Machine Learning Research 2001,
1:143-160.

29. Dai X, Zhao PX: psRNATarget; a plant small RNA target analysis server.
Nucleic Acids Res 2011, 1-5.

30. Kertesz M, lovino N, Unnerstall U, Gaul U, Eran Segal E: The role of site
accessibility in microRNA target recognition. Nature Genetics 2007,
39:1278-1284.

31.  Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAS and their regulatory
roles in plants. Annu Rev Plant Biol 2006, 57:19-53.

32. Wang XJ, Reyes JL, Chua NH, Gaasterland T: Prediction and identification
of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol
2004, 5:R65.

33. Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW: Hypoxia-
responsive microRNAs and trans-acting small interfering RNAs in
Arabidopsis. J Exp Bot 2010, 61:165-77.

34.  Jones-Rhoades MW, Bartel DP: Computational identification of plant
microRNAs and their targets, including a stress-induced miRNA. Mol Cell
2004, 18:787-99.

35. Gang Wu, Scott Poethig R: Temporal regulation of shoot development in
Arabidopsis thaliana by miR156 and its target SPL3. Development 2006,
133:3539-47.

36. Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V,
Dalmay T: Deep sequencing of tomato short RNAs identifies microRNAs
targeting genes involved in fruit ripening. Genome Res 2008,
18:1602-1609.

37. Wang Jia-Wei, Mee YPark, Wang Ling-Jian, Koo Yeonjong, Chen Xiao-Ya,
Weigel Detlef, Poethig RS: MiRNA Control of Vegetative Phase Change in
Trees. PLoS Genet 7:21002012.

doi:10.1186/1471-2164-12-636
Cite this article as: Jha and Shankar: Employing machine learning for
reliable miRNA target identification in plants. BMC Genomics 2011 12:636.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/12202040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12202040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18392778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18392778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20128885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20128885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20128885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19145236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19145236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20202174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20202174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9433140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19802588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16421272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16421272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20858738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20858738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16446276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15458580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15458580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17999994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17999994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19555436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19555436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19555436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16669754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16669754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15345049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15345049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19815687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19815687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19815687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16914499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16914499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18653800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18653800?dopt=Abstract

	Abstract
	Background
	Result
	Conclusion

	Background
	Implementation
	Basic working approach
	Sequence data
	Plant specific encoded interaction pattern generation
	Support Vector Regression (SVR) model building for plants
	Expression data support integration and visualization
	Introduction of Concurrency
	Standalone and Server Implementation
	Performance measurement
	Gene Ontology and enrichment studies

	Result and Discussion
	Web interface of p-TAREF server and GUI Standalone
	Performance
	Target identification in Rice transcriptome and emergence of miR156 as a prominent regulator

	Conclusion
	Availability and requirements
	Project name: p-TAREF

	Acknowledgements
	Authors' contributions
	References

