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Abstract

Background: Although primarily known as the site of ribosome subunit production, the nucleolus is involved in
numerous and diverse cellular processes. Recent large-scale proteomics projects have identified thousands of
human proteins that associate with the nucleolus. However, in most cases, we know neither the fraction of each
protein pool that is nucleolus-associated nor whether their association is permanent or conditional.

Results: To describe the dynamic localisation of proteins in the nucleolus, we investigated the extent of nucleolar
association of proteins by first collating an extensively curated literature-derived dataset. This dataset then served
to train a probabilistic predictor which integrates gene and protein characteristics. Unlike most previous
experimental and computational studies of the nucleolar proteome that produce large static lists of nucleolar
proteins regardless of their extent of nucleolar association, our predictor models the fluidity of the nucleolus by
considering different classes of nucleolar-associated proteins. The new method predicts all human proteins as
either nucleolar-enriched, nucleolar-nucleoplasmic, nucleolar-cytoplasmic or non-nucleolar. Leave-one-out cross
validation tests reveal sensitivity values for these four classes ranging from 0.72 to 0.90 and positive predictive
values ranging from 0.63 to 0.94. The overall accuracy of the classifier was measured to be 0.85 on an independent
literature-based test set and 0.74 using a large independent quantitative proteomics dataset. While the three
nucleolar-association groups display vastly different Gene Ontology biological process signatures and evolutionary
characteristics, they collectively represent the most well characterised nucleolar functions.

Conclusions: Our proteome-wide classification of nucleolar association provides a novel representation of the
dynamic content of the nucleolus. This model of nucleolar localisation thus increases the coverage while providing
accurate and specific annotations of the nucleolar proteome. It will be instrumental in better understanding the
central role of the nucleolus in the cell and its interaction with other subcellular compartments.

Background

The nucleolus was initially characterised over four dec-
ades ago and shown to be the site of ribosome subunit
production [1]. It is now known to play a role in other
cellular activities, including assembly of diverse ribonu-
cleoprotein particles (RNPs), cell cycle progression and
proliferation regulation, as well as the response to
numerous forms of cellular stress [2-6]. All of the pro-
teins that are strongly enriched in the nucleolus, includ-
ing marker proteins such as fibrillarin, can nonetheless
cycle continually in and out of the nucleolus, as discov-
ered by photobleaching experiments [7]. In addition,
many of the processes that occur, at least in part, in the
nucleolus require the re-location of proteins to this
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nuclear sub-compartment. Many proteins are able to
conditionally relocate between either the nucleoplasm,
or other nuclear sub-compartments and the nucleolus
[3,4]. In addition to the ‘part-time’ nucleolar proteins
which remain in the nucleus, many proteins are known
to travel between the cytoplasm (including cytoplasmic
organelles) and the nucleolus. These include ribosomal
and non-ribosomal proteins that travel to the nucleolus
for assembly into ribosome subunits and other RNPs
respectively, as well as many growth factors and cell
cycle regulators [2,4,8]. The nucleolus thus accommo-
dates a large amount of traffic and its composition is
very dynamic, which may be facilitated by its lack of a
surrounding membrane [6].

Recent large-scale proteomics experiments have
detected thousands of distinct proteins that stably co-
purify with nucleoli isolated from human cells [9-11].
Although the first datasets defining the nucleolar
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proteome did not offer information regarding the pro-
portion of each of these proteins in the nucleolus rela-
tive to other cellular compartments, this information
has now been obtained in a high throughput manner
using a combination of cellular fractionation and SILAC
protocols [12]. These data indicate that although thou-
sands of distinct proteins are detected in the nucleolus,
their degree of association with the nucleolus is variable.
Some proteins are predominantly nucleolar while others,
although detected in small numbers in the nucleolus
and annotated as such in large databases, are present in
much larger numbers in other cellular compartments.
These proteomics data give a snapshot of the content of
the nucleoli of a population of one cell type under spe-
cific conditions. In comparison to the first nucleolar
proteome datasets [9-11], they provide a much clearer
picture of the dynamic protein content of the nucleolus
and its relationship with other cellular compartments.
This methodology also offers the possibility of distin-
guishing the nucleolar-enriched proteins from the pro-
teins which cycle between the nucleolus and other
cellular locations or conditionally localise to the nucleo-
lus. However, because only one cell type and a small
number of conditions have been examined so far and
because of the current limitation of the methodology,
which does not yet offer full proteome coverage, the
dynamic nucleolar proteome still has not been fully
defined. Here, we investigate how a computational
method can help fill this gap.

The prediction of eukaryotic protein subcellular locali-
sation has been extensively investigated over the past
decade using various machine learning methods and
based on many diverse protein characteristics (reviewed
in [13]). However, while many such predictors exist,
most do not consider the nucleolus as a separate locali-
sation: very few whole-cell predictors include the
nucleolus in the list of cellular compartments to which
they predict localisation [14-17]. Several nuclear-centric
mammalian protein localisation predictors have been
created to predict membership to one of at least four
nuclear sub-compartments including the nucleolus
[18-22]. However, proteins annotated as being in more
than one subnuclear compartment are often not consid-
ered, thus substantially decreasing their actual coverage
of the nuclear proteome. Because the individual nuclear
subcompartments are not membrane-enclosed, it is
expected that a significant proportion of nuclear pro-
teins diffuse between these subcompartments and will
be detected and annotated as present in several of these
compartments. Thus these nuclear-centric predictors
likely do not realistically model localisation patterns of
nuclear proteins.

