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Abstract

chips.

we observed.

Background: Many human diseases and phenotypes are related to RNA expression, levels of which are influenced
by a wide spectrum of genetic and exposure-related factors. In a large genome-wide study of muscle tissue
expression, we found that some genes exhibited a bimodal distribution of RNA expression, in contrast to what is
usually assumed in studies of a single healthy tissue. As bimodality has classically been considered a hallmark of
genetic control, we assessed the genome-wide prevalence, cause, and association of this phenomenon with
diabetes-related phenotypes in skeletal muscle tissue from 225 healthy Pima Indians using exon array expression

Results: Two independent batches of microarrays were used for bimodal assessment and comparison. Of the
17,881 genes analyzed, eight (GSTM1, HLA-DRB1, ERAP2, HLA-DRB5, MAOA, ACTN3, NR4A2, and THNSL2) were found
to have bimodal expression replicated in the separate batch groups, while 24 other genes had evidence of
bimodality in only one group. Some bimodally expressed genes had modest associations with pre-diabetic
phenotypes, of note ACTN3 with insulin resistance. Most of the other bimodal genes have been reported to be
involved with various other diseases and characteristics. Association of expression with cis genetic variation in a
subset of 149 individuals found all but one of the confirmed bimodal genes and nearly half of all potential ones to
be highly significant expression quantitative trait loci (eQTL). The rare prevalence of these bimodally expressed
genes found after controlling for batch effects was much lower than the prevalence reported in other studies.
Additional validation in data from separate muscle expression studies confirmed the low prevalence of bimodality

Conclusions: We conclude that the prevalence of bimodal gene expression is quite rare in healthy muscle tissue
(<0.2%), and is much lower than limited reports from other studies. The major cause of these clearly bimodal
expression patterns in homogeneous tissue appears to be cis-polymorphisms, indicating that such bimodal genes
are, for the most part, eQTL. The high frequency of disease associations reported with these genes gives hope that
this unique feature may identify or actually be an underlying factor responsible for disease development.

Background

RNA expression levels indicate the overall effect of a
combination of genetic and environmental factors [1,2],
which may result in distinct phenotypic differences,
including disease susceptibility [3-5]. Attempts to unra-
vel these genetic and environmental roles have met with
only limited success for some complex diseases [6]. The
emergence of new profiling technologies, including
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genome-wide expression arrays, has increased hope that
these factors can soon be disentangled.

Our current study measured RNA expression in the
largest genome-wide analysis of human skeletal muscle
tissue of which we are aware [7-17]. In process of analyz-
ing this data, we noticed that the expression levels for
some genes showed a distinct bimodal distribution. This
pattern was quite intriguing (a nearly ubiquitous assump-
tion with genome-wide expression arrays is that expres-
sion-level data are normally or log-normally distributed),
and led us to ascertain how often such patterns occurred,
and whether such were associated with diabetes-related
phenotypes. We also sought to determine the relative
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any medium, provided the original work is properly cited.


mailto:masonclint@niddk.nih.gov
http://creativecommons.org/licenses/by/2.0

Mason et al. BMC Genomics 2011, 12:98
http://www.biomedcentral.com/1471-2164/12/98

role that genetic factors had in the influence of these
bimodal patterns.

Limited reports of bimodal expression patterns in other
studies have also been made [18-20], particularly when
heterogeneous tissues are being contrasted [21-26] such
as between healthy and diseased tissue (and for which
bimodal expression levels would be expected for perhaps
many genes). However, in homogeneous tissue of appar-
ently healthy individuals, such bimodality may be surpris-
ing, and hints at unrecognized heterogeneity which may
involve precipitating factors of future disease develop-
ment. Previous reports of bimodality [18,21-23,27] have
suggested that 10-30% of transcripts show bimodal
expression, yet with an apparent lack of replication of
such findings [24]. As part of our analysis, we also
observed that batch effects could potentially cause the
artifactual detection of bimodality, inflating the preva-
lence estimate, but that after proper control, the preva-
lence of genuine bimodality in muscle tissue was in fact
quite rare.

While this discrepancy in the estimated prevalence of
bimodality is large and invites further investigation, the
ability to distinguish genuine bimodals can lead to the
more accurate evaluation of their biological role. Bimod-
ality is an important biological phenomenon as it implies
the existence of discrete populations (e.g., with and with-
out disease) or discrete genetic or environmental influ-
ences on a trait. As such, bimodality has historically been
sought in genetic research, yet few reproducible bimodal
patterns have ever been observed in this field. One
might, therefore, hope that genuine bimodally expressed
genes will have significant genetic importance. Hence, it
is most intriguing that many of the bimodal genes we
identify herein have reported associations with a variety
of human diseases and phenotypes. This elicits a multi-
tude of hypotheses regarding the role of bimodal expres-
sion and human characteristics, including disease
development. Our analysis also evaluates the role of
bimodality in one such disease - type 2 diabetes, by asses-
sing the association of the identified bimodal transcripts
with pre-diabetic phenotypes in this population of non-
diabetic Pima Indians who are at high risk for developing
diabetes in their lifetime.

Results

Prevalence of bimodal expression

The prevalence of bimodal expression was estimated
from skeletal muscle biopsies taken from 225 non-
diabetic, healthy Pima Indians. These tissue samples
were scanned on Affymetrix Human Exon 1.0 ST micro-
array chips which provide on average 49 expression level
measurements per gene. Subject characteristics are
shown in Table 1. To assess bimodality of RNA expres-
sion, we fit unimodal and bimodal distributions to the
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Table 1 Characteristics of 225 individuals with a baseline
muscle biopsy

Characteristic Mean Min Max N

Age (years) 296 181 497  225(152 M, 73 F)
Body Mass Index (kg/m?) 334 191 550 225(152 M, 73 F)
% Body Fat 318 94 473 223 (150 M, 73 F)
Logqo Mow (mg-kg 0435 0178 0952 182 (123 M, 59 F)
EMBS™” -min”)?

