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Abstract

Background: Heat shock response in eukaryotes is transcriptionally regulated by conserved heat shock
transcription factors (Hsfs). Hsf genes are represented by a large multigene family in plants and investigation of the
Hsf gene family will serve to elucidate the mechanisms by which plants respond to stress. In recent years, reports
of genome-wide structural and evolutionary analysis of the entire Hsf gene family have been generated in two
model plant systems, Arabidopsis and rice. Maize, an important cereal crop, has represented a model plant for
genetics and evolutionary research. Although some Hsf genes have been characterized in maize, analysis of the
entire Hsf gene family were not completed following Maize (B73) Genome Sequencing Project.

Results: A genome-wide analysis was carried out in the present study to identify all Hsfs maize genes. Due to the
availability of complete maize genome sequences, 25 nonredundant Hsf genes, named ZmHsfs were identified.
Chromosomal location, protein domain and motif organization of ZmHsfs were analyzed in maize genome. The
phylogenetic relationships, gene duplications and expression profiles of ZmHsf genes were also presented in this
study. Twenty-five ZmHsfs were classified into three major classes (class A, B, and C) according to their structural
characteristics and phylogenetic comparisons, and class A was further subdivided into 10 subclasses. Moreover,
phylogenetic analysis indicated that the orthologs from the three species (maize, Arabidopsis and rice) were

distributed in all three classes, it also revealed diverse Hsf gene family expression patterns in classes and subclasses.
Chromosomal/segmental duplications played a key role in Hsf gene family expansion in maize by investigation of
gene duplication events. Furthermore, the transcripts of 25 ZmHsf genes were detected in the leaves by heat shock

heat stress treatment.

using quantitative real-time PCR. The result demonstrated that ZmHsf genes exhibit different expression levels in

Conclusions: Overall, data obtained from our investigation contributes to a better understanding of the
complexity of the maize Hsf gene family and provides the first step towards directing future experimentation
designed to perform systematic analysis of the functions of the Hsf gene family.

Background

All organisms possess an evolutionarily conserved, rapid
cellular defense mechanism commonly designated as the
heat shock (HS) response, which activates a variety of
reactions in response to heat stress and a number of
chemical stressors. It is characterized by rapid repro-
gramming of gene expression, leading to the production
of a defined set of proteins called heat shock proteins
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(Hsps), most of which act as molecular chaperones [1,2].
At the onset of stress, Hsps prevent protein unfolding
and aggregation, thereby maintaining cellular protein
homeostasis, which determines critical cellular struc-
tures and functions to regulate stress response.

Hsps expression is regulated by multiple mechanisms.
The central regulators of Hsps expression are heat
shock transcription factors. Hsfs are the terminal com-
ponents of a signal transduction chain mediating the
activation of genes responsive to heat or other stress sti-
muli [3,4]. Under normal growth conditions, Hsf is
maintained in an inert monomer state through
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association with molecular chaperones such as Hsp70.
In response to heat shock, Hsf is converted from a tran-
scriptional inactive monomer to active trimmer using
oligomerization domains, which function as sequence-
specific trimeric DNA binding proteins. Hsfs are capable
of recognizing the conserved binding motifs (heat shock
elements, HSEs) within the promoters of Hsf-responsive
genes [5]. The consensus HSEs contain a cis-acting
sequence, which consists of multiple inverted repeats of
the 5-nGAAn-3’ sequence (where n is any nucleotide)
[6]. At least three 5-nGAAn-3’ repeats are required for
a functional HSE, and additional reiteration of the pen-
tameric unit results in higher affinity interactions
between Hsf and HSE [7].

Plant Hsfs genes have been isolated from various spe-
cies [8-11]. Similar to many other transcription factors,
the Hsf family has a modular structure. Despite consid-
erable variability in size and sequence, Hsfs are structu-
rally and functionally conserved throughout the
eukaryotic kingdom. Several highly conserved domains
exist in the modular structure and all characterized Hsfs
have a common core structure comprised of DNA bind-
ing and oligomerization domains [4,12]. In addition,
another well-defined domain is a nuclear localization
signal domain (NLS). Apart from this, a C-terminal acti-
vation domain (CTAD) and a nuclear export signal
(NES) are included in some Hsfs [4,13].

Close to the N-terminal, the highly structured DNA-
binding domain (DBD) is the most conserved compo-
nent of Hsfs, consisting of an antiparallel four-stranded
B-sheet (B1-B2-B3-B4) packed against a bundle of three
a-helices (H1, H2, H3). The hydrophobic core of this
domain forms a helix-turn-helix (H2-T-H3) structure
required for specific recognition of the HSE conserved
motif [14]. An adjacent oligomerization domain (HR-
A/B region) composed of hydrophobic heptad repeats
is separated from the DBD domain by a flexible linker.
Through hydrophobic interactions, the heptad repeats
form a helical coiled-coil structure reported responsi-
ble for the trimerization of Hsfs [15]. Plant Hsf protein
families fall into three classes (A, B, and C) by peculia-
rities of their HR-A/B regions [4]. All class A and class
C Hsfs have an extended HR-A/B region due to an
insertion of 21 (class A) or seven (class C) amino acid
residues between the A and B of the HR-A/B region.
In contrast, class B Hsfs are discriminated from class
A and C by the absence of this insertion and the pre-
sence of a single, continuous heptad repeat pattern.
Furthermore, the variable length of the linker between
DBD domain and HR-A/B region also offer additional
support for this classification (nine to 39 amino acid
residues for class A, 50 to 78 amino acid residues for
class B and 14 to 49 amino acid residues for class C
Hsfs) [4].
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Furthermore, at the C-terminus from the HR-A/B
region a cluster of basic amino acids rich in arginine
and lysine residues serve as a nuclear localization signal
(NLS), which is required for nuclear import [16]. The
NES is positioned at the C-terminus of some plant Hsfs.
The overall balance of nuclear import and export pro-
cesses directed by the strength and accessibility of the
NLS and NES determines intracellular distribution of
plant class A Hsfs [13,17]. Sequence comparison studies
and functional analyses indicate that the combination of
C-terminal activator motifs (AHA motifs) adjacent to a
nuclear export signal (NES) represents the core of the
C-terminal activation domain (CTAD) for many plant
class A Hsfs [13,18]. AHA motifs are rich in aromatic
(W, Y, F), hydrophobic (L, I, V) and acidic amino acid
residues (D, E). On the other hand, class B and C Hsfs
have no activator function of their own resulting from
the lack of AHA motifs [13].