The prediction of nucleolar protein localisation has
been investigated mainly in the context of a binary
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classification problem where proteins are predicted to
be either associated with the nucleolus, or not. Such stu-
dies include a predicted nucleolar complex dataset,
which is based on the clustering of protein-protein
interactions, involving human proteins either detected
experimentally in the nucleolus, or predicted to be
nucleolar using a neural network [23]. More recent stu-
dies include a naive Bayesian classifier trained to predict
yeast nucleolar proteins and ribosomal components [24],
a sequence-based support-vector machine predictor that
differentiates between nucleolar associated and non-
nucleolar associated nuclear mammalian proteins [25] as
well as a kernel canonical correlation analysis predictor
based on genomic sequence and protein-protein interac-
tion data that also differentiates between nucleolar asso-
ciated and non-nucleolar associated nuclear mammalian
proteins [26].

Recent efforts to predict nucleolar association
acknowledge the fluidity of the nucleolus and its close
relationship with other cellular regions, but do not
model different degrees of protein association with the
nucleolus. In order to build on previous efforts, we
investigate here the possibility of classifying the degree
of nucleolar association of human proteins, by integrat-
ing various genomic and protein features in a Bayesian
framework. More precisely, we predict whether proteins
are highly nucleolar-enriched, highly non-nucleolar,
nucleolar-nucleoplasmic or nucleolar-cytoplasmic (see
Figure 1). The last two groups include proteins that
localise to other cellular regions and cycle to the

cytoplasm
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M nucleolar-nucleoplasmic
[ nucleolar-cytoplasmic
[ non-nucleolar

nucleoplasm

nucleolus

Figure 1 Protein nucleolar association classes considered. PNAC
classifies human proteins into four distinct classes according to their
degree of nucleolar association. The nucleolar-enriched protein
group (red) consists of proteins that are predominantly nucleolar in
all cell types and conditions. The nucleolar-nucleoplasmic group
(purple) is composed of proteins identified in both the nucleolus
and any other nuclear region. The nucleolar-cytoplasmic group
(blue) consists of cytoplasmic proteins that also can localise to the
nucleolus. The non-nucleolar group (yellow) comprises all proteins
that never localise to the nucleolus. The non-nucleolar proteins can
localise to other regions of the nucleus, the cytoplasm, plasma
membrane or extracellularly.
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nucleolus or relocate to the nucleolus under specific
conditions. To perform this classification, we consider
several protein features including the frequency of speci-
fic amino acids in the protein sequence, the predicted
presence of signal peptides, mitochondrial targeting pep-
tides and nucleolar localisation sequences as well as
expression data, Gene Ontology (GO) annotations and
subcellular localisation annotations of protein
interactors.

Results and Discussion

Architecture of the protein nucleolar association classifier
The Protein Nucleolar Association Classifier (PNAC)
was created to investigate the classification of the degree
of nucleolar association of human proteins into four
classes as illustrated in Figure 1:

-nucleolar-enriched proteins which correspond to
proteins that are accumulated predominantly in the
nucleolus and likely include the core nucleolar
proteins.

-nucleolar-nucleoplasmic proteins which can loca-
lise both to the nucleolus and to other nuclear
regions. They either cycle between the nucleolus and
other nuclear regions or are mainly nucleoplasmic
but relocate to the nucleolus under specific
conditions.

-nucleolar-cytoplasmic proteins which can localise
to the nucleolus and the cytoplasm (or even extra-
cellularly). They either localise to the nucleolus for
assembly into larger complexes but then function
mainly in the cytoplasm, cycle between these com-
partments, or are predominantly cytoplasmic but
relocate to the nucleolus under specific conditions.
-non-nucleolar proteins which show little or no
localisation in the nucleolus.
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Because such detailed annotations describing dynamic
characterisations of proteins are rarely available in large
public databases, extensive manual curation of the
nucleolus literature was required to create the datasets
for this study. Additional File 1 shows experimentally
determined proteins belonging to the three nucleolar-
association classes (the nuclear-enriched, nucleolar-
nucleoplasmic and nucleolar-cytoplasmic classes).

PNAC integrates diverse types of protein features and
annotations in a naive Bayes framework to classify
human proteins according to their degree of nucleolar
association. The individual features considered are sum-
marised in Table 1 and detailed in the Methods section.
As indicated in Table 1, five distinct features are taken
into account: amino acid frequency, protein targeting
motifs, gene co-expression, GO biological process and
molecular function annotations as well as subcellular
localisation annotations of interactors. Protein-protein
interaction data have been included because many pro-
teins are likely to be either targeted to, or retained in,
specific cellular compartments by binding to proteins
resident in these compartments. Since the nucleolus is
not enclosed by a membrane, interaction based localisa-
tion could be widely employed by proteins associated
with this compartment [6].

