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Abstract

expression patterns similar to diseased human livers.

Background: Methods for gene-class testing, such as Gene Set Enrichment Analysis (GSEA), incorporate biological
knowledge into the analysis and interpretation of microarray data by comparing gene expression patterns to
pathways, systems and emergent phenotypes. However, to use GSEA to its full capability with non-mammalian
model organisms, a microarray platform must be annotated with human gene symbols. Doing so enables the
ability to relate a model organism’s gene expression, in response to a given treatment, to potential human health
consequences of that treatment. We enhanced the annotation of a microarray platform from a non-mammalian
model organism, and then used the GSEA approach in a reanalysis of a study examining the biological significance
of acute and chronic methylmercury exposure on liver tissue of fathead minnow (Pimephales promelas). Using
GSEA, we tested the hypothesis that fathead livers, in response to methylmercury exposure, would exhibit gene

Results: We describe an enhanced annotation of the fathead minnow microarray platform with human gene
symbols. This resource is now compatible with the GSEA approach for gene-class testing. We confirmed that GSEA,
using this enhanced microarray platform, is able to recover results consistent with a previous analysis of fathead
minnow exposure to methylmercury using standard analytical approaches. Using GSEA to compare fathead gene
expression profiles to human phenotypes, we also found that fathead methylmercury-treated livers exhibited
expression profiles that are homologous to human systems & pathways and results in damage that is similar to
those of human liver damage associated with hepatocellular carcinoma and hepatitis B.

Conclusions: This study describes a powerful resource for enabling the use of non-mammalian model organisms
in the study of human health significance. Results of microarray gene expression studies involving fathead minnow,
typically used for aquatic ecological toxicology studies, can now be used to generate hypotheses regarding
consequences of contaminants and other stressors on humans. The same approach can be used with other model
organisms with microarray platforms annotated in a similar manner.

Background

One of the challenges facing researchers conducting
microarray studies is deriving meaning from lists of
thousands of differentially expressed genes among the
phenotypes examined [1-3]. A relatively new approach
for systems-based analyses involves testing for enrich-
ment of gene classes or sets; the most popular method
employing gene-class analysis is Gene Set Enrichment
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Analysis (GSEA [4]). GSEA tests whether a set of genes,
defined a priori, is enriched in expression in one treat-
ment relative to another. Each GSEA set consists of
genes united by a shared association (e.g., functional
classification, pathway or disease state), leveraging prior
knowledge into the analysis and thereby providing an
advantage over an approach in which only individual
genes are examined. An enrichment score is calculated
for each set to reflect the distribution of set constituents
across a list of genes ranked by correlation with the
experimental treatment. A higher enrichment score cor-
responds to a shifting of gene set constituents towards

© 2011 Thomas et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:mthomas@isu.edu
http://creativecommons.org/licenses/by/2.0

Thomas et al. BMC Genomics 2011, 12:66
http://www.biomedcentral.com/1471-2164/12/66

either end of the ranked list representing strongly posi-
tive or negative correlations. For a specific microarray
experiment, GSEA tests whether genes from a given set
are randomly distributed or, alternatively, are up- or
down-regulated in one phenotype relative to the other.

The statistical significance of a set’s enrichment score
is determined by comparison to a distribution of scores
generated by permuting the ranked list by phenotype
class. A measure of expected false discovery rate (FDR)
is used to refine the significance of high-scoring sets
when a large collection of gene sets is analyzed.

The GSEA approach uses a modified Kolmogorov-
Smirnov test. Some authors have criticized the GSEA
approach for being a Rube Goldberg Machine-like solu-
tion to a problem that could be adequately solved with
a simpler instrument, such as a X ? test that assumes a
normal distribution of scores [5]. While it is unclear
which statistical approach best tests for gene set enrich-
ment, it is generally accepted that the GSEA approach is
able to provide novel insights from complex expression
patterns [2,3].

GSEA is human-centric: the GSEA platform [6] is
built around human genome data and HUGO (Human
Genome Organization) gene symbols, a standard voca-
bulary of gene terms [7]; array elements without asso-
ciated HUGO symbols are ignored by GSEA. For each
known human gene, the HUGO Gene Nomenclature
Committee (HGNC) approves a single gene name and
symbol. Researchers not using human microarray plat-
forms must annotate elements in their array with
HUGO terms in order to use GSEA along with its data-
base of gene sets. This is clearly a non-trivial task for
distantly related model organisms, as a substantial pro-
portion of genetic elements on such an array will have
no known human homolog. However, this enhanced
annotation allows access to thousands of curated gene
sets available in the Molecular Signatures Database
(MSigDB [4,8]) that leverage human health knowledge,
allow meaningful comparisons between humans and dis-
tantly related model organisms, and potentially provide
novel insights into human health.

