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Abstract

is disease dependent.

Background: Genome-wide association studies (GWAS) of common diseases have had a tremendous impact on
genetic research over the last five years; the field is now moving from microarray-based technology towards next-
generation sequencing. To evaluate the potential of association studies for complex diseases based on exome
sequencing we analysed the distribution of association signal with respect to protein-coding genes based on
GWAS data for seven diseases from the Wellcome Trust Case Control Consortium.

Results: We find significant concentration of association signal in exons and genes for Crohn’s Disease, Type 1
Diabetes and Bipolar Disorder, but also observe enrichment from up to 40 kilobases upstream to 40 kilobases
downstream of protein-coding genes for Crohn'’s Disease and Type 1 Diabetes; the exact extent of the distribution

Conclusions: Our work suggests that exome sequencing may be a feasible approach to find genetic variation
associated with complex disease. Extending the exome sequencing to include flanking regions therefore promises
further improvement of covering disease-relevant variants.

Background

While development of next-generation sequencing
technologies has opened exciting new opportunities to
identify disease relevant mutations, whole genome
sequencing of large patient cohorts is still prohibitively
expensive. Therefore, more modest sequencing-based
association studies are being undertaken. One way to
overcome the cost limitation is the targeted sequencing
of selected genomic regions such as genes or exons
using enrichment methods as reviewed by Summerer
[1]. Recently, several groups have successfully identified
causal mutations for monogenic disorders by sequencing
all exons (the “exome”) in a small number of patients
[2-4]. A similar approach has been proposed for com-
plex diseases, but how important is the exome in com-
plex disease? Cellular processes are ultimately driven by
proteins, encoded by the exons, but genetic variation
leading to a disorder is not necessarily located in protein
coding regions. Regulatory elements that affect gene
expression can play a role and, although they tend to be
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clustered around genes [5,6], some of them can be
many kilobases (kb) upstream or downstream of the
transcribed region. Further complexity is for example
added by microRNAs (miRNA) with regulatory func-
tions; some of which have been linked to disease pheno-
types [7]. Whole genome sequencing may be available in
the future as sequencing costs are dropping rapidly.
However, for large sample numbers it is still too costly,
therefore we want to identify regions that are most
likely to contain disease-related variation in the human
genome. To address this question we assess how dis-
ease-associated genetic variants are distributed with
respect to protein-coding genes. Our analysis is based
on genome-wide association study (GWAS) data for
seven common diseases genotyped by the Wellcome
Trust Case Control Consortium (WTCCC) (see Table 1)
[8]. We first assign every genotyped SNP to its closest
gene. SNPs are then binned into 10 kb windows
upstream and downstream of genes. A central gene-win-
dow contains all SNPs that fall within the transcribed
region of a gene and an exon-window all SNPs that fall
into a coding exon. To assess the amount of association
signal within every window we determine the proportion
of SNPs with a p-value smaller than a threshold o.
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Table 1 GWAS data sets for seven diseases genotyped by
the WTCCC: Number of cases and SNPs after Quality
Control (QC) and the Genomic Control Inflation factor A

Number of Number of A
cases SNPs

Bipolar Disorder (BD) 1,868 391411 1.12
Coronary artery 1,929 392,632 1.07
disease (CAD)

Crohn's Disease (CD) 1,752 392,990 1.12
Hypertension (HT) 1,952 392,598 1.07
Rheumatoid arthritis (RA) 1,860 392,575 1.04
Type 1 diabetes (T1D) 1,964 392,355 1.06
Type 2 diabetes (T2D) 1,924 391,860 1.08

Results

The WTCCC study was carried out using the Affymetrix
500K GeneChip which covers ~500,000 SNPs spread out
over the human genome. To explore how much of the
association signal is linked to the exome, we assign every
SNP to its closest gene based on genomic localisation
(Table 2); all SNPs are subsequently classified into groups
according to their distance from the closest gene, i.e.
“within a gene”, “less than 10 kb upstream”, “between 10
kb and 20 kb upstream”, etc. Table 3 shows the total
number of SNPs represented on the Affymetrix 500k
GeneChip for every window. For each SNP we perform
association tests comparing the frequency of the
sequence variants between diseased and healthy indivi-
duals as described in the Methods section. In the original
publication by the WTCCC careful multiple testing cor-
rection procedures were employed to ensure the identifi-
cation of association signals with genome-wide
significance, typically with a p-value p < 5 x10°® [9]. Due
to the high number of statistical tests, many SNPs are
statistically significant at p < 0.05, but do not pass this