Each predictive feature is used to calculate a score for
the presence of a given protein in each of the nucleolar
association classes described above. For each feature, the
association score for a given class is evaluated by con-
sidering the relative proportion of proteins from that
class that have a specific state (i.e. that fall in a particu-
lar bin of that feature). The features are trained on
manually curated nucleolar datasets (listed in Additional
File 1) and a randomly generated non-nucleolar dataset.
The final classification results from the product of the
initial class priors and the scores derived from the

Table 1 Features considered in the prediction of nucleolar association

Features Data source Description Bins
Amino acid Protein sequences from IPI [27] PNAC considers the relative proportion of leucine, isoleucine, 5 bins for each
frequency lysine and serine residues distinct amino acid

considered

Targeting Phobius [32], TargetP [33], NoD [34] The predicted presence of signal peptides, transmembrane 9 bins detailed in

motifs domains (TMDs), mitochondrial targeting peptides and the Methods
nucleolar localisation sequences (NoLSs)

Gene co- GDS596 from the Gene Expression Omnibus The average Pearson correlation of expression between the 5 bins
expression [42] query protein and proteins in the nucleolar-cytoplasmic

training group using expression profiles from 79
physiologically normal tissues [35]
GO EBI Gene Ontology (GO) annotations [36] for Biological process and molecular function Gene Ontology 4 bins
human (GO) annotations for the query protein are compared to
those of the training set proteins
Subcellular HPRD [31], Uniprot [30], IntAct [39] and PIPs A nucleolar proximity score is calculated for all the interactors 5 bins
localisation of  [37,38] subcellular localisation annotations and/ of the query protein
interactors or protein interactions
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individual predictive features as detailed in the Methods
section. Proteins are annotated as belonging to their
highest scoring class.

Statistical tests of accuracy

Cross validation analysis

The classifier was first tested using a leave-one-out
cross-validation test as described in the Methods.
Table 2 (Test set 1 columns) shows the sensitivity and
positive predictive values (PPV) for all classes. All
classes obtain values significantly higher than those
that would be obtained by random assignment (which
are shown in the ‘prior’ column in Table 2). The over-
all accuracy of the predictor by leave-one-out cross
validation is 0.86.

Independent literature test

The classifier was then tested on a literature-based test
set which consists of proteins reported to be nucleolar-
associated in the literature but that were not used to
train the predictor (as described in the Methods). Once
again, all classes obtain values well above what you
would expect by chance. The overall accuracy of the
predictor using the independent literature test is 0.85.
SILAC independent test

The PNAC classifier was further tested with a SILAC
(stable isotope labelling with amino acids in cell cul-
ture)-derived test set which consists of proteins whose
ratio of relative abundance has been measured experi-
mentally over two pairs of cellular compartments: each
protein has an associated nucleolar/cytoplasmic abun-
dance ratio and a nucleoplasmic/cytoplasmic abun-
dance ratio (as described in the Methods section and
in [12]). While there is no direct relationship between
these ratios and our nucleolar association classes, they
provide a means to map proteins into these classes.
Proteins that belong to both the independent literature
test set and the independent SILAC test set were used
to determine abundance ratio thresholds defining the
nucleolar association classes (as detailed in the Meth-
ods and Figure 2). The sensitivity and PPV values for

Table 2 Tests of accuracy
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the SILAC test are lower than the equivalent measures
for the other tests although they are all significantly
higher than what would be expected by chance (i.e. the
class priors, see Table 2). The overall accuracy of the
SILAC test is 0.74.

There are several reasons why the SILAC test accu-
racy values are lower than those of the other tests.
Firstly, the thresholds used to define the nucleolar asso-
ciation class to which SILAC characterised proteins
belong were determined using a very small number of
proteins. As shown in Figure 2 (purple box), the inter-
section between the literature curated dataset (blue list)
and the SILAC-derived dataset (red list), which was
used to map SILAC experimental ratios into the nucleo-
lar-association classes only consists of fourteen proteins.
The thresholds most likely do not perfectly define the
nucleolar association groups and will improve when the
intersection between the literature-curated dataset and
the SILAC-derived datasets increases in size. Secondly,
the SILAC test set consists of a larger number of pro-
teins than considered in the other tests (see Table 2,
SILAC test set Counts) and is most likely not biased
towards proteins that are well annotated, as the much
smaller literature datasets would be. As the predictions
depend in part on annotations (such as scores generated
using the GO and subcellular localisation-derived fea-
tures), the prediction accuracy will increase as proteins
become better annotated. Finally, the SILAC test set is
not characterising nucleolar association exactly in the
same way as we seek to do here. As such, the two
approaches are somewhat complementary in their aims.
The SILAC-derived dataset investigates one cell type
under normal growth conditions, thus providing a snap-
shot of the abundance of the proteins in each of the
compartments considered under those conditions. In
contrast, our method aims to classify human proteins
according to their degree of nucleolar association under
any possible condition and in all cell types. So while the
SILAC test set is useful to increase the coverage of our
test sets and investigate the classifier accuracy on

Class Priors Counts Sensitivity® PPV®
Test set 1° Test set 2 Test set 3° Test set 1 Test set 2 Test set 3 Testset 1 Test set 2 Test set 3
Nucleolar-enriched 0.20 30 15 52 0.72 0.78 0.56 0.68 061 047
Nucleolar-nucleoplasmic ~ 0.15 22 7 24 0.73 057 0.50 063 0.60 041
Nucleolar-cytoplasmic ~ 0.15 24 16 63 0.77 0.69 0.59 0.70 0.74 0.53
Non-nucleolar 0.50 200 100 344 0.90 091 0.81 0.94 093 0.87

? Test set 1: leave-one-out cross-validation test.
P Test set 2: independent literature-based test.
€ Test set 3: SILAC experimental independent test.