McGary et al. (2010) demonstrated the value of com-
parisons between humans and distantly related model
organisms for understanding the evolution of emergent
phenotypes arising from sets of conserved genes [9]. In
that study, sets of genes associated with specific human
genetic disorders were mapped to sets of homologous
genes in model organisms associated with functions dis-
tinct from the human genes (e.g., human X-linked
breast cancer vs. a high frequency of male progeny in
C. elegans). That approach was used to identify novel
candidate genes for the human disorder.

Similarly, a GSEA-based analysis could leverage phe-
notype homology with two different approaches. First,
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starting with a gene set associated with a given
human disorder (e.g., genes associated with a given
human autoimmune disorder characterized by an
unknown environmental trigger), GSEA could be used
to assay a number of conditions in which those genes
might be differentially expressed in an appropriate
model organism. In this way, GSEA could provide novel
insights into that disorder by generating hypotheses
about circumstances under which the human disorder is
mimicked, exacerbated or even triggered. Second, GSEA
could be used to predict the human health conse-
quences of a given treatment or condition (e.g., sele-
nium contamination and concentration in streams and
wetlands, as in [10]) by comparing the gene expression
profile associated with that contaminant (in an appropri-
ate model organism) to a collection of candidate human
gene sets chosen to represent a range of reasonable
pathways, functions or phenotypes of interest.

Here, we describe an enhanced annotation of the
EcoArray fathead minnow 15 k microarray (EcoArray,
Gainesville, Florida) using HUGO symbols [11]. This
enhanced microarray resource allows analyses using the
GSEA approach and comparisons between fathead
expression and sets associated with human health.

To test the ability to GSEA to recover results consis-
tent with standard microarray analyses, we reanalyzed a
previous study of fathead minnows, Pimephales prome-
las (Rafinesque), that used the EcoArray fathead min-
now 15 k gene microarray platform to examine gene
expression changes in response to methylmercury expo-
sure [12,13]. That study considered genes with greater
than two-fold differences from control in liver tissue
from fish exposed to methylmercury over short
(96 hour, “acute”) or long (600 day, “chronic”) exposure
periods. They identified 650 genes that exceeded this
threshold following acute treatment and 267 genes fol-
lowing chronic treatment. Examining these genes with
the FatiGO functional profiling tool [1,14], they identi-
fied Gene Ontology (GO) categories [15] found to be
enriched in response to the acute and chronic methyl-
mercury treatments. In all treatments, analyses identified
methylmercury-induced changes in expression of apop-
tosis-associated genes, including caspase, tumor necrosis
factor and fatty acid synthase.

In order to test the ability of GSEA to conduct mean-
ingful comparisons of human disease-associated sets
with model organism expression profiles, we compared
liver gene expression profiles from the fathead minnow
methylmercury treatments [12,13] to MSigDB-derived
sets associated with gene expression in human livers
damaged by hepatocellular carcinoma (HCC) and hepa-
titis B. We predicted that these sets would be enriched
in the fish expression profiles, reflecting similar pro-
cesses associated with generalized liver damage. These
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comparisons were designed to investigate the broader
biological significance of methylmercury exposure by
fathead minnows while providing a clear comparison of
liver damage in a non-mammalian model organism to
human liver damage associated with specific disorders.

Results
Annotation of EcoArray 15 k fathead minnow microarray
for GSEA analysis
We identified 12,032 HUGO symbols for the 15,208 ele-
ments on the EcoArray fathead minnow microarray
platform (79%). The annotated fish genes include
homology to 10,069 unique HUGO symbols, about 36%
of the ~28,000 symbols in the HUGO database. This
number of human homologs is consistent with the num-
ber identified (10-11,000) for five other fish species
using similar methods [16], given that the 15,208 ele-
ments on the fathead array were selected in part for
their degree of conservation with other species [12,13].
Gene duplication in the fish lineage may have led to
cases where more than one fish array elements mapped
to the same human HUGO symbol. There were 1679
array elements that shared a HUGO symbol association
with at least one other array element. These include
situations where 1) fathead genes are represented by
more than one array element; and 2) two (or more) fat-
head genes were homologous to the same human gene
due to gene duplication in the fish lineage. Using the
EST sequence data, it is difficult to distinguish between
these two possibilities; GSEA assumes that all such
duplicates fall into the first category. We concluded that
cases from the second category would not unduly influ-
ence the interpretation of the analyses since the post-
duplication sister genes likely have similar functions.
Similarly, gene duplication in the mammalian lineage
has led to cases in which a single fish array element
mapped equally to more than one human protein (and
HUGO symbol). Of the ~250 such cases, in which the
BLAST search identified two or more hits with equal
e-values (generally 0.0), we selected the hit with the
higher score (see Materials & Methods). These cases
were examined individually.