Table 2 Summary of the SNP to gene assignment

Protein-coding genes on chromosome 1-22 20919
Protein-coding genes after SNP to gene 17,058
assignment

Protein-coding genes with SNP in transcribed 13,783
regions

Protein-coding genes with SNP in coding exon 2,887
SNPs on chromosome 1-22 488,665
SNPs in transcribed regions 194,831
SNPs 100 kb upstream or downstream of 151,984
transcribed region

SNPs in coding exons 3,878
average gene length (whole transcript + 1 s.d.) 53,334 + 112,931

average gene length of genes with SNP in
transcribed region (whole transcript + 1 s.d)

75928 + 132,938
average gene length (coding exons only + 1 s.d.) 1,747 + 1,889
average gene length of genes with SNP in exon 2,826 + 3,339
(coding exons only + 1 sd)
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genome-wide multiple testing correction. Amongst the
latter might be true associations. We assume a uniform
distribution of false positive signal over all SNPs, whereas
true positives might be enriched in specific locations rela-
tive to the coding sequences. Here, we (arbitrarily) define
a SNP where p < a with a € {0.1, 0.01, 0.001} as “sugges-
tive” and analyse the distribution of “suggestive” p-values
with respect to exons and genes by examining the
proportion of SNPs in each sequence window achieving
p-values below a. To establish the significance of the
association signal for each sequence window we perform
100,000 permutations of the disease status to derive a
95% confidence interval as described in the Methods
section.

The distribution of association signal varies between
diseases. Figure 1 shows the enrichment of association
signal for each disease at o = 0.01 (Additional File 1:
Figures S1 to S7 and Additional File 2: Tables S1 to S9
for ae {0.1, 0.01, 0.001}).

Within genes we observe significant enrichment of
association signal for Type 1 Diabetes T1D (o = {0.1,
0.01, 0.001}), Rheumatoid Arthritis RA (a0 = {0.01,
0.001}), Bipolar Disorder BD (o = 0.01), Crohn’s Disease
CD (o = 0.001) and Type 2 Diabetes T2D (a0 = 0.001).
Coding exons typically only constitute a small fraction
of the total length of a gene (~3%), but changes to the
amino acid sequence are likely to alter or disrupt the
function of a gene. When we therefore analyse the
enrichment of association signal in exons only (purple
triangles), we observe a significant enrichment of asso-
ciation signal for T1D (a = {0.1, 0.01, 0.001}), RA (a =
{0.01, 0.001}), Hypertension HT (o = 0.1), BD (o = 0.01)
and CD (o = 0.001). Furthermore, for almost all diseases
and levels of a the proportion of “suggestive” SNPs in
coding exons is higher than in the whole gene (except
BD and T2D at a = 0.001) indicating that the majority
of the association signal is to be found in the coding
region rather than the introns. Outside genes, T1D, RA
and CD show consistent enrichment of association
around the central gene window; this enrichment
becomes stronger with increasingly stringent levels of a.
For the other diseases we observe sporadic enrichment.

For BD, Moskvina et al. compared the distribution of
SNPs within and outside of genes independently of dis-
tance to the gene [10]. They reported a significant
enrichment of SNPs with p < 0.01 within genes. Our
analysis confirms their findings: we, too, do not find
enrichment within genes for any other o for BD (Addi-
tional File 1: Figure S4), nor do we observe consistent
enrichment in the vicinity of genes for BD.

One factor that might be influencing our analysis is
linkage disequilibrium (LD). In an ideal situation all
SNPs would be inherited independently. However, SNPs
located closer to each other on a chromosome are more
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Table 3 Number of SNPs per window in the observed and permuted datasets (Crohn’s Disease)

cD observed 95% confidence interval
Distance total p <0.1 p < 0.01 p < 0.001 p < 0.1 p < 0.01 p < 0.001

-100 2,883 277 31 2 246 - 333 16 - 44 0-8

-90 3,092 286 30 11 266 - 355 18 - 46 0-8

-80 3,402 351 28 5 294 - 387 20 - 50 0-9

-70 3,966 396 51 7 347 - 447 25 - 56 0-10

-60 4,664 450 42 11 412 - 521 30 -65 0-1

Upstream -50 5324 569 49 6 475 - 591 36-73 1-12
-40 6,444 645 62 9 581 - 709 45 - 86 1-14