4 These sensitivity measures represent average sensitivity values over ten runs. Their standard deviations were all below 0.03.
€ PPV: positive predictive value. These measures represent average PPV values over ten runs. Their standard deviations were all below 0.1.
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Original datasets Training / Testing sets

Training set and test set 1

30 nucleolar-enriched
22 nucleolar-nucleoplasmic
24 nucleolar-cytoplasmic

Literature curated
nucleolar association
dataset ordered
by PubMed ID
reference

+200 randomly selected
non-nucleolar proteins

Test set 2 (independent
literature-based test set)

PubMed ID = 17470000 15 nucleolar-enriched
7 nucleolar-nucleoplasmic

16 nucleolar-cytoplasmic

Intersection +100 randomly selected
non-nucleolar proteins

4 nucleolar-enriched
2 nucleolar-nucleoplasmic
8 nucleolar-cytoplasmic

SILAC-derived
dataset defining
relative nucleolar,

nucleoplasmic
and cytoplasmic
abundance ratios

Test set 3 (SILAC test set)

52 nucleolar-enriched
24 nucleolar-nucleoplasmic

63 nucleolar-cytoplasmic
344 non-nucleolar proteins

* Dataset used to determine the abundance ratio thresholds defining the nucleolar association
classes for the SILAC dataset

Figure 2 Generation of the training and testing sets. Two datasets were used to generate the training and testing sets. A manually curated
literature-based nucleolar association dataset (blue list) was used to construct the training set (which is also used in the leave-one-out cross
validation test and referred to as the test set 1) and a non-overlapping independent literature-based test set (test set 2). An experimental SILAC
dataset (red list) was used to construct the independent SILAC-derived test set (test set 3). The intersection of the manually curated literature
dataset (blue list) and the experimental SILAC dataset (red list) is shown in purple and was used to map the SILAC data points to our nucleolar
association groups to create the SILAC test set. The generation of the training and testing sets is described in more detail in the Methods
section.
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proteins that might be highly uncharacterized, the
SILAC test set is not a perfect match to test our classi-
fier. This is particularly obvious for proteins that associ-
ate with the nucleolus only under specific conditions
that were not experimented on in the SILAC-derived
dataset. This most notably concerns nucleolar-nucleo-
plasmic and nucleolar-cytoplasmic proteins.

Table 3 shows examples of disagreements between our
classification and the SILAC classification. Disagree-
ments observed between the two methods can be
grouped into three general classes:

-Proteins that are conditionally localised to the
nucleolus: these are proteins that are generally highly
non-nucleolar but translocate to the nucleolus under
specific conditions. For example, several heat shock pro-
teins including HSPAS8 are usually cytoplasmic but are
known to translocate to the nucleolus after heat-shock,
which was not a condition considered in the SILAC
analysis (see Table 3).

-Proteins that are cyclically localised to the nucleolus,
often in a cell-cycle manner, for example RCC2 and KI-
67 in Table 3.

-Unknown proteins for which little information is
available to confirm the true localisation.

In all these cases, a disagreement between the two
classification methods warrants further investigation.

Reliability analysis

As described above, PNAC outputs one score per class
and proteins are classified as belonging to their highest
scoring class. For some proteins, one class clearly
scores much higher than the other classes. However,
for other proteins, two or more classes have equally
high scores indicating that the classifier does not have
enough information to make a clear-cut decision. The
reliability index measures the fold difference between
the highest scoring class and the second-highest scor-
ing class. We investigated whether increases in the
reliability index of the classification resulted in
increases in the sensitivity and PPV of the classifica-
tion, using the SILAC-derived independent test-set.
Figure 3 shows that as the minimum reliability index
increases from 1 to 150, the sensitivity and PPV both
increase significantly, providing a means to offer higher
quality classifications for a subset of the proteome. The
overall accuracy thus goes from 0.74 for the entire test
set (minimum reliability index of 1.0) to 0.83 when the
minimum reliability index is 10 (which provides a cov-
erage of 56%) and 0.90 when the minimum reliability
index is 150 (with a coverage of 25%). The nucleolar
association classification and its reliability are provided
for all human proteins (as defined by IPI version 3.40
[27]) in Additional File 2.
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Biological process annotations of nucleolar-associated
proteins

To characterise the predicted nucleolar-associated pro-
teins, we considered the GO biological process annota-
tions of nucleolar-enriched, nucleolar-nucleoplasmic and
nucleolar-cytoplasmic proteins (Table 4). Of the 386
proteins classified as nucleolar-enriched with a reliability
index greater than 10, 163 are annotated with RNA
metabolic process or any of its children terms including
35 proteins annotated with rRNA processing and 27
annotated with tRNA processing. The second and third
most abundant biological process terms for nucleolar-
enriched proteins are respectively cellular component
organisation with which 81 proteins are annotated and
ribosome biogenesis with which 50 proteins are anno-
tated. Taken together, these are the most representative
biological process GO terms for nucleolar-enriched pro-
teins and correspond well with the most prominent and
well-characterised nucleolar functions.