GSEA analysis results for GO categories derived from
Klaper et al. study

Of the 26 GO-BP (Biological Processes) classes identi-
fied by the Klaper et al. [12,13] study (using FatiGO), 14
sets for acute and 12 sets for chronic treatments, GSEA
identified six significantly enriched sets in the acute
treatment (Table 1) and no sets in the chronic treat-
ment (Table 2). Consistent with the Klaper study, GSEA
identified the majority of sets to have experienced up-
regulation (irrespective of statistical significance of the
enrichment) in the treatments relative to the controls.
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Nearly all the enriched gene sets were associated with
metabolic and biosynthetic processes.

GSEA analysis of the MSigDB C2 collection of gene sets

Due to the highly conservative nature of the false dis-
cover rate (FDR) implemented by GSEA, many gene sets
from the MSigDB C2 collection ("curated gene sets from
online pathway databases, publications in PubMed, and
knowledge of domain experts” [4]) with statistically sig-
nificant enrichment scores failed to surpass the FDR
threshold and, consequently, could not be definitively
identified as enriched following methylmercury treat-
ment. Table 3 lists gene sets with normalized enrichment
scores (NES, see Table captions for details) that were
below a normalized p-value of 0.05 and a FDR of 0.25.

In the acute treatment, GSEA identified 20 significantly
enriched up-regulated sets under the FDR threshold
(Table 3). These consisted of metabolic, biosynthetic and
several cancer-associated sets. There were no significantly
enriched down-regulated sets passing the FDR test; failing
FDR (not listed in Table 3) were significantly down-
regulated sets associated with cytotoxicity, which is of biologi-
cal significance for hepatotoxicity and, potentially, for HCC.

In the chronic treatment, GSEA identified 6 significantly
enriched down-regulated sets under the FDR threshold
(Table 3). These primarily include apoptosis and caspase
sets. There were no significantly enriched up-regulated sets
passing the FDR test; failing FDR (not listed in Table 3)
were significantly up-regulated metabolic and biosynthetic
processes sets, which are of biological significance for hepa-
totoxicity and, potentially, for HCC.

GSEA analysis results for human HCC and hepatitis B
gene sets

A sub-set of the MSigDB C2 collection, consisting of 38
human gene sets associated with HCC and hepatitis B,
was also tested against the P. promelas methylmercury
treatments (see Materials & Methods and Table 4). In
the acute treatment, GSEA found one down-regulated
("Gene up-regulated both by expression of Hepatitis B
virus HBx protein in normal hepatoctyes and by HBV
infection in liver samples with chronic active hepatitis”)
and two up-regulated sets ("Genes highly expressed in
HCC resistant to 5-Fluorouracil + interferon” and
“Genes highly expressed in interferon-resistant hepa-
toma cell lines vs. sensitive cell lines”). In the chronic
treatment, GSEA found no down-regulated and one up-
regulated set ("Genes highly expressed in hepatocellular
carcinoma with poor survival”).

Discussion

Comparisons of GSEA and FatiGO profiles

Our GSEA results are consistent with the FatiGO
results of Klaper et al. [12,13]. While few of the
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Table 1 GSEA tests for GO classes enriched following acute treatment

GO term GO definition Size ES NES NOM p-value
UP-regulated in treatment:

GO:0042254 Ribosome biogenesis and assembly 14 0.708 1.591 0.000
GO:0006364 rRNA processing 11 0.717 1.510 0.000
GO:0015031 Protein transport 122 0437 1614 0014
GO:0006754 ATP biosynthesis 56 0438 1.360 0.014
GO:0006486 Protein amino acid glycosylation 75 0378 1.280 0.133
GO:0006605 Protein targeting 85 0436 1.557 0013
GO:0009058 Biosynthesis 327 0.324 1.315 0.149
GO:0045045 Secretory pathway 59 0422 1448 0.064
G0:0007046 Ribosome biogenesis 94 0.552 1.553 0.054
GO:0006457 Protein folding 44 0.466 1.387 0.086
GO:0006633 Fatty acid biosynthesis " 0411 1.162 0.296
GO:0006888 ER to golgi vesicle mediated transport 11 0.365 0.864 0676
DOWN-regulated in treatment:

GO:0009165 Nucleotide biosynthesis 12 -0.379 -1.047 0458
GO0:0007498 Mesoderm development 10 -0.647 -1.610 0.000

Results for gene sets representing each GO-BP class identified by Klaper et al. [12,13], tested for enrichment by GSEA following acute methylmercury treatment.
GO terms and definitions can be used to retrieve each set (and constituent genes) from MSigDB [8]; size refers to the number of genes in the set; ES and NES
are the enrichment scores and normalized enrichment scores (respectively) for the set; NOM p-value is the nominal p-value for the NES. Gene sets representing
GO-BP classes with statistically significant normalized enrichment scores are highlighted in bold.

FatiGO sets were significantly enriched in the GSEA
analysis, all sets were up- or down-regulated in the
same direction (mainly up-regulation) and the sets sig-
nificant in the GSEA analysis tended to include those
GO processes highlighted by Klaper et al. as being
important consequences of liver methylmercury expo-
sure. This includes predominantly up-regulation of
metabolic and biosynthetic processes (following acute
exposure) and down-regulation of apoptosis (following
chronic exposure).

It is noteworthy that the GSEA-based approach uses
the entirety of the ~12,000 annotated elements on the
array, rather than only the most highly differentially
expressed genes. This difference in the scope of analy-
sis provides an explanation for why all FatiGO process
terms were not significantly enriched in the GSEA ana-
lysis (and why some GSEA-enriched sets were not
identified by FatiGO; see below). In other words,
GSEA enrichment of a set containing many genes
associated with a given function is somewhat different

Table 2 GSEA tests for GO classes enriched following chronic treatment

GO term GO definition Size ES NES NOM p-value
UP-regulated in treatment:

GO:0006605 Protein targeting 85 0.387 1416 0.054
GO:0016485 Protein processing 32 0413 1.267 0.086
GO:0006897 Endocytosis 162 0.253 1.091 0.278
GO:0000226 Microtubule cytoskeleton organization and biogenesis 28 0376 1.004 0484
GO:0007409 Axonogenesis 29 0.362 0.992 0.614
GO:0045893 Positive regulation of transcription, DNA dependent 270 0.200 0.898 0.502
GO:0006887 Exocytosis 15 0402 0.856 0.763
G0O:0006289 Nucleotide-excision repair 14 0.287 0.842 0.806
G0O:0007269 Neurotransmitter secretion 10 0.302 0.702 0.786
DOWN-regulated in treatment:

GO:0006917 Induction of apoptosis 208 -0.286 -1.093 0.396
GO:0009615 Response to virus 21 -0.301 -1.198 0.130
GO:0001756 Somitogenesis 17 -0.356 -1.020 0.502

Results for each GO-BP class identified by Klaper et al. [12,13], tested for enrichment by GSEA following chronic methylmercury treatment. Size refers to the
number of genes in the set; ES and NES are the enrichment scores and normalized enrichment scores (respectively) for the set; NOM p-value is the nominal

p-value for the NES.
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Table 3 GSEA tests for enrichment of MSigDB C2 gene sets
Gene Set Name Size ES NES NOM p-value FDR g-value