-30 7,651 823 92 22 696 - 834 55-100 2-15

-20 10,451 1,099 131 28 963 - 1,127 79 -132 4-19

-10 14,095 1,452 164 31 1,311 - 1,508 110 - 173 6-25

Gene 0 152,344 15511 1,649 284 14,698 - 15,747 1,353 - 1,687 109 - 201
Exon 0 2,876 328 40 12 253 - 323 18 - 41 0-7
10 15,064 1,550 208 38 1,403 - 1,609 119 - 184 6-26

20 8,954 893 110 29 818 - 973 66 - 115 3-18

30 6,360 668 75 18 620 - 752 48 - 91 1-14

40 5555 588 70 11 496 - 617 37-76 1-12

Downstream 50 4,612 444 36 5 408 - 516 30 - 64 0-1
60 4,088 413 38 4 358 - 461 26 - 58 0-10

70 3,507 339 32 1 304 - 399 21 - 51 0-9

80 3,262 330 35 8 281 - 373 19 - 48 0-9

90 2,882 300 30 7 246 - 332 16 - 44 0-8

100 2,601 264 46 10 220 - 301 14 - 40 0-8

Total 274,577 27,976 3,049 559 25443 - 28,892 2,183 - 3,283 134 - 457

likely to be inherited together, because the likelihood for
separation due to crossing-over events is lower. When
deriving confidence intervals by permuting disease labels
we maintain LD structure, i.e. the confidence intervals
take the LD structure into account. Yet, a true associa-
tion signal could extend over large regions of the gen-
ome if it falls into a LD block. Most of the SNPs in
such a region could appear to be associated with the
phenotype. If such a region is rich in genes we would
observe an enrichment that is inflated, because in gene-
dense regions the windows close to the central gene
window are more populated since every SNP is assigned
to closest gene. The Major Histocompatibility Complex
(MHC) region on chromosome 6 is such a gene-rich
region and known to have a high level of LD. RA and
T1D have their most significant signal within the MHC
region. We therefore repeated our analysis but excluded
the MHC region on chromosome 6 (position 25,930,839
to position 33,297,046, NCBI assembly GRCh37). For all
diseases except RA and T1D the distribution changes
only marginally after removal of the MHC region (Addi-
tional File 1: Figures S1 to S7); but for RA-MHC and
T1D-MHC enrichment in the vicinity of genes is sub-
stantially reduced (Figure 2, Additional File 1: Figures
S2 and S3). T1ID-MHC continues to display a moderate

but significant enrichment in and around genes and we
find a significant enrichment within exons. In contrast
we observe no significant enrichment for RA-MHC.

To test if we can increase the power of our analysis we
combine the data for all seven diseases (Figure 3, Addi-
tional File 1: Figures S8 and S9). When the MHC region
is excluded from the analysis (Figure 3 and Additional
File 1: Figure S9) the combined distribution of all seven
diseases shows moderate enrichment. The enrichment is
still significant for o = 0.001 and we observe a bell
shaped distribution around the gene for all three thresh-
olds o (Additional File 1: Figure S9), suggesting a devia-
tion from uniform distribution. For all thresholds o the
proportion of SNPs with p < a is higher in exons than in
the whole gene (purple triangle in Figure 3).

In this work we analyse the distribution of SNPs with
“suggestive” p-values in respect to genes. To assess
whether the observed enrichment is driven by a few
genes only, we count the number of genes with SNPs
that have “suggestive” p-values (p < a) (Table 4). We
considered SNPs that are located within less than
100 kb of a gene and SNPs that are located within an
exon separately (Table 4). Gene counts for the observed
data are compared to gene counts from 100,000 permu-
tations of the disease status. We observe significantly
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Figure 1 Enrichment of association signal (p < 0.01) around the gene for seven diseases genotyped by the WTCCC. The percentage of
SNPs with p < 0.01 (red circles) is plotted for their distance to the closest gene. Values have been smoothed using a 50 kb sliding window