In contrast, the 513 nucleolar-nucleoplasmic and 469
nucleolar-cytoplasmic classified proteins with reliability
index above 10 are annotated with a wide variety of dif-
ferent terms. As shown in Table 4, the biological process
term annotating the largest number of nucleolar-nucleo-
plasmic proteins is nucleobase, nucleoside, nucleotide
and nucleic acid metabolic process which includes 52
proteins involved in DNA repair and 43 in DNA replica-
tion. Other biological process terms highly populated
with nucleolar-nucleoplasmic proteins include cell cycle,
chromosome organisation, regulation of transcription,
DNA-dependent and signal transduction, in agreement
with more recently described nucleolar-associated func-
tions. Unsurprisingly, in the case of nucleolar-cytoplas-
mic proteins, the most predominant biological process is
protein metabolic process, which includes 106 proteins
annotated with the term translation.

Analysis of the evolution of nucleolar-associated proteins
The different nucleolar association groups investigated
here are thus composed of proteins involved in a wide
variety of biological processes. The nucleolus is tradi-
tionally associated with highly conserved protein families
and core cellular functions. However, numerous recent
studies also involve the nucleolus in other diverse cellu-
lar processes. In an effort to characterise the nucleolar
protein content evolutionarily, we investigated the frac-
tion of human proteins of each nucleolar association
group that have orthology (as defined by InParanoid
[28]) to proteins in other eukaryotic organisms. To
ensure that we are dealing with highly accurate nucleo-
lar association predictions, we only consider the proteins
with a nucleolar association reliability index classifica-
tion greater than 10. As shown in Figure 4, the three
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Table 3 Examples of disagreements between SILAC classification and our predictions

Accession  Name SILAC classification PNAC Experimental observations from literature
classification
NP_006588  HSPA8 Non-nucleolar (highly Nucleolar- Usually cytoplasmic but accumulates in nucleoli after heat-shock [43,44]
cytoplasmic) cytoplasmic
NP_001013  RPS19 Non-nucleolar (highly Nucleolar- Ribosomal protein which accumulates in the nucleolus [45]
cytoplasmic) cytoplasmic
NP_919223 HNRNPA3 Non-nucleolar (mainly Nucleolar- The Human Proteome Atlas finds it in the nucleolus, nucleus and
nucleoplasmic) enriched cytoplasm [46]
NP_002120 HMGB2 Non-nucleolar (mainly Nucleolar- The Human Proteome Atlas finds it to be strongly nucleolar [46]
cytoplasmic but also nucleoplasmic
nucleoplasmic)
NP_061185  RCC2 Mainly nucleoplasmic Nucleolar- Annotated in Uniprot as nucleolar, cytoplasmic and centromere
nucleoplasmic
NP_002408 Antigen Highly enriched in nucleolus Nucleolar- Annotated in Uniprot as predominantly perinucleolar in G1 and in later
KI-67 nucleoplasmic phases predominantly localised in the nuclear matrix [30]

different nucleolar association groups (nucleolar-
enriched, nucleolar-nucleoplasmic and nucleolar-
cytoplasmic) display different conservation patterns.
However, the most striking feature of this analysis is
that in all non-mammalian organisms considered, the
non-nucleolar group displays a much lower degree of
conservation than any of the nucleolar association
groups, and the gap between the non-nucleolar and
nucleolar groups greatly increases with evolutionary dis-
tance. Thus proteins associated with all aspects of
nucleolar functions are much better conserved through-
out eukaryotic evolution than proteins that never associ-
ate with the nucleolus.

The nucleolar-cytoplasmic group, which consists lar-
gely of proteins involved in translation (see Table 4),
has a very high fraction of human proteins with ortholo-
gues in other organisms. This is consistent with the slow
evolution and high conservation that has previously
been shown for many proteins of this group [29]. Of the
202 nucleolar-cytoplasmic human proteins considered,
the fraction with orthology to the non-mammalian
organisms considered ranges between 42% (for Giardia
lamblia) to 69% (for Drosophila melanogaster). In con-
trast, of the 12725 human proteins considered for the
non-nucleolar group, between 8% (for Giardia lamblia)
and 55% (for Danio rerio) of non-nucleolar proteins
have orthologues in the non-mammalian eukaryotic
organisms considered. Nucleolar-enriched and nucleo-
lar-nucleoplasmic proteins are often not as well con-
served as nucleolar-cytoplasmic proteins especially in
the most distant non-mammalian eukaryotic organisms
considered but are significantly more conserved than
non-nucleolar proteins.

In mammals, the nucleolar-enriched and nucleolar-
nucleoplasmic groups have the highest fraction of
orthologues with between 81% (in the case of human
nucleolar-nucleoplasmic proteins with orthology to Rattus

norvegicus) and 95% (in the case of human nucleolar-
enriched proteins with orthology to Pan troglodytes) of
their proteins having mammalian orthologues.

Thus many of the central processes carried out, at
least in part, by nucleoli exist in all eukaryotes consid-
ered and, compared to non-nucleolar proteins, a much
higher proportion of nucleolar-associated proteins are
conserved amongst eukaryotic organisms.

Conclusions

In an effort to predict and describe the nucleolar pro-
teome, we investigated the integration of various gene
and protein features and annotations in a naive Bayesian
framework. To help differentiate between core-nucleolar
proteins and proteins that associate with the nucleolus
temporarily but also function in other compartments, the
training set was subdivided into four groups: nucleolar-
enriched, nucleolar-nucleoplasmic, nucleolar-cytoplasmic
and non-nucleolar proteins. This classification scheme
provides information regarding the nucleolar-association
potential of all human proteins in a manner that is
neither cell-type, nor condition-specific. An analysis of
our proteome-wide nucleolar-association predictions
reveals that these groups display widely varying evolu-
tionary characteristics and biological process signatures.
This classification provides a clearer picture of the pro-
tein content of the nucleolus as well as its numerous and
central roles in the cell and its interaction with other sub-
cellular compartments.