Acute exposure Down-regulated  None

Up-regulated XU_CBP_UP 19 0633 1987 0.000 0.051

CALRES_MOUSE_DN 28 0575 1920 0.000 0.108
BYSTRYKH_HSC_CIS_GLOCUS 82 0516 1889 0.000 0.097
BYSTRYKH_HSC_BRAIN_CIS_GLOCUS 43 0600  1.855 0.000 0.102
PENG_GLUTAMINE_DN 209 0519 1.828 0.000 0.130
UVC_LOW_ALL_DN 38 0473 1817 0.000 0.121
CMV_ALL_UP 64 0530 1.764 0.000 0214
SANSOM_APC_LOSS5_UP 55 0544 1734 0.037 0274
BLEO_MOUSE_LYMPH_HIGH_24HRS_DN 31 0669 1.730 0.000 0.255
SHEPARD_CRASH_AND_BURN_MUT_VS_WT_UP 124 0452 1710 0.000 0.289
PENG_RAPAMYCIN_DN 163 0516 1706 0.023 0.275
PRMTS5_KD_DN 19 0572 16% 0.038 0.298
HSA00970_AMINOACYL_TRNA_BIOSYNTHESIS 29 0702 1.690 0.029 0.286
MRNA_SPLICING 44 0633 1689 0.000 0.266
WANG_MLL_CBP_VS_GMP_DN 30 0579 1688 0.000 0.254
JAIN_NEMO_DIFF 59 0458 1688 0.000 0.240
HSA00563_GLYCOSYLPHOSPHATIDYLINOSITOL 16 0616 1684 0.000 0.239
ANCHOR_BIOSYNTHESIS
BLEO_MOUSE_LYMPH_LOW_24HRS_DN 22 0697  1.681 0.000 0.238
OLDONLY_FIBRO_UP 28 0485 1674 0.000 0.243
CMV_24HRS_UP 54 0524 1673 0.000 0232
KUROKAWA_5FU_IFN_SENSITIVE_VS_RESISTANT_DN 22 0624 1669 0.000 0232
CHANG_SERUM_RESPONSE_UP 109 0480  1.668 0.000 0224
ROS_MOUSE_AORTA_UP 21 0.731 1.656 0.036 0237
UVB_NHEK2_DN 64 0456 1649 0.000 0.242
SCHUMACHER_MYC_UP 44 0504 1649 0.023 0234
STEMCELL_COMMON_UP 149 0458 1643 0.023 0.242
MYC_ONCOGENIC_SIGNATURE 137 0406 1641 0.000 0.239
ZHAN_MMPC_SIM_BC_AND_MM 36 0472 1635 0.000 0.242
AMINOACYL_TRNA_BIOSYNTHESIS 21 0732 1633 0.048 0.238

Chronic exposure  Down-regulated ~ TNFRTPATHWAY 24 -0724  -1.968 0.000 0.026
CASPASEPATHWAY 16 -0684 -1.865 0.000 0.049
DEATHPATHWAY 25 -0719 -1.836 0.000 0.063
HIVNEFPATHWAY 44 -0593 -1.765 0.000 0.104
MITOCHONDRIAPATHWAY 17 -0785 -1.728 0.000 0.151
TSA_PANC50_UP 25  -0584 -1.684 0.000 0216

Up-regulated None

Results for MSigDB C2 gene sets (drawn from 1892 sets representing all systems, pathways and functions in that database), listing sets with NES scores that are
both statistically significant and below the FDR threshold. Size refers to the number of genes in the set; ES and NES are the enrichment scores and normalized
enrichment scores (respectively) for the set; NOM p-value is the nominal p-value for the NES, FDR g-vlaue is the false discovery rate ratio (values lower than 0.25
are considered to be passing as per Subramanian et al. [4]). One of these sets (in bold) is a liver associated set highlighted in Table 4.

than a FatiGO-style analysis that reports the function of a
single given up-regulated gene: While FatiGO asks
whether any system or pathway is statistically over-repre-
sented in the (100 or so) most up-regulated genes (out of
~15,000 on the chip), GSEA asks if the dozens of genes
associated with a given system or pathway are significantly

collectively enriched (i.e. up- or down-regulated) in a
study that simultaneously considers all annotated genes on
a chip (~12,000 in our experiment).

There are important distinctions between the expres-
sion profiles associated with acute and chronic exposure,
potentially reflecting metabolic changes occurring after
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Table 4 GSEA tests for enrichment of HCC- and hepatitis-associated gene sets

Gene Set Name Size ES NES NOM p-value
Up-regulated in acute liver treatment

KUROKAWA_5FU_IFN_SENSITIVE_VS_RESISTANT_DN 25 0.585 1.642 0.025
WONG_IFNA_HCC_RESISTANT_VS_SENSITIVE_UP 10 0.507 1407 0.046
Down-regulated in acute liver treatment

HBX_HEP_UP 12 -0.540 -1.460 0.038
Up-regulated in chronic liver treatment

HCC_SURVIVAL_GOOD_VS_POOR_DN 112 0452 1.549 0.000

Down-regulated in chronic liver treatment

None

Results for gene sets representing Hepatocellular carcinoma (HCC) and hepatitis, tested for enrichment by GSEA following methylmercury treatment. Here, we
test whether liver-associated sets are enriched following methylmercury exposure. Size refers to the number of genes in the set; ES and NES are the enrichment
scores and normalized enrichment scores (respectively) for the set; NOM p-value is the nominal p-value for the NES. Descriptions of each set (and lists of

constituent genes) can be found by searching for set names at the MSigDB [8].

prolonged exposure to a toxin (rather than short term,
acute exposure) observed by other researchers [17]. This
difference may be due to either accumulation of methyl-
mercury over time or acclimation of the tissue over
time. These differences also reflect the very different
nature of the two experiments, performed by different
labs using different protocols.