(blue line). The light blue area represents the distribution expected by chance (95% confidence intervals) based on 100,000 permutations of the
case/control status. The purple triangle represents the proportion of SNPs with p < 0.01 in coding exons.
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represents the proportion of SNPs with p < 0.01 in coding exons.
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Figure 2 Enrichment of association signal (p < 0.01) around the gene for RA and T1D before and after removal of the MHC region.
The percentage of SNPs with p < 0.01 (red circles) is plotted for their distance to the closest gene. Values have been smoothed using a 50 kb
sliding window (blue line). The light blue area represents the distribution expected by chance (95% confidence intervals) based on 100,000
permutations of the case/control status. The MHC region was defined as chromosome 6, position 25,930,839 to 33,297,046. The purple triangle
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more genes with “suggestive” SNPs for the diseases and
levels of o where we observe an increase of association
signal. This suggests that the observed enrichment is
not driven by a few genes only. For T2D (a = 0.001)
and BD (a = 0.01) the number of genes with “sugges-
tive” SNPs does not reach statistical significance, but is
notably above the centre of the 95% confidence interval.
Diseases that show an enrichment of association signal
around the gene (CD, T1D, RA) also have substantially
larger number of genes with “suggestive” SNPs than the
diseases that do not show enrichment (T2D, CAD, HT,
BD) (Table 4).

Discussion

In this work we consider SNPs that show a “suggestive”
association (p-value < o with ae {0.1, 0.01, 0.001}) with a
disease. Using the genome annotation (NCBI Gene Build
downloaded in November 2009, NCBI assembly
GRCh37) we find these “suggestive” SNPs to be enriched
in genes and their vicinity. We observe a significant
enrichment of association signal in protein-coding exons
(T1D, CD, HT, BD), in genes (T1D, CD, BD, T2D) and in

regions up- and downstream of genes (T1D, CD). The
distribution of association signal varies between the dif-
ferent diseases, possibly due to different genetic architec-
tures of the analysed diseases. Yet, for all seven diseases
we found a consistently stronger association signal in
coding than in non-coding regions.

A major issue in our analysis and various related stu-
dies [11-20] is the presence of linkage disequilibrium
(LD) which makes it very difficult to allocate association
signal correctly. The causal variant might be located sev-
eral kilobases from a variant in LD, which substantially
complicates the identification of the causal gene. In our
analysis LD might in particular inflate the enrichment
for the immune related diseases RA and T1D, for which
most of the association signal is located in the MHC
region. We address this problem by taking into account
LD structure when deriving confidence intervals and by
removing the MHC region. While removing the MHC
region did not influence the enrichment results for most
of the diseases examined here we found profound effects
on the results for T1D and RA. The WTCCC study has
shown a substantial fraction of the variation associated
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Figure 3 Combined enrichment of association signal around
the gene for seven diseases genotyped by the WTCCC after
removal of the MHC region. The percentage of SNPs with p < o
(red circles) is plotted for their distance to the closest gene. Values
have been smoothed using a 50 kb sliding window (blue line). The
light blue area represents the distribution expected by chance (95%
confidence intervals) based on 100,000 permutations of the case/
control status. The MHC region was defined as chromosome 6,
position 25,930,839 to 33,297,046. The purple triangle represents the
proportion of SNPs with p < a in coding exons.

with RA and T1D are located within the MHC region;
thus ignoring this region in the enrichment analysis is
likely to result in an underestimate of the true enrich-
ment signal, while including the MHC region probably
leads to an inflated signal.

Because of the way we assign SNPs to genes, the total
number of SNPs per window is substantially higher
within genes and their vicinity (Table 3). This is
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reflected by the 95% confidence interval which becomes
wider with increasing distance from the central gene
window. As a result the statistical power to detect a sig-
nificant enrichment of association signal is higher closer
to the central gene window. However, if the observed
enrichment was only due to an increase in statistical
power around the gene window we would expect a simi-
lar percentage of SNPs with p < a for every window,
which would become significant around the gene due to
the smaller confidence interval. In contrast, for all dis-
eases that show enrichment we observe an increase of
association signal around the gene window rather than
just a decrease of the 95% confidence interval.

Our approach takes into account distance between
variants and genes, which ultimately allows us to detect
enrichment; however, effects of genomic features that
have a variable distance with respect to genes (e.g.
enhancers) will not be detected by our approach. In fact
the WTCCC could not associate a number of replicated
GWAS hits with any gene because they fall into
so-called gene deserts, with the closest gene being over
100 kb away [8]. Detection and interpretation of these
variants is likely to improve as the annotation of
sequence elements such as miRNAs, enhancers and
other regulatory features is increasingly available and
some are already included in the exome enrichment kits
offered by commercial suppliers. As long as annotation
of non-coding elements is still sparse, sequence conser-
vation might be a reasonable proxy for an analysis simi-
lar to the one presented here.