Methods

Datasets

Training sets

Human proteins experimentally detected in the nucleo-
lus were manually curated from the literature and
inserted into one of three groups depending on their
degree of association with the nucleolus:
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Figure 3 Reliability analysis. The sensitivity (panel A) and positive predictive value (PPV; panel B) are plotted as a function of the minimum
reliability score for all four classes considered. The error bars represent standard deviation over 10 independent runs.
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-The nucleolar-enriched class consists of proteins
found to be predominantly nucleolar in all cell types
and conditions considered (for examples, see Additional
File 1). Thirty proteins are included in the nucleolar-
enriched training set.

-The nucleolar-nucleoplasmic class is composed of
nuclear proteins that are identified in several nuclear
regions including the nucleolus. This includes proteins
that cycle between the nucleolus and other nuclear regions
and proteins that localise primarily to non-nucleolar
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Table 4 Most abundant biological process GO
annotations of nucleolar-associated proteins with
reliability index above 10

Biological process GO term Protein
count?
Nucleolar-Enriched
RNA metabolic process (GO:0016070) 163
of which rRNA processing (GO:0006364) 35
tRNA processing (GO:0008033) 27
Transcription, DNA-dependent (GO:0006351) 35
Cellular component organization (GO:0016043) 81
Ribosome biogenesis (GO:0042254) 50
of which rRNA processing (GO:0006364) 35
Regulation of biological process (GO:0050789) 45
Nucleoplasmic-nucleolar
Nucleobase, nucleoside, nucleotide and nucleic acid 118
metabolic process (GO:0006139)
of which DNA repair (GO:0006281) 52
DNA replication (GO:0006260) 43
Regulation of biological process (GO:0050789) 107
of which Regulation of transcription, DNA-dependent 35
(GO:0006355)
Signal transduction (GO:0007165) 36
Cellular component organization (GO:0016043) 92
of which Chromosome organisation (GO:0051276) 68
Cell cycle (GO:0007049) 89
Multicellular organismal development (GO:0007275) 40
Cell proliferation (GO:0008283) 39
Cell death (GO:0008219) 27
Nucleolar-cytoplasmic
Protein metabolic process (GO:0019538) 127
of which Translation (GO:0006412) 106
Nucleobase, nucleoside, nucleotide and nucleic acid 33
metabolic process (GO:0006139)
Regulation of biological process (GO:0050789) 27
of which Signal transduction (GO:0007165) 10
Cellular component organisation (GO:0016043) 18
of which Organelle organisation (GO:0006996) 11

@ count includes proteins annotated with child terms.

nuclear regions but relocate to the nucleolus under speci-
fic conditions (for examples, see Additional File 1).
Twenty-two proteins form the nucleolar-nucleoplasmic
training set.

-The nucleolar-cytoplasmic class consists of proteins
that are mainly cytoplasmic but have been detected in
the nucleolus. This includes proteins that cycle between
the cytoplasm and the nucleolus, cytoplasmic proteins
that are assembled into larger complexes in the nucleo-
lus as well as cytoplasmic proteins that are detected in
the nucleolus under specific conditions (for examples,
see Additional File 1). The nucleolar-cytoplasmic train-
ing set consists of twenty-four proteins.
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The non-nucleolar group was generated by randomly
choosing proteins from IPI release 3.40 [27] that are
not annotated as being nucleolar in UniProt [30] or
HPRD [31].

The PNAC classifier was trained on 200 randomly cho-
sen non-nucleolar proteins as well as all proteins from
the manually curated nucleolar datasets (listed in Addi-
tional File 1) whose earliest nucleolar association litera-
ture reference (according to Additional File 1) has a
PubMed ID smaller than 17470000 (which corresponds
approximately to the first half of 2007). While most of
the nucleolar association literature references considered
here describe work performed in a small-scale manner
(see references in Additional File 1), three large scale pro-
jects were included [9-11], mainly to ensure the presence
of ribosomal proteins in the nucleolar-cytoplasmic data-
set. Two of these projects [10,11] were considered to gen-
erate the training set while the third [9] was considered
to generate test set 2 (see below), even though its
pubmed ID is below 1747000. The training set generation
scheme is depicted in Figure 2.

Testing sets

The accuracy of the PNAC classifier was measured
using three different test sets (Figure 2):

Test set 1 A leave-one-out cross-validation test in which
one training set protein is set aside for testing purposes
and the classifier is trained on all the remaining training
set proteins. This is repeated for all training set proteins.
Test set 2 An independent, literature-based test in
which the classifier is trained on all training set proteins
and then tested on the remaining literature-curated pro-
teins whose earliest PubMed ID nucleolar association
reference (according to Additional File 1) is greater than
17470000 as illustrated in Figure 2. As explained above
(Training set section), some ribosomal proteins reported
to be nucleolar-associated in [9] were also included in
this test set even though its pubmed ID is below
17470000, to ensure the presence of ribosomal proteins
in test set 2. These ribosomal proteins were not
included in the training set.