Overall, the C2 results were limited by a FDR due to the
size of the MSigDB-C2 database. The few gene sets that
passed this threshold were consistent with FatiGO results
and the general conclusions of Klaper et al. [12,13]. Pri-
marily, these include sets associate with up-regulation of
metabolic and biosynthetic processes and down-regulation
of caspase and apoptosis pathways. Published studies of
apoptosis induction by methylmercury involved neurologi-
cal [18] and reproductive systems [19], so it is not necessa-
rily unexpected to observe the opposite response in the
liver, the primary site of detoxification. The up-regulation
of general metabolic processes might be involved in detox-
ification, although none of the sets we identified were spe-
cifically associated with DNA repair, which has been
noted in similar experiments [17,20].

Comparisons to human liver disease

The smaller, select group of gene sets, involving liver
damage associated with HCC and hepatitis B, provided
meaningful comparison between human liver disease
and fish methylmercury exposure rather than simply a
list of the altered biological functions (Table 4). The
scores of these sets are similar to the scores of the high-
est-scoring sets from the broader analysis (those gene
sets in Table 3).

Fathead minnow liver tissues following acute methyl-
mercury treatment were enriched for a set (KURO-
KAWA [21]) composed of genes that differentiate
among patients with advanced HCC with respect to
response to chemotherapy treatment. Fish in the acute

treatment are also enriched for genes highly expressed
in interferon-resistant hepatoma cell lines (WONG
[22]). This indicates a shared response between acute
methylmercury exposure (in fish) and hepatocellular
carcinoma (in humans), which is potentially useful for
guiding the understanding of methylmercury toxicology.

Fathead minnow liver tissues following chronic methyl-
mercury treatment were enriched for sets associated with
HCC (HCC_survival, reviewed in [23]) and hepatitis B
(Lizuka [24], HBX_NL [25]); see Table 4. These sets are
indicative of a shared response between chronic exposure
(in fish) and serious liver impairment (in humans) due to
cancer and hepatitis infection. That both HCC and hepa-
titis B are enriched is not surprising, since there is a rela-
tionship between the two conditions [26].

While it is well known that other heavy metals are
directly associated with cancer [27], for mercury it is less
clear, despite indirect evidence involving liver cancer [28].
HCC is generally secondary to hepatitis infection or cir-
rhosis-associated liver damage by hepatotoxicity (caused
by alcohol or non-alcohol toxins). Mercury induces oxida-
tive stress, which leads to the enhanced biosynthesis of
liver enzymes associated with antioxidant and toxic
response systems [29] and genotoxicity [30]. Liver damage
can occur from even topical exposure [31]. Using exhaus-
tive histological and microarray comparisons between zeb-
rafish livers and human cells exposed to mercury, Ung et
al. [32] identified mercury-induced hepatotoxicity invol-
ving many of the same systems and pathways revealed by
our GSEA-based study, including apoptosis, proteasomes,
and other systems associated with toxicity response (in
general) and hepatotoxicity (in particular).

Conclusions

The comparison with Klaper et al. [12,13] is an indication
that GSEA (and gene-class approaches, in general) are use-
ful for model organisms that are not yet endowed with
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completely sequenced and fully annotated genomes. This
provides both a systems-based gene-class analytical tool
(generally only used with human, mouse and rat data, and,
recently, zebrafish [33]) and a mechanism to compare to
gene expression profiles from non-human model organ-
isms to profiles associated with human phenotypes and
another tool for understanding human health implications
when using model organisms and a framework from
which testable hypotheses can be generated. For these
applications, the strength of gene-class approaches is in
the a priori designation of sets to be tested. Also, in con-
sidering all genes on a chip rather than only those most
up-regulated, gene-class analyses can identify subtle pat-
terns easily missed by FatiGO-like analyses.