The Hsf gene family has been thoroughly character-
ized in Arabidopsis and rice [4,19], whose genomes
have been sequenced. Furthermore, Hsfs have been
comprehensively studied in tomato [8,17,18]. Previous
study has reported several Hsf genes cloned from maize
[20]. The Maize Genome Sequence Project completed
full maize genome assembly (Zea mays L. B73) [21].
This provides an opportunity to deduce the maize Hsf
gene family and infer its evolutionary history and adap-
tations in heat and chemical stress response mechan-
isms at the molecular level. In the present study, we
searched for all nonredundant sets of ZmHsf genes and
predicted their presumed structures. The results of this
work provide a foundation to better understand func-
tional and evolutionary history of the Hsf gene family in
angiosperms.

Results

Identification and physical locations of Hsf proteins in
maize

The amino acid sequence of Hsf-type DBD domain
(Pfam: PF00447) was adopted as a query in BLASTP
searches for possible homologs encoded in the maize
genome. As a result, 48 candidate Hsf protein
sequences were identified in maize. Subsequently, all
candidate Hsf protein sequences were surveyed to
further verify whether they contain Hsf-type DBD
domains using the Pfam database. Twenty-one candi-
date Hsf protein sequences were discarded for incom-
plete the Hsf-type DBD domain and overlapping genes.
Furthermore, two sequences were removed due to the
absence of a coiled-coil structure by the SMART pro-
gram. Consequently, 25 nonredundant maize Hsfs
were identified and described (Table 1). All nonredun-
dant maize Hsfs were mapped on the 10 maize chro-
mosomes (Figure 1). Hsfs were distributed in every
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Table 1 ZmHsf protein information

Number Gene name Translation Size(aa) MW (Da) pl Chromosome
1 ZmHsf-01 GRMZM2G165972_P02 384 4326846 530 1
2 ZmHsf-02 GRMZM2G118485_P02 417 46816.21 5.09 1

3 ZmHsf-03 GRMZM2G164909_P01 414 44382.81 6.80 1
4 ZmHsf-04 GRMZM2G010871_PO01 357 40502.49 499 1

5 ZmHsf-05 GRMZM2G132971_PO01 359 40587.23 557 1
6 ZmHsf-06 GRMZM2G115456_P01 527 56724.50 511 1
7 ZmHsf-07 GRMZM2G088242_P01 394 41742.83 7.81 2
8 ZmHsf-08 GRMZM2G002131_PO1 298 3227031 9.13 2
9 ZmHsf-09 GRMZM2G089525_PO01 331 35883.69 5.94 3
10 ZmHsf-10 GRMZM2G005815_P01 462 5097067 8.87 3
Il ZmHsf-11 GRMZM2G098696_P01 370 39562.03 5.89 4
12 ZmHsf-12 GRMZM2G384339_PO01 497 54104.58 5.06 5
13 ZmHsf-13 GRMZM2G105348_PO01 257 27836.98 585 5
14 ZmHsf-14 GRMZM2G179802_P02 528 58138.65 557 5
15 ZmHsf-15 GRMZM2G059851_PO01 508 56061.66 496 5
16 ZmHsf-16 AC206165.3_FGP007 469 51623.79 541 6
17 ZmHsf-17 GRMZM2G125969_P01 375 42043.73 4.70 7
18 ZmHsf-18 GRMZM2G139535_PO01 298 3225835 9.53 7
19 ZmHsf-19 GRMZM2G165272_P01 394 41468.10 5.00 7
20 ZmHsf-20 AC205471.4_FGP003 446 4971846 515 8
21 ZmHsf-21 GRMZM2G086880_P01 348 37409.50 8.09 8
22 ZmHsf-22 GRMZM2G118453_PO01 433 48647.71 525 8
23 ZmHsf-23 GRMZM2G173090_P02 350 38154.66 495 9
24 ZmHsf-24 GRMZM2G026742_P01 407 4531763 497 9
25 ZmHsf-25 GRMZM2G301485_P01 318 33947.51 570 10

Heat shock transcription factors identified from maize are listed with their names according to their chromosome location in Figure 1. Proteins are designated
according to their Sequenced ID, the protein sequence length, molecular weight (MW), isoelectric point (pl) and chromosomal locations.

chromosome of the maize genome, however, the num-  Conserved Domains and Motifs in maize Hsf proteins

ber of Hsf genes on each chromosome varied widely. = The modular structure of heat shock transcription factor
The largest number, comprised of six Hsf genes, was  was studied thoroughly in some model plants [4,8]. The
detected on chromosome 1, whereas the least number detailed knowledge regarding tomato and Arabidopsis
was found on chromosomes 4, 6 and 10, including Hsfs functional domains enabled us to analyze similar

only one Hsf gene.