Test set 3 An independent experimental dataset generated
using SILAC (stable isotope labelling with amino acids in
cell culture). This dataset consists of a list of proteins
whose relative abundance has been measured by harvesting
nucleolar, nucleoplasmic and cytoplasmic cellular extracts
each grown in the presence of amino acids labelled with
different isotopes and then by pooling together the different
fractions and analysing them by mass spectrometry [12].
Each protein is thus assigned two ratios: a nucleolar versus
cytoplasmic ratio and a nucleoplasmic versus cytoplasmic
ratio which define the relative abundance of the protein in
these three compartments. The SILAC independent protein
dataset was partitioned into five groups (nucleolar-enriched,
nucleolar-nucleoplasmic, nucleolar-cytoplasmic, non-
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nucleolar, undefined) depending on their nucleolar versus
cytoplasmic and nucleoplasmic versus cytoplasmic ratios
(see Additional File 3). The thresholds used to define the
five groups were determined manually by careful considera-
tion of the proteins that are both in the independent litera-
ture based test set (test set 2) and in the independent
SILAC set (test set 3) as depicted in Figure 2. These pro-
teins that form the intersection of test set 2 and test set 3
are listed in Additional File 4 which also defines the thresh-
olds used to decide to which nucleolar association group
different SILAC characterised proteins belong. The fifth
group (undefined group) corresponds to all proteins that
do not fall into any of the four previously defined groups
(their ratios are too different from the ratios of the proteins
used to determine the thresholds). The accuracy results
shown in Table 2 for the independent SILAC test exclude
all proteins that were trained on or used to determine the
SILAC thresholds to define the SILAC groups.

Redundancy filtering

Redundancy in the training and test sets was eliminated by
ensuring that all proteins are less than 25% identical over
their entire sequence to any other protein in the datasets.

Features
PNAC considers five distinct features to classify proteins
according to their degree of nucleolar association:

1) Amino acid frequency
The frequency of most individual amino acids does not
differ significantly between the proteins of the different
nucleolar-association training set groups. However, in
the case of serine, leucine, isoleucine and lysine, there
are significant differences in their frequency between the
different nucleolar-association groups. The frequency of
each of these amino acids was measured for each pro-
tein considered and then the frequencies were grouped
into five bins (four for lysine) using thresholds deter-
mined empirically.
2) Presence of targeting motifs and transmembrane
domains (TMDs)
The presence of signal peptides and number of TMDs
were predicted for each protein by Phobius [32]. In
addition to that, for each protein, the presence of mito-
chondrial targeting peptides and of nucleolar localisation
sequences (NoLSs) were predicted respectively by Tar-
getP [33] and NoD [34]. Other targeting motifs were
also considered but did not offer the same predictive
capability as the chosen targeting motifs.

The results of these predictions were used to define
three scores that characterise targeting motifs in a protein:

Mitochondrial score sy; = 1 if TargetP predicts a mito-
chondrial targeting peptide, sy; = 0 otherwise.

Secretory-membrane score ss = 1 if Phobius predicts a
signal peptide or at least one TMD, sg = 0 otherwise.
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NoLS score sy = 2 if the maximum NoLS score out-
put by NoD is > = 0.9.

sy = 1 if the maximum NoLS score output by NoD is
between 0.8 and 0.9.

sy = 0 if the maximum NoLS score output by NoD is
<0.8.

The cyto score sc is defined based on sy; and ss such
that sc = 2 if sg = 1 regardless of sy, sc = 1 if sjp = 1
and sg = 0 and sc = 0 if sj; = 0 and sg = 0.

These sc and sy scores were grouped into nine bins
representing all possible combinations of their states
and their distribution is plotted for each class in Addi-
tional File 5.

3) Gene co-expression with nucleolar-cytoplasmic group
The average Pearson correlation of co-expression
between the query protein and proteins in the nucleo-
lar-cytoplasmic training group was calculated for all
proteins considered, using expression profiles from 79
physiologically normal tissues [35]. The correlation
values were then grouped into four bins containing
roughly (within 20%) the same number of proteins
using thresholds determined empirically. Gene
co-expression correlations with the other nucleolar asso-
ciation groups were also considered but these correlation
values were not found to be predictive of nucleolar asso-
ciation. Thus only gene co-expression correlation with the
nucleolar-cytoplasmic group was used.

4) Gene Ontology (GO) annotations

Biological process and molecular function GO annotations
[36] were downloaded for all proteins considered. For a
given GO term ¢ annotating a query protein, the ratio of
the number of proteins annotated with term ¢ in a given
nucleolar association class versus the number of proteins
in the entire human proteome annotated with term ¢ was
calculated for each nucleolar association class (i.e. for the
nucleolar-enriched, nucleolar-nucleoplasmic and nucleo-
lar-cytoplasmic classes). For query proteins annotated with
more than one term, these ratios were averaged over all of
their annotating terms for each nucleolar association class
¢, producing one such GOscore g. per nucleolar associa-
tion class, for a given protein:

E nCl
nt
p

|T, |

8¢

where T, is the set of all terms that are associated
with protein p, n. is the number of proteins of nucleo-
lar association class ¢ that are annotated with term t
and n, is the total number of human proteins annotated
with term t.