Methods

Fish and microarray work

Klaper et al. [12,13] describe the fish methylmercury
exposure and microarray experimental design. The data
for these experiments have been deposited at NCBI
GEO [34] (accession GEO:GSE22261).

Briefly, fish were treated with either an acute or chronic
exposure to methymercury. For the acute treatment, male
adult fathead minnows were injected with a sublethal
methylmercury concentration of 2.0 ug per g of body
mass. There were 12 treated and 12 control fish (controls
were given a vehicle injection without methylmercury). At
the end of the 96-hour treatment period, livers were
removed from euthanized fish (gonads were also collected
but those data were not considered in the present GSEA
reanalysis). For the chronic treatment, 90-day-old fathead
minnows were exposed to methylmercury concentrations
of 4.0 ug per g of dry mass (for treated fish) added to food,
fed daily to the fish in quantities of approximately 5% of
their body mass. (The fish food also contained naturally
occurring methylmercury of ~0.05 pg per g of dry mass.)
At the end of the 600 day treatment period, livers were
removed from euthanized fish (as in the acute treatment,
gonads were also collected).

The microarray data were normalized using Gene
Spring version GX10.0.1. A standard “thresholding” sub-
stitution was conducted, in which expression values
below 0.01 were set to 0.01. This was performed to
remove very small or negative expression values prior to
log-transforming the data, in order to eliminate large
negative or missing values in the normalized data. The
baseline was set to the median of all data. There was a
percentile shift to the 50th percentile, and each spot was
normalized to the median of all spots.

Annotation of EcoArray 15 k fathead minnow microarray
for GSEA analysis

The EcoArray Fathead Minnow 8 x 15K Microarray v1.0
platform (NCBI GEO accession GEO:GPL7351) was
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enhanced with human HUGO gene symbols. To accom-
plish this, we conducted BLASTX searches using 6-
frame translated full-length EST sequences (representing
each array element) against the human RefSeq protein
database (November 2009 release). We used the BLO-
SUM62 matrix and default protein search options, after
determining that these were the correct settings given
the sequence divergence between fish and mammals.
The e-value threshold was set to 0.01 and the 10 best
matching sequences were reported. This relatively high
e-value allowed us to see the range of hits recovered by
BLAST; for purposes of selecting a BLAST hit for our
annotation, only hits with e-values smaller than 10™°
were considered.

We developed custom Perl scripts to parse BLAST
output files and extract the RefSeq protein ID from the
hit with the lowest e-value. We found 10575 elements
with hits having an e-value lower than < 10'°. When
there were multiple hits with equally low e-values, all
were extracted and converted into HUGO symbols and
retained for inspection. Generally, when more than one
protein was found by BLAST, they shared a single
HUGO symbol.

When the BLAST of a given EST sequence search had
highly significant hits on multiple RefSeq protein IDs,
we found they were generally isoforms of the same
gene. In other cases, the results were individually
curated to determine which gene symbol to use, if any.
Generally, when the e-value was the same (e.g., 0.0), we
chose the symbol associated with the highest score.

To convert a RefSeq protein ID into a HUGO value,
we used the Babelomics ID converter tool [35]. We con-
firmed this symbol by obtaining the NCBI-derived
HUGO symbol, along with its known aliases, for that
protein ID and comparing it to the Babelomics-derived
symbol. We further compared these two symbols to the
HGNC-derived HUGO symbol, which had to be
mapped through the RefSeq mRNA ID: first, we
extracted the RefSeq mRNA ID from NCBI for each
RefSeq protein ID; we then downloaded the database of
all gene symbols, their aliases, and RefSeq mRNA IDs
from the HGNC website. For each protein ID, via the
mRNA ID, we were able to identify the appropriate
HGNC HUGO symbol and compare it to the Babelo-
mics- and NCBI-derived symbols. These steps ensured
that we assigned an appropriate HUGO symbol to each
RefSeq protein ID, and that this was the primary sym-
bol, rather than an alias.

In order to support the result of the fathead EST to
human RefSeq protein search, we also conducted a
BLASTX search of each fathead ESTs against the zebra-
fish RefSeq protein database (June 21, 2010 version). We
extracted the zebrafish RefSeq protein IDs if there is a
significant BLAST hit with a low e-value (<107'°). We
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then downloaded the zebrafish to human orthology data
file from ZFIN (http://zfin.org) and compared the zebra-
fish symbol to the human HUGO gene symbols; when
these did not agree, they were human-curated (differ-
ences generally involved aliases).