Acute Insulin 2889 899 8643 79 (59 M, 20 F)

Response (pU/mI)b

®EMBS = estimated metabolic body size.
Pin full heritage, normal glucose tolerant individuals with covariates.

gene-level expression data coming from each of the
17,881 core genes. We identified four clusters of chips
by scan date which exhibited batch-type effects, two of
which could be identified for lot numbers and fluidics
station sets used in processing (Additional file 1). These
batch effects were found to potentially cause spurious
detection of bimodality, and hence the analyses were
performed separately in two groups of identifiable chips
of size 71 and 47. The full set of size 225 was also
assessed for bimodality when such was observed in
either of these independent groups (see Figure 1).

The total number of bimodally expressed genes estimated
in each of the chip groups using different requirements
for genuine bimodality is shown in Table 2. This analysis
by group found only a small number of genes to be
bimodally expressed with little overlap between the two
components of the distribution, 19 in group A and 21 in
group B, comprising a total of 32 unique genes (Table 3).
Of these, 8 genes (GSTMI1, HLA-DRBI1, ERAP2, HLA-
DRBS5, MAOA, ACTN3, NR4A2, and THNSL2) were
found to meet the stringent bimodal criterion in group
A, group B, and the total study of 225 samples. Figure 2
shows the log, expression level distributions for each of
these confirmed bimodal genes. An additional 10 genes
identified as bimodal had significant association with
gender, of which 9 were located on the Y chromosome
(Additional file 2).

As bimodal expression may reflect either two distinct
levels of transcript abundance or a single transcript abun-
dance level with the lower mode reflecting no expression,
we compared the median levels of the lower mode of the
confirmed bimodal genes to the median expression levels
of all other genes (n = 17,783). The levels of the lower
mode were indicative of background (no gene expression)
for half of these confirmed bimodals - having median
expression levels at the 25™ or lower percentile of all
genes, while four of them (THNSL2, MAOA, GSTM1, and
ACTN3) appeared to have RNA expression at two distinct
abundance levels, each with lower modes corresponding
to levels near or above the median of the high mode of
ERAP2 (551 percentile).
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Figure 1 Identification of genes with bimodal expression. Muscle samples from 225 individuals were processed in groups that could be
identified for distinct batch effects influencing the expression levels. Bimodality was assessed in groups of microarrays that were homogeneous
for such bias. A variety of constraints were applied to ensure bimodal genes identified were genuine, including replication. Also illustrated is
how bimodality may be artifactually (incorrectly) inferred due to heterogeneity of batch effects on expression levels.
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Table 2 Number (prevalence) of bimodal genes as
determined by compounding model selection criteria in
the two different groups of microarrays

(17,881 genes analyzed)

Group A Group B
Criteria for Bimodal Assessment
p-val < 0.001% 430 (240%) 40 (0.224%)
+ misclassification area <0.1° 408 (2.28%) 36 (0.201%)
+ >10% points in each component® 33 (0.185%) 33 (0.185%)
+ gender p-val for heterogeneity >0.05% 19 (0.106%) 21 (0.117%)

Columns represent the two groups of microarrays from which the bimodal
genes were determined: Group A - 71 microarray chips all from the same lot,
time span, and fluidics station; Group B - 47 microarray chips from two
consecutive lots and from the same time span and fluidics station. The final
row represents the total number of interesting bimodal genes for muscle
expression in this population as estimated by the various chip groupings.

A total of 17,881 genes were analyzed for potential bimodality.

?p-value from a likelihood ratio test with 6 d.f.
Pcalculated as proportion of misclassified area to unity.

“points in each component tallied as number to the left and right of the two
components’ intersection.

9from assessment in Group A.

Many genes initially classified as bimodal in group A
had very few data points (often 1 or 2) lying to the left
or right of the intersection of the two component nor-
mal distributions. As discussed in Methods, genuine
bimodality should not reflect the potential influence of a
small number of outliers. For a robust reassessment of
bimodality, we deleted the lowest 5% and highest 5% of
expression values by chip group for each gene. Bimodal-
ity was again assessed in these trimmed data sets (n =
65 and n = 43), with similar bimodal prevalence esti-
mates found to the estimate which required a minimum
of 10% of data points to be in each component (Addi-
tional files 3 and 4). A combined Fisher analysis of these
trimmed data sets found the same set of 8 confirmed
bimodals plus an additional 6 genes (HLA-C, SLC44AS,
NR4A3, HSPC157, ABCC6, and C190rf62) to have a
false discovery rate (FDR) < 0.05. The p-values for
bimodality of all 17,881 genes in both independent
batch groups are plotted in Figure 3.

Diabetes related phenotypes and mode of expression

We assessed the association of the mode of expression
with pre-diabetic traits (body mass index/percent body
fat, insulin resistance, and insulin secretion), in the eight
confirmed bimodal genes (Table 4). We found insulin
sensitivity as measured by a hyperinsulinemic, euglyce-
mic clamp to be higher in those in the low mode of
ACTNS3 expression (p = 0.0076) and percent body fat to
be higher in those in the high mode of MAOA expres-
sion (p = 0.018). Body mass index and acute insulin
response to an intravenous glucose tolerance test were
not found to be associated with any of the bimodal
genes in this analysis.
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Association of bimodal expression and cis determinants
To investigate the potential cause of such bimodal
expression, a subset of 149 individuals who were also
genotyped (Affymetrix Genome-wide Human SNP Array
6.0) were analyzed for association with muscle expres-
sion levels. Cis-acting