Our analysis of genetic association is limited by the
SNPs represented on the Affymetrix 500K GeneChip,
which provides exonic SNPs for ~14.5 % of all genes.
Other genotyping arrays might capture association signals
that are not detectable using this platform and as a conse-
quence the distribution of association signal might differ.

In addition to common variants, sequencing allows for
the detection of rare variants. Rare variants that show
association with a disease might be distributed differently
from the common variants analysed here. We repeated
our analysis for rare SNPs (minor allele frequency of less
than 0.05), but did not observe a bias towards genes or
exons. This is mainly due to the lack of statistical power,
because only 10% of the SNPs that pass Quality Control
are rare. Little is known about the role of rare variants in
genetic traits although candidate gene studies for com-
mon genetic traits have found rare alleles with strong
effect sizes in coding regions [21,22] and the majority of
known causal variants in mendelian disorders are non-
synonymous mutations or mutations in splice sites [2].

Conclusions
We found a consistently stronger association signal in
coding than in non-coding regions for all seven diseases
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Table 4 Total number of genes with SNPs (after QC) and number of genes with SNPs at p <

observed 95% confidence interval

Total p<0.1 p < 0.01 p < 0.001 p<0.1 p < 0.01 p < 0.001

(@b 16,381 6,941 1,306 222 6,712-7007 1192-1367 131-188

D 16,387 7,108 1,547 389 6,709-7004 1191-1366 131-188

T1D-MHC 16,206 6,945 1,400 254 6658-6952 1184-1358 130-187

Gene T2D 16,375 7,002 1,289 172 6702-6999 1189-1364 130-188
+ 100 kb RA 16,381 7,064 1,493 281 6708-7003 1190-1366 131-188
RA-MHC 16,203 6,933 1,400 203 6658-6952 1184-1359 130-187

HT 16,382 7,057 1,328 191 6707-7003 1191-1366 130-188

CAD 16,377 6,993 1,267 173 6704-7002 1191-1365 130-188

BD 16,377 7,019 1,352 187 6699-6995 1188-1363 130-188

cD 2,264 291 33 11 234-296 17-38 0-6

D 2,263 316 61 24 234-296 17-38 0-6

T1D-MHC 2,236 295 41 8 232-293 17-38 0-6

T2D 2,259 263 30 1 234-294 17-38 0-6

Exon RA 2,265 293 38 12 235-296 17-38 0-6
RA-MHC 2,238 278 28 4 232-293 17-38 0-6

HT 2,265 300 31 3 234-295 17-38 0-6

CAD 2,260 296 34 5 234-294 17-38 0-6

BD 2,258 281 46 2 233-294 17-38 0-6

Numbers are derived for all seven diseases and for T1D and RA after removal of the MHC region (T1D-MHC and RA-MHC). We consider SNPs that are located
within less then 100 kb of a gene and SNPs that are only located within an exon. We derived 95% confidence intervals for the number of genes with p < o

based on 100,000 permutations of the disease status.

analysed by the WTCCC. We also observed an enrich-
ment of association signal in the vicinity of genes which
varies between diseases. We therefore recommend that
sequencing efforts focus on the exome and, depending
on the disease, to extend the targeted sequence to
include other annotated elements, as well as regions up-
and downstream of genes. The latter can be very costly.
Whereas the entire exome only accounts for 2.3% of the
genome, including 40 kb flanking windows would mean
sequencing approximately 34% of the genome. Including
10 kb flanking window reduces the amount of sequence
to 14%; focusing on annotated regulatory elements
reduces it further. Until whole genome sequencing for
large cohorts becomes affordable sequencing “extended”
exomes seems to provide a sensible way to reduce costs
while maximizing the chances of detecting disease-asso-
ciated variants.