We assembled this enhanced annotation in a GSEA-for-
matted file, EcoArray_Fathead.chip (additional file 1).
Finally, for each gene element in this file, we crosschecked
the symbol we assigned with those in GENE_SYMBOL.
chip (from GSEA) to ensure that our symbol was the
GSEA-recognized HUGO symbol, rather than an alias.

Conducting GSEA analyses

Data files were created to GSEA specifications for the
HUGO-annotated microarray (.CHIP format), normalized
expression values from Klaper et al. [12,13] (GCT format)
paired with phenotype descriptions (.CLS format), and all
gene sets used in GSEA analyses (.GMX format). These
files are available as additional files 2, 3, 4, 5, 6.

Analyses used GSEA release 2.06 and MSigDB release
2.5. Weighted enrichment scores were calculated using
gene expression lists ranked by signal-to-noise ratio.
The maximum gene set size was set to 500 genes; the
minimum gene set size was set to 10 genes; the number
of permutations was set to 1000. For details of GSEA
parameter usage, see Subramanian et al. [4] and the
GSEA web site [6].

Gene sets were examined to ensure they contained
only GSEA-recognized primary HUGO symbols, rather
than aliases or unapproved symbols. This was accom-
plished through the use of a custom PHP script that
compared each gene in a given set to the GENE_SYM-
BOLS.chip file (see above) containing a list of HUGO
symbols with accepted aliases. Gene set components
listed as aliases in this file were replaced with the appro-
priate HUGO symbol.

Three groups of analyses were conducted; each group
consisted of a number of gene sets, with each set tested
against one or both of the acute & chronic treatments
relative to their respective control.

In the first group of analyses, we tested gene sets corre-
sponding to GO-BP classes identified by the Klaper
FatiGO analysis (Appendix II) identified as enriched by
acute or chronic treatments. We eliminated gene sets that
contained insufficient or excessive numbers of genes for
GSEA analysis (leaving 14 and 12 sets for acute and
chronic treatments, respectively). For each methylmercury
treatment tested by GSEA, only sets corresponding to GO
categories found by Klaper et al. for that treatment were
considered in GSEA tests. These analyses were designed
to test whether GSEA results were consistent with conclu-
sions drawn by Klaper et al. [12,13].

Second, we tested all sets from the MSigDB collection
containing canonical pathways and chemical and genetic
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perturbations (MSigDB C2, containing 1892 sets, of
which 1617 were specific to human) against acute and
chronic liver treatments.

Third, a more limited subset of the C2 collection, con-
sisting of curated human gene sets associated with normal
liver function, hepatocellular carcinoma (HCC) and hepati-
tis infection were tested against the fathead minnow liver
treatments. These analyses were designed to highlight
expression profiles in response to exposure to methylmer-
cury that are similar to profiles associated with other liver
insults in humans. These sets were obtained by searching
the MSigDB C2 database for human gene sets using the
search terms “liver OR hepatocellular OR hepatitis” in
which 38 gene sets were recovered. These sets were pruned
to 24 sets, eliminating sets with fewer than 10 genes with
homologs in the EcoArray annotated microarray.

Gene sets from each of the three collections were
tested for enrichment among the ~12,000 annotated
genes from the EcoArray 15 k chip, ranked by signal-to-
noise ratio. The nominal p-value reports the significance
for a given set in an analysis of a collection of sets in
which the researcher is specifically interested (like our
24 human liver sets). However, in an exploratory analy-
sis (like the 1892 C2 collection of functional sets), an
FDR test is critical to control for multiple comparisons,
as it accounts for potential overlap in the gene sets (i.e.,
a given gene may appear in several sets).

Additional material

Additional file 1: EcoArrayFathead15 k.chip. The list of fathead
minnow elements from the EcoArray 15 k chip, annotated in this study
and formatted for GSEA analysis.

Additional file 2: Liver-Acute.GMX. The list of genes used in the acute
liver analysis, formatted for GSEA.

Additional file 3: Liver-Chronic.GMX. The list of genes used in the
chronic liver analysis, formatted for GSEA.

Additional file 4: Liver-HCC-hepatitis-human2.GMX. The list of genes
used in the human liver analysis, formatted for GSEA.

Additional file 5: MeHg-data.GCT. The raw data from the
methylmercury experiment, formatted for GSEA.

Additional file 6: MeHg-phenotypes.CLS. The phenotypes in the
methylmercury experiment, formatted for GSEA.
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