domains for the 25 Hsfs identified from the maize genome
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Figure 1 Locations and duplications of maize Hsf paralogs on chromosomes 1-10. The scale represents megabases (Mb). The chromosome
numbers are indicated at the top of each bar.
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Table 2 Functional domains and motifs of maize Hsfs
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Gene name Group DBD oD NLS NES AHA motifs

ZmHsf-01 A2 41-134 167-217 (247) RKRRR (296) LENLALNI AHA (336) DDFWEELLNE

ZmHsf-02 A9 48-140 180-230 (254) NRKRR

ZmHsf-04 A2 43-136 168-218 (233) KRK7KKRRR (344) LAQQOLGYL AHAT (267) LKMFESGVLN
AHA2 (314) DDFWAELLVE

ZmHsf-05 A2 37-130 159-209 (224) MRK7KKRRRR AHA (314) DDFWEDLLHE

ZmHsf-06 Al 56-149 186-236 (261) KKRR (505) IGDLTEQM AHA (470) DSFWEQFL

ZmHsf-10 A6 137-232 263-313 (337) KRQR AHA (401) SDVWDELDLD

ZmHsf-12 Al 29-122 159-209 (234) KKRR (477) LTEQM AHA (436) NSIWEQFL

ZmHsf-14 A5 66-160 187-237 (261) HKKRR (387) LNLSL AHA (479) DKFWEQFLTE

ZmHsf-15 A3 73-166 193-243 (267) KRKFLK (405) LSPLPDNMG AHAT (432) EQIWGVDASA
AHA2 (472) ERFWELDFQA

ZmHsf-16 A4 22-115 145-195 (215) SKKRR AHA (408) DVFWERFLTD

ZmHsf-17 A2 49-142 172-222 (237) MRK7KKRRRR (359) LSEKMGYL AHA (332) DNFWEQLLNE

ZmHsf-20 A4 10-103 133-183 (203) SKKRR AHA (387) DVFWERFLTD

ZmHsf-22 A4 7-100 130-180 (197) GKKRR (155) MQELEDKLIF AHA (368) DGFWQQFLTE

ZmHsf-23 A6 48-141 167-217 (239) RKRR (257) LDIEELAM AHAT (291) DMIWYELLGE
AHA2 (324) AQPWAEMDE

ZmHsf-24 A9 48-141 180-230 (254) NRKRR

ZmHsf-03 B 69-162 231-260 (337) RKRMR

ZmHsf-07 B 19-113 226-255 (276) RKK (369) LALECAGLSL

ZmHsf-08 B 15-108 175-203 (259) RKRAR (206) VRQLDLGL

ZmHsf-11 B 34-127 199-228 (297) RKRMR

ZmHst-18 B 17-110 172-201 (259) RKRGR (203) VRQLDLRL

ZmHsf-19 B 42-135 217-246 (318) KRMR

ZmHsf-25 B 8-101 161-190 (232) KRLR (279) LDVLTLSV

ZmHsf-09 C 24-117 171-207 (224) KKRRR

ZmHsf-13 C 12-104 135-171 (202) KRAR

ZmHsf-21 @ 32-125 176-212 (229) KKRRR

Numbers in brackets indicate position of the putative nuclear localization signal (NLS), nuclear export signal (NES), and activator (AHA) motifs in the C-terminal
domain. Putative NLS can be monopartite (e.g., ZmHsf-01, ZmHsf-09) or bipartite (e.g., ZmHsf-04, ZmHsf-05).

(Table 2). Five conserved domains were observed in the
majority of the maize Hsf proteins. The multiple align-
ment clearly showed the highly structured DBD domain of
approximately 100 amino acids, located in the proteins
amino-terminal section, which was the most conserved
section of maize Hsfs (Figure 2). MARCOIL was used to
predict the coiled-coil structure characteristic of Leu-zip-
per type protein interaction domains, which is a property
of the HR-A/B region in the Hsf protein sequences. The
putative HR-A/B regions were consistently characterized
by the predicted coiled-coil structure (Figure 3). Informa-
tion regarding the potential NLS and NES domains in
maize Hsf protein sequences, which are crucial for
dynamic intracellular distribution of Hsfs between the
nucleus and cytoplasm, were obtained by PredictNLS and
NetNES. Nearly all Hsfs contain two clusters of basic
amino acid residues (K/R motifs), which might serve as
potential NLS motifs. Results obtained from mutation ana-
lysis of the two potential NLS motifs from two related
tomato Hsfs (HsfA1l and HsfA2) indicated that only one of

the two motifs adjacent to the HR-A/B region, and not the
conserved C-terminal part of the DBD domain is func-
tional as an Hsf protein nuclear localization signal
[16,17,22]. Prediction programs, sequence comparisons
and cognitive models generated from previous research
detected a wide range of putative NLSs, which were
monopartite or bipartite clusters and found close to the C-
terminal of the HR-A/B region of maize Hsfs. Similarly,
some putative NESs were identified close to the C-term-
inal of maize Hsfs. However, the following exceptions
were observed: ZmHsf-08, ZmHsf-18 and ZmHsf-22.
ZmHsf-08 and ZmHsf-18 NESs were closer to the HR-A/
B regions than to NLSs. In particular, ZmHsf-22 NES was
located in the HR-A/B domain region. As described by
Nover et al (2001) and based on preceding investigations
with the AHA motifs of tomato Hsf A1l and A2, we used
sequence comparisons and predicted the putative AHA
motifs in the center of the C-terminal activation domains
for most class A maize Hsfs (Table 2). However, we were
unable to predict class B and C putative AHA motifs.
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Figure 2 Multiple sequence alignment of the DBD domains of the Hsf protein family in maize. The definition of the Hsf numbers
corresponds to the order of alignment. The multiple alignment results clearly show the highly conserved DBD domains among maize Hsf genes.
The secondary structure elements of DBD (a1-B 1-42-0.2-a.3-33-B4) are shown above the alignment. Cylindrical tubes represent a-helices and
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MEME web server was employed as a secondary
method to analyze motif distribution and verify the
results of domain prediction (Figure 4; Table 3). Specify-
ing the DBD domain, motif 1 was found in 25 members
of the maize Hsf family. Specifying the coiled-coil struc-
ture, motifs 2 and 6 were distinctively detected in all
members of maize Hsf family. All class B proteins
exhibited the motif 6-type coiled-coil region, whereas
motif 2-type coiled-coil region was only detected in
classes A and C. The conserved motifs 10 and 15 were
identified as NLS, which were widely distributed in the

HR-A Core Insert HR-B
ZmHsf-01 : RAWV
ZmHsf-02 : VWV
ZmHsf-04 RAM
ZmHst-05 : RVM
ZmHsf-06 : EAM
ZmHsf-10 : FARVL
ImHs£-12 : SFEAKAM
ZImHsf-14 : SEIFQQAR
ZmHsf-15 : ARLL
ZmHsf-16 : CDIL
ZmHsf-17 : ARV
ZmHsf-20 : RDIL
ZmHsf-22 : ¥URDIV
ZmHsf-23 : ARAT
ZmHsf-24 : ATVW
ZmHsT-09 : DRLA
ZmHsf-13 : Bva
ZmHsf-21 : ARLA
ZmHsf-03 : SKYA
ZmHs£-07 (QNHW
ZmHsf-06 : SRFL
ZmHsf-11 : SEYA
ZmHsf-18 : SREL
ZmHsf-19 : ITEYA
ZmHsf-25 : RYD
Figure 3 Multiple sequence alignment of the HR-A/B regions of
the Hsf protein family in maize. The definition of the Hsf
numbers corresponds to the order of alignment. The scheme at the
top depicts the locations and boundaries of the HR-A core, insert,
and HR-B regions within the HR-A/B regions.

maize Hsf family. Motif 10 was characteristic of class A
and class C, and the NLS domain was represented by
motif 15 in class B. Furthermore, motifs 13 and 9 repre-
sented NES and AHA motifs, respectively, which were
detected close to the Hsfs C-terminal. Lastly, some
unknown motifs were also identified by MEME motif
analysis.

Overall, despite variability in size and sequence, the
predicted Hsf DBD, HR-A/B region and NLS domain
were observed in each maize Hsfs by two combined
methods. Although MEME motifs did not correspond
precisely to individual putative NES and AHA domains
defined by domain prediction of the first method, it was
clearly indicated that a fraction of maize Hsfs contained
NES domains and the majority of class A maize Hsfs
had putative AHA domains.

Phylogenetic and evolutionary analysis in maize Hsf
proteins

In order to analyze the phylogenetic organization of the
Hsf families, a phylogenetic analysis of 25 maize Hsfs, 25
rice Hsfs (OsHsfs) and 21 Arabidopsis Hsfs (AtHsfs) was
performed by generating a phylogenetic tree (Figure 5).
The OsHsf and AtHsf protein sequences were down-
loaded from the rice genome annotation (TIGR) [23] and
the Arabidopsis Information Resources (TAIR) [24]. All
Hsfs fell broadly into three major classes: classes A, B
and C, with well-supported bootstrap values, which
included representative genes of maize, rice and Arabi-
dopsis besides AtHsf-08 (HsfC1). In this study, class A
was further subdivided into ten subclasses according to
their bootstrap values and phylogenetic relationship,
designated as Al, A2, A3, A4, A5, A6, A7, A8, A9 and
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Figure 4 Distribution of conserved motifs in the Hsf family members. All motifs were identified by MEME using the complete amino acid
sequences of 71 maize, rice and Arabidopsis Hsf genes documented in Figure 5. Names of all members among the defined gene clusters and
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AtHsf-04. Because AtHsf-04 exhibits two boxes of motif 15, the box near the N-terminal represents NLS and the box close to the C-terminal
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A10. In our analysis, AtHsf-21 (A9 by annotation) did
not cluster with subclass A9 but was grouped into sub-
class A8. In addition, AtHsf-04 (A2 by annotation) and
AtHsf-08 (C1 by annotation) were not classed in the Hsf
subclass A2 and class C respectively. Moreover, ZmHsf-

10, ZmHsf-23, OsHsf-01 and OsHsf-17 constituted sub-
class A10 clade. The motif distribution analyzed by
MEME was also indicated in Figure 4, which was basi-
cally consistent with the phylogenetic analysis. The mem-
bers of the same subclass usually share several class- and
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Table 3 Motif sequences identified by MEME tools
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Motif Multilevel consensus sequence

PKYFKHNNFSSFVRQLNTYGFRKIDPDRWEFANECFLRGQKHLLKNIHRRKP

1

2 NVLMQEVWKLRQQQQTTKWQMQAMEQRLQHMEQRQQQMMSFLAKVMQNP

3 PFLTKTYDMVDDPATDHVISWNEDN

4 SFVRQLNTYGFRKVDPDRWEFANECFLRGQKHLLCNIHRRK

5 SFWWNPHEFARDLL

6 AGSCPAYADLMEENERLRRENARLTRELAHMKKLCNNIYFMSNYVDPQQPDAAKAM

7 SGPAPFLTKTYQMVCDPATDHVISWGPCG

8 YFGYEEEIERLKRDK

9 AEINDDFWEQFLTEGPGCCE

10 EMRKELIDAISKKRRRPIDDC

11 SFWWDPHAFSQTLL

12 YFKHNNFS

13 DNMDVLTEQMGYLSS

14 FLNQLVQQQRRSNWWNDDGNRKRRFQALEHGPVDDQETSGGGAQIQYCPPVPETSNQPIPANEA
FCSTPAQPVSSPALEMPMDV

15 DEDKCVKLFGVSIGDKRMRDH

16 QPWPIYRPRPVYHPIRPCNG

17 PQYQQQSVGSCVEVG

18 GGGGGGGG

19 AAAAAA

20 PMEGLHEVGPP

21 ASLDGQIVKYQPMINEAAK

22 TSFYDDHSSTSKQEMGNLLNQHFSDKLKLGLCPAMTESNITLSTQSSHEDNGSPHGKHPDCDMMGME
CLPLVPQMMELSDTGTSICPSKSVCFTPPINDDGFLPCHLNLTLASCPMDVDKSQIPDANGNTID

23 RCEEAAASERPIKMIRIGEPWIGVPSSGP

24 YDHPWLEQDCQMEAQQNCKNPQYADVIT

25 ELENLALNIQGLGKGKID

26 PEADDMGTGSSLEQGSPVLFEPQDPVEFLIDGIPSDLESSAVDAHGLIAPQDI

27 MDADDDERIWGVDASAALQSSCSGTSQQAYGSHVSDPYLMDIANKPEKFWELDFQALDDGDLQLDKCVIDDPALQQQ

28 MASNNVGTFDSTGNDFTDTSALCEWDDMDIFGGELEHILQQPEQDFQVDP

29 SPTYSGEEQVISSNS

30 AMLRKILKLDSSHRFESMGNSDN

Numbers correspond to the motifs described in Figure 4.

group-specific conserved motifs in addition to the Hsf
DBD, HR-A/B region, and NLS domain. Putative ortholo-
gous proteins were also identified in the tree, including,
for example, ZmHsf-17 and OsHsf-18, ZmHsf-07 and
OsHsf-22.

Hsf gene duplications in the maize genome

The potential mechanisms involved in the evolution
of the maize Hsf gene family were elucidated by analyz-
ing the duplication events that may have occurred dur-
ing maize genome evolution. Nine total duplicated gene
pairs of the 25 maize heat shock factors were identified,
including eight segmental duplication events between
chromosomes (e.g. ZmHsf-08 and ZmHsf-18, ZmHsf-09
and ZmHsf-21) as well as one duplication event within
the same chromosome (ZmHsf-01 and ZmHsf-04) linked
with lines (Figure 1). ZmHsf-11 participated in two
duplication events with ZmHsf-03 and ZmHsf-19 and

each of these three genes belonged to class B. Chromo-
some 10 was not involved in any duplication events.

Digital expression analysis: EST expression profile

Maize Hsfs expression patterns were studied using cor-
responding EST database with known ZmHsfs coding
sequence, resulted in the assignment of ZmHsfs to ten
groups on the basis of tissue and organ types (Table 4).
In addition, other expression evidence was verified in
MAGI and PlantGDB databases (Table 4). After inte-
grating and analyzing all expression data, we found all
ZmHsfs were supported by expression evidence with the
exception of the ZmHsf-16 gene. Interestingly, ZmHsf-
03, ZmHsf-11, ZmHsf-15, and ZmHsf-19 were found for
expression in seeds, ZmHsf-07 in shoot tips, and ZmHsf-
17 in roots. Furthermore, ZmHsf duplicated gene pair
expression patterns were investigated, only two pairs
(ZmHsf-03 and ZmHsf-11, ZmHsf-11 and ZmHsf-19) of
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Figure 5 Neighbor-joining phylogenetic tree of the Hsf
members. The phylogenetic tree, constructed with MEGA4.0, has
been generated on the basis of the amino acid sequences of the N-
terminal domains of Hsfs including the DNA-binding domain, the
HR-A/B region and parts of the linker between both two regions.
ScHsf1 was set as the outgroup. Hsf proteins are divided into twelve
groups (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, B, C) based on
previous research [4] and high bootstrap values (>50). The contents
in brackets are corresponding Hsf annotations. Branches of
members belonging to class A subclasses are represented by black
lines, branches of members belonging to class B are represented
with blue lines, and branches of members belonging to class C are
represented with red lines. The abbreviations of species names are
as follows: Zm, Zea mays; Os, Oryza; At, Arabidopsis thaliana.
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nine shared the same expression patterns between the
two members of each gene pair. In the other seven
duplicated gene pairs, two paralogs of each gene pair
exhibited dissimilar expression patterns. ZmHsf-04 was
detected in husks and seeds, however, its paralogue gene
ZmHsf-01 appeared to have no tissue-specific expression
pattern.

Expression analysis of ZmHsf gene family under heat
stress treatment

To examine if these predicted genes were expressed in
maize and to further confirm their stress-responsiveness
to abiotic stress, quantitative real-time PCR was performed
for 25 ZmHsf genes in the leaves of maize exposed to heat
stress. The analysis revealed that these genes are differen-
tially expressed in the leaves under heat stress condition
(Figure 6). Twenty-two genes showed expression activity
in maize leaves by heat stress. Most of these responsive
genes showed up-regulation of their expression, in which
12 genes were significantly up-regulated (>2-fold). Inter-
estingly, six members including ZmHsf-01, ZmHsf-03,
ZmHsf-04, ZmHsf-23, ZmHsf-24 and ZmHsf-25 showed no
expression or only faint expression in the leaves of maize
under normal growth conditions, however, they were
strongly up-regulated during heat stress treatment. Five
genes (ZmHsf-06, ZmHsf-10, ZmHsf-14, ZmHsf-20 and
ZmHsf-21) were greatly down-regulated (<0.5-fold) during
the heat stress treatment. Three genes (ZmHsf-07, ZmHsf-
09, and ZmHsf-18) of 25 genes exhibited no expression in
the leaves of normal and treated plants. Moreover, our
results showed that the transcript levels of five ZmHsfs
(ZmHsf-05, ZmHsf-08, ZmHsf-12, ZmHsf-13 and ZmHsf-
16) did not present many changes in heat stress treatment.
By comparing the expression data of each pair of dupli-
cated ZmHsf genes, nine pairs of duplicated genes exhib-
ited significant divergence in their expression levels
following heat stress treatment. For example, ZmHsf-06
was dramatically down-regulated, while ZmHsf-12
showed slight increase in transcripts at heat stress
treatment.

Discussion

In this study, a comprehensive set of 25 nonredundant
heat shock factors were identified and characterized
from the current version of the maize (B73) genome. In
a former publication, 22 maize Hsf isoforms were
reported, which were composed of 16 Hsfs having intact
ORFs and six 5’ truncated Hsfs [25]. The following are
likely responsible for these discrepancies. In the previous
studies, the maize genome had not been completely
sequenced, 22 maize Hsf genes were identified by
searching the publicly available maize EST and genomic
sequence survey (GSS) databases for homology to rice
Hsfs. In our study, the maize genome has been
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Table 4 Digital expression analysis of ZmHsf genes
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Gene Tissue and organ type (NCBI)

Number of MAGI PlantGDB

ESTs in dbEST

Silks Husks Shoot tips Leaf Root Seedling Tassel
ZmHsf-01

ZmHsf-02  + + + +

ZmHsf-03

ZmHsf-04 +

ZmHsf-05

ZmHsf-06  + + + + +
ZmHsf-07 +

ZmHsf-08 +

ZmHsf-09

ZmHsf-10

ZmHsf-11

ZmHsf-12 + +
ZmHsf-13

ZmHsf-14  + + + + +
ZmHsf-15

ZmHsf-16

ZmHsf-17 +

ZmHsf-18

ZmHsf-19

ZmHsf-20

ZmHsf-21 + +

ZmHsf-22

ZmHsf-23

ZmHsf-24

ZmHsf-25

EST cDNA PUTs
+

Ear Seed Multiple
+

9
+ 7
1
1

+ o+ + + o+
~
+

+ o+ o+ o+ o+
+
+

No
~
+

T T S S S S S
+ o+ o+ o+

+ o+ o+ o+ o+
+
T

+
AOOI\J:A‘-BUTO#OO\
+
+
+
+

+ 4+ o+ o+

+: Expressed; blank: not expressed.

completely sequenced, therefore the maize genome data-
base used here is more precise and complete than what
was previously available.

Although the maize genome is approximately 6-fold
larger than rice (2,300 Mb:389 Mb), the gene number is
similar (3,2000:3,7000 ) and their genetic map organiza-
tion is highly conserved. We found maize and rice have
the same number of Hsfs [19]. This partially accounts for
the support of Hsfs conservation in these two species
during the evolutionary process. In the investigation of
conserved Hsf domains, we observed two class A Hsfs
(ZmHsf-02, ZmHsf-24) lacking the AHA motif, which is
essential for class A Hsfs transcription activity. Previous
study suggests [19] these proteins bind to other class A
Hsfs forming hetero-oligomers to achieve their functions.

Phylogenetic analysis of Hsfs in maize, rice and Arabi-
dopsis indicated that ZmHsfs are more closely allied
with OsHsfs than AtHsfs, consistent with the evolution-
ary relationships among maize, rice and Arabidopsis i.e.
two monocots in the Poaceae Subclass Commelinidae
and one dicot in the Brassicaceae Subclass Dilleniidae.
The fact that all three classes (A, B and C) identified in

maize, rice and Arabidopsis genes implies that the Hsf
genes originated prior to the divergence of monocots
and dicots. Hsfs of rice and maize appear more close
relationship between each other in subclass Al than to
Hsfs from Arabidopsis. Such observations suggest the
expansion of these Hsf genes following divergence of
monocots and dicots.

The phylogenetic analysis showed that AtHsf-04
(HsfA2 type) and AtHsf-08 (HsfC1 type) were not
grouped into subclass A2 and class C, respectively, and
subclass A2 and class C were OsHsfs and ZmHsfs clus-
ters. ZmHsfs and OsHsfs belong to the same clade, indi-
cating that Hsfs of these subclasses expanded in a
species-specific manner from common ancestral genes
that were present prior to diversification of the monocot
and dicot lineages. Phylogenetic data also proposed that
subclass A2 and class C Hsfs were expanded in monocots
but not in Arabidopsis. A single HsfA2 (AtHsf-04) is pre-
sent in Arabidopsis. However, maize has four members
and rice contains five in subclass A2. Class C consists of
three maize and four rice members, while Arabidopsis
has only one class C type member (AtHsf-08).
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In addition, possible gene loss during the course of
evolution was supported by phylogenetic reconstruction.
Subclasses A7 and A8 exhibit interesting characteristics
that monocots were not found in these two subclasses.
Accordingly, this might indicates two dicot specific gene
subclasses. Gene duplication events play a significant
role in the amplification of gene family members in the
genome [26,27]. Research has estimated the fraction of
retained paralogs is 72% in maize, having occurred over
the course of 11 million years of evolution [28]. The
expansion mechanism of the maize Hsf gene family was
analyzed to understand gene duplication events. Nine
pairs of maize Hsf gene paralogs were identified. Among
the paralogs, only one pair is involved in regional dupli-
cation in chromosome 1, however, two members in
each of the other eight pairs were arranged between
chromosomes. This result suggested the maize Hsf gene
family expansion originated in a high number of large
segmental duplications. An increase in the number of
gene regulators (i.e. transcriptional and developmental
regulators and signal transducers) is an essential factor
in the evolution of more complex systems in different
species [29]. It is hard to achieve the expansions of
these regulator gene classes only through single-gene
duplications, which points to the importance of genome
duplications in expanding the regulatory gene repertoire
[30]. It was estimated that more than 90% increase in
regulatory genes had been caused by genome duplica-
tions in the Arabidopsis lineage in the last approxi-
mately 150 million years [27]. Similarly, individual gene
family expansion follows this rule. In plants, genome
duplications have mainly contributed to expression of
the Aux/IAA family of auxin response regulators [31].
Data from studies of the maize genome revealed that its
genome has experienced two rounds of genome duplica-
tions, an ancient duplication prior to the maize-rice
divergence and a recent event following triploidization
[32]. The association of Hsf gene expansion in maize
with these two rounds of maize genome duplication
explains this observation and in addition sheds light on
the evolutionary process of the maize Hsf gene family.
Furthermore, segmental duplications occur more often
in more slowly evolving gene families, e.g. MYB gene
family [26]. Due to the major role of segmental duplica-
tions in the Hsf gene family evolution, the maize Hsf
gene family might hold a slow evolutionary rate.

Several approaches were employed for maize Hsf gene
expression analysis by EST database. ZmHsf genes exhib-
ited distinct expression patterns in different tissues or
organs. One explanation is that ZmHsf genes have differ-
ent expression patterns in various tissues and at multiple
developmental stages. Expression profiles of 12 class A
rice heat shock transcription factor genes have been
resolved and the OsHsfA genes displayed tissue-specific

Page 11 of 14

expression under normal conditions [33]. AtHsfA9 was
exclusively expressed during the late seed development
stage and controlled by the seed-specific transcription
factor abscisic acid-insensitive 3 (ABI3) [34]. Further-
more, the expression data revealed that the majority of
duplicated ZmHsf gene pairs exhibited diverse expression
patterns between two members. It suggested that func-
tional diversification of the surviving duplicated genes is
a major feature of the long-term evolution [35].
Expression analysis of quantitative RT-PCR showed
that maize Hsf genes exist different expression levels by
heat stress. In this study, we have detected three HsfA2-
type ZmHsfs (ZmHsf-01, ZmHsf-04 and ZmHsf-17) with
significantly higher expression, when subjected to heat
stress. The result indicated that the ZmHsfA2 subclass
was closely related with maize heat shock response.
Moreover, six genes were remarkably up-regulated
under heat stress condition, i.e. ZmHsf-01, ZmHsf-03
and ZmHsf-23, and et al., which suggested specific roles
for these genes in maize during heat stress. It is note-
worthy that three ZmHsfs (ZmHsf-03, ZmHsf-11 and
ZmHsf-25) assigned to class B appeared to be strongly
induced by heat stress. The Hsfs belong to class B lack
certain structural features of the class A activator Hsfs.
Class B-Hsfs may serve as transcriptional repressors or
coactivator cooperating with class A Hsfs. But the func-
tional roles of these three Class B-Hsfs in maize will
require further investigations. It is likely that the Hsf
genes remaining unaltered or down-regulated in expres-
sion may locate at downstream in the hierarchy of the
events involved in heat shock response or are repressed
by other members of the family [36]. In addition, if Hsp
proteins accumulate enough, they may be involved in
feedback regulation to repress Hsfs activity, such as
Hsp70 proteins. In the nine duplicated gene pairs of
maize, the significant divergence of expression levels
between the two members of each gene pair implied
that duplicated genes had various functions in the
response to heat stress in the evolutionary history.

Conclusions

This survey presents a comprehensive overview of the
Hsf gene family repertoire within the maize draft gen-
ome. Based on structural characteristics and a compari-
son of the phylogenetic relationships among maize, rice,
and Arabidopsis, all 25 ZmHsfs fell into three major
classes (class A, B, C), and class A was organized into 10
subclasses. Further phylogenetic analysis revealed diver-
gent expansion patterns of Hsf gene families in classes
and subclasses. Our analyses suggest that whole genome
and chromosomal segment duplications largely contribu-
ted to Hsf gene family expansion in maize. Our computa-
tional expression analyses suggest that many maize Hsf
genes play functional developmental roles in multiple
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tissues. Furthermore, expression profiles by quantitative
real-time PCR revealed that the majority of identified
ZmHsfs most likely are expressed in maize and these
genes are induced by heat stress with differential induc-
tion levels in leaves. Overall, our study will serve to better
understand the complexity of the maize Hsf gene family
and guide future experimental work. Together with the
availability of the complete maize genome sequence and
the increasing ease of obtaining mutants and raising
transgenics, our analysis should facilitate functional char-
acterization studies to confirm maize Hsfs and deduce
Hsfs gene roles in plant stress responses.

Methods

Identification and physical locations of Hsf proteins in
maize

The maize genome sequence has been completed, and
filtered protein and cds sequences have also become
available [21]. Initially, due to the variation in Hsf
sequences, nine protein sequences known as Hsf were
used to search the Pfam (Protein family) database [37].
In this way, integrated and exact conserved Hsf-type
DBD domain sequence based on the Hidden Markov
Model (HMM) would be obtained. The nine query
sequences were as follows: maize Hsf sequences [NCBI:
ACG33027.1, ACG29285.1, ACG28818.1], rice Hsf
sequences LOC_0s10g28340 (class A), LOC_Os04
248030 (class B), and LOC_0s01g43590 (class C), and
Arabidopsis Hsf sequences At4gl7750 (class A),
At4g36990 (class B), and At5g62020 (class C). Second,
DNATOOLS software was used to build local databases
from the maize complete genome nucleotide sequences
and protein sequences. The Hsf domain numbered
PF00447 obtained from the Pfam database was used as a
standard sequence to isolate all possible homologs in
maize by BLASTP searches (P-value = 0.001). This step
was crucial to identify as many similar sequences as pos-
sible. Moreover, the starting locations of all candidate
Hsf genes on each chromosome were acquired by
TBLASTN (P-value = 0.001). Through this method, the
physical locations of all candidate Hsf genes were con-
firmed and the redundant sequences with the same chro-
mosome location were rejected from the Hsf candidate
list. Furthermore, all candidate sequences that met the
standards were analyzed in the Pfam database once more
and were detected by the SMART program [38] for the
purposes of eliminating any sequences not containing the
Hsf-type DBD domain. Finally, the remaining sequences
were checked by means of the SMART program to
recognize coiled-coil structure, which is the core of the
HR-A/B region. The sequences without coiled-coil struc-
ture were removed. A distinctive name for each of Hsfs
identified in maize was given according to its position
from the top to the bottom on the maize chromosomes 1
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to 10. Finally, the chromosome location image of Hsf
genes was generated by Maplnspect software [39].

Multiple sequence alignment and domain prediction
Initially, ClustalX (version 1.83) [40] was performed to
align amino acid sequences of Hsf proteins, which passed
screening and were accepted. Subsequently, GeneDoc was
used to manually edit the results. The domain analysis pro-
grams MARCOIL [41], PredictNLS [42] and NetNES 1.1
[43] were suitable for predicting coiled-coil domains, NLS
and NES, respectively encoding Hsf genes. Additionally,
the Hsf protein conserved motifs were defined by submit-
ting their full-length amino acid sequences to MEME [44].

Analysis of phylogenetic relationships and gene
duplication
Phylogenetic trees were constructed by the neighbor-
joining (NJ) method in MEGA (version 4.0) [45]. NJ
analysis was performed with the Pairwise Deletion
option and the Possion correction. For statistical relia-
bility, bootstrap analysis was conducted with 1,000 repli-
cates to assess statistical support for each node.
S. cerevisiae Hsfl (ScHsfl) was used as the outgroup.
Hsf gene duplication events were also investigated.
MEGA (version 4.0) was used to align Hsf amino acid
sequences by Clustal W and compute their evolutionary
distances [46]. We defined a gene duplication according
to the following criteria [46,47]: (1) the length of align-
able sequence cover > 80% of the longer gene; and
(2) the similarity of the aligned regions > 70%.

Digital expression analysis: EST expression profile

The analysis of ZmHsfs expression profiles was accom-
plished by searching the maize dbEST database and
finding expression information provided at the Web
sites. Maize expression data was first obtained through
blast searches against the maize dbEST database down-
loaded from NCBI by conducting the DNATOOLS Blast
program. Searching parameters were as followings: max-
imum identity > 95%, length > 200 bp and Evalue < 10
10 15 addition to the maize EST database, maize expres-
sion data was also extracted from the Maize Assembled
Genomic Island (MAGI) [48] and the Plant Genomic
Database (PlantGBD) [49] including EST, cDNA and
PUTs (PlantGDB unique transcripts).

Plant materials and stress treatment

Maize (Zea mays L. inbred line B73) plants were grown
in a greenhouse at 28 + 2°C with a photoperiod of 14 h
light and 10 h dark. For heat stress, uniform-sized seed-
lings were transferred to a growth chamber to 42 + 1°C
when they developed three fully opened trifoliate leaves
(approximately three weeks after sowing). The leaves of
the seedlings were harvested after 0 and 1 h of heat
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stress treatment, frozen immediately in liquid nitrogen,
and stored at -80°C until RNA isolation.

RNA isolation and quantitative real-time PCR (qRT-PCR)
analyses

To confirm the expression of representative of ZmHsf
genes, total RNA was prepared using Trizol reagent
(Invitrogen, USA), followed by DNase I treatment to
remove any genomic DNA contamination. RNA concen-
tration was determined by NanoDrop ND-1000 UV-Vis
spectrophotometer (NanoDrop Technologies, Inc.) and
the integrity of the RNA was assessed on a 1% (w/v) agar-
ose gel. The first-strand cDNA was synthesized from 1 pg
of total RNA using QuantiTect Rev. Transcription Kit
(Qiagen, Germany). Quantitative RT-PCR was carried
out using an ABI PRISM 7300 real-time PCR system
(Applied Biosystems, USA). Each reaction contains 10 pL
2xSYBR Green Master Mix Reagent (Applied Biosystems,
USA), 2.0 uL. cDNA sample, and 400 nM of gene-specific
primer in a final volume of 20 pL. Each pair of primers
were designed by using Primer Express 3.0 software
(Applied Biosystems, USA) targeting an amplicon size of
90-190 bp. The primers used are listed in the additional
file 1. The thermal cycle used was as follows: 50°C for 2
min, 95°C for 10 min, 40 cycles of 95°C for 15 s, and 60°
C for 1 min. The specificity of the reactions was verified
by melting curve analysis. The relative mRNA level for
each gene was calculated as AACy values in comparison
to unstressed seedlings (Applied Biosystems, USA).
Maize Actin 1 gene was used as internal control for nor-
malization. At least three replicates of each cDNA sample
were performed for quantitative RT-PCR analysis.

Additional material

Additional file 1: Primers used in quantitative real-time PCR. Excel
document contains two tables listing primer sequences used for
quantitative real-time PCR to validate expression patterns of ZmHsf
genes.
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AHA: activator motif; CTAD: C-terminal activation domain; DBD: DNA-binding
domain; HS: heat shock; HSEs: heat shock elements; Hsfs: heat shock
transcription factors; NES: nuclear export signal; NLS: nuclear localization
signal; qRT-PCR: quantitative real-time PCR.
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