Methods

GWAS data quality control and association testing
GWAS of seven diseases have been reported by the
WTCCC [8]. Approximately 2,000 cases and 3,000
shared controls were genotyped for every disease on
the Affymetrix GeneChip 500K Mapping Array Set
(Table 1). Our analysis includes moderate associations
which are more susceptible to study biases. Moreover,
we wanted to make our results comparable to a related
study by Moskvina et al. [10]. We therefore re-analyzed
the WTCCC I data performing very conservative Quality

Control using PLINK v1.06 [23]. In addition to SNPs
and individuals in the exclusion lists provided with the
genotyping data, we applied more stringent quality con-
trol criteria. Based on the pooled case/control dataset
we excluded SNPs with Hardy-Weinberg equilibrium
p < 0.001, a minor allele frequency of less than 0.01 or
call-rates of less than 0.97. Association testing was per-
formed using an Armitage trend test (1df). We manually
checked the most strongly associated SNPs for every
disease to ensure consistency with the original WTCCC
I results. To take into account inflated test statistics
caused by population stratification we corrected y>
values using the genomic control metric A edian aS
described by Devlin and Roeder [24]. The estimated
Amedian (for simplicity denominated as L) range from
1.04 to 1.12 (Table 1) and are in good agreement with
the original values reported by the WTCCC. For every
disease, 100,000 permutations of the disease status were
performed using the PLINK max(T) permutation
method and association p-values were calculated.

Gene to SNP assignment

A tab-delimited text-file (seq_gene.md) containing geno-
mic coordinates for all genes was downloaded from the
NCBI ftp-server in November 2009 [25]. Only entries
for the human reference sequence (NCBI assembly
GRCh37) and protein-coding genes were retained.
Genes mapping to sex-chromosomes, the mitochondrial
chromosome, unassembled contigs or alternative
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haplotypes were discarded. SNPs on the GeneChip 500K
Mapping Array Set were assigned to the remaining
genes. Because this genotyping platform is based on the
previous assembly of the human genome (NCBI 36) all
SNP positions were converted to the latest assembly
using the “Lift-Over” tool on the GALAXY website [26].
SNPs were assigned to a gene if they are located within
the primary transcript of that gene. None of the SNPs
on the Affymetrix 500K GeneChip fell into a region
where the primary transcripts of two genes overlapped.
All other SNPs were assigned to their closest gene and
were then binned into 10 kb windows upstream and
downstream of the gene. Positions for coding exons
were obtained using GALAXY [26] and SNPs within
coding exons were labelled as such. In total we assigned
SNPs to approximately 17,000 genes. Table 2 sum-
marises the SNP to gene assignment. We performed our
analysis with and without the MHC region. Removal of
the MHC region (chromosome 6, position 25,930,839 to
position 33,297,046, NCBI assembly GRCh37) excluded
1,473 SNPs and 185 genes.

Enrichment Plots

We determined the extent of association signal in every
10 kb window upstream and downstream of a gene and
within genes. For each window and for coding exons we
calculated the ratio of the number of SNPs with an
association p-value below threshold a and the total
number of polymorphic SNPs within that window. The
same procedure was applied to the results of each of the
100,000 permuted data sets. Thus, we derived a 95%
confidence interval for the proportion of SNPs signifi-
cant at a p-value o when no association is present. To
highlight the overall trend, values were smoothed for
the observed data by averaging values over a 50 kb slid-
ing window. Where results are shown for the combined
datasets, the numbers of SNPs per window (observed
and permuted) are averaged over all seven diseases.

Additional material

Additional File 1: Enrichment Plots for all Diseases and Thresholds.
This file presents the enrichment plots for all seven diseases and
thresholds o with and without the MHC region (Figure S1 to S7). Figure
S8 and S9 show the combined enrichment of all seven diseases for all
thresholds o with and without the MHC region.

Additional File 2: Enrichment Tables for all Diseases and
Thresholds. This file presents the enrichment tables for all seven
diseases and thresholds a.. Enrichment tables after removal of the MHC
region are provided for RA, T1D and the combined enrichment of all
seven diseases.

Abbreviations
BD: Bipolar Disease; CAD: Coronary Artery Disease; CD: Crohn’s Disease;
GWAS: Genome-wide association study; HT: Hypertension; LD: Linkage

Page 8 of 9

Disequilibrium; MHC: Major Histocompatibility Complex; miRNA: micro RNA;
QC: Quality Control; RA: Rheumatoid Arthritis; RA-MHC: RA dataset without
the MHC region; SNP: Single Nucleotide Polymorphism; T1D: Type 1
Diabetes; TID-MHC: T1D dataset without the MHC region; T2D: Type 2
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