These ratios are then grouped into one of four bins,
depending on which nucleolar association GOscore g. is
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highest: proteins whose nucleolar-enriched GOscore was
highest, proteins whose nucleolar-nucleoplasmic
GOscore is highest, proteins whose nucleolar-cytoplas-
mic GOscore is highest and those whose GOscores all
fall below a threshold set to 0.003.
5) Subcellular localisation annotations of interactors
A nucleolar proximity score was calculated for all inter-
actors of the query protein using HPRD [31] and Uni-
prot [30] subcellular localisation annotations. To do so,
protein localisation annotations were grouped into four
cellular regions which were each assigned a nucleolar
proximity distance:

+ 0.0 for the nucleolus

+ 1.2 for the nucleoplasm, the nuclear speckles, the
nuclear pore and the nuclear envelop

+ 3.0 for the cytosol, cytoplasm, any of the cytoplasmic
organelles, the plasma membrane and extracellular
region

+ 0.8 for the ‘nuclear’ annotation as this does not dis-
tinguish between nucleolar and nuclear non-nucleolar
proteins.

Given these distances, each protein p was attributed
an average nucleolar proximity score NPI for all its
interactors as follows:

>
NPl =l
P

where

>0
NPi — TeR,;
| R; |

and where I is the set of all interactors of the query
protein, D, is the distance between the nucleolus and
cellular region r and R; is the set of cellular regions to
which protein i (the interactor) localises.

The protein interactions considered include all protein
pairs predicted by the human protein-protein interaction
predictor PIPs to interact with a posterior odds ratio
above 4 [37,38] as well as protein pairs annotated as
interacting in HPRD [31] and IntAct [39].

The NPI,, scores were grouped into 5 bins according
to manually selected thresholds that were optimised to
minimise the average class error in the leave-one-out
cross-validation test. For all tests, care was taken to
remove all interactors of the current test protein from
consideration in calculating the NPI score of all training
proteins.

Protein interaction data have been considered pre-
viously in the prediction of protein subcellular localisa-
tion, including for whole-cell protein localisation
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prediction [16,40,41] as well as by most of the nucleolar
binary predictors [23,24,26].

Learning method

Semi-naive Bayes classifiers were used to score the like-
lihood of localisation to the four classes considered,
based on the features described above. This learning
method was chosen because of its transparency and ease
of integration of highly heterogeneous data. The method
was trained by counting the number of proteins from
the different training classes that fall into each bin.
Pseudocounts of 0.1 were added to all bins to ensure
that no feature state would obtain infinite scores. The
bin counts for each class were then divided by the total
number of proteins that fall in the bin, regardless of
their class, thus obtaining a conditional probability table
for each feature considered. The five different features
described above were considered independent and thus
the final score for each class is calculated as the product
of the initial class prior by the scores calculated for the
individual features. The initial class priors were chosen
to minimise the average class error in the leave-one-out
cross-validation test and are set to 0.2 for the nucleolar-
enriched class, 0.15 for the nucleolar-nucleoplasmic
class, 0.15 for the nucleolar-cytoplasmic class and 0.5
for the non-nucleolar class. Proteins are labelled as
belonging to their highest scoring class.

Measures of accuracy

The classifier’s accuracy for the three tests described
above is measured by calculating the sensitivity and
positive predictive value (PPV) for each nucleolar-asso-
ciation class:

TP
TP + FN

PPV:L
TP + FP

Sensitivity =

The sensitivity measures the fraction of true positives
(TP) amongst all the proteins annotated as being posi-
tives for this class in this particular test. The PPV mea-
sures the fraction of true positives amongst all the
proteins predicted to be positive for this class. FN and
FP represent respectively the false negative and false
positive counts.

The overall accuracy for a given test is defined as the
number of well-predicted proteins divided by the total
number of proteins in the test set.

All measures of accuracy presented in Table 2
represent averages over ten runs. All runs are indivi-
dually trained on the same nucleolar-enriched,
nucleolar-nucleoplasmic and nucleolar-cytoplasmic
sets but differ in their non-nucleolar sets, which are
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randomly generated as described in the Methods
Dataset section.

Reliability Index

The reliability index (RI) of the classification is calcu-
lated as the ratio of the score of the highest scoring
class divided by the score of the second highest scoring
class.

GO biological process annotations of predicted nucleolar-
associated proteins

Biological process GO annotations [36] were down-
loaded for nucleolar-enriched, nucleolar-nucleoplasmic
and nucleolar-cytoplasmic classified human proteins
with reliability index greater than 10.0. Proteins can be
annotated with more than one term.

Evolutionary analysis

For each nucleolar-association group, the number of
proteins with orthologues in a given organism (as pre-
dicted by InParanoid7 [28]) was counted and compared
to the total number of proteins of this group that are
considered by InParanoid7. The standard deviation of
these measures was estimated by a bootstrap procedure
(using 1000000 bootstrap datasets derived using the
inParanoid orthology predictions for each nucleolar-
association group).

Additional material

Additional file 1: Literature curated nucleolar-association lists. This
file lists nucleolar-enriched, nucleolar-nucleoplasmic and nucleolar-
cytoplasmic proteins and the literature references in which their
association with the nucleolus was experimentally investigated.

Additional file 2: Nucleolar association classification for all human
proteins. The PNAC prediction of nucleolar association is given for all
human proteins from IPI release 3.40.

Additional file 3: SILAC-derived dataset. This list displays the SILAC-
derived dataset protein identifiers and abundance ratios.

Additional file 4: Description of discretization of SILAC abundance
ratios into PNAC categories. This file lists the SILAC proteins used to
define the SILAC ratio thresholds and displays the thresholds.

Additional file 5: Distribution of protein targeting motif scores per
class. This file displays a plot of the distribution of scores for the
targeting motif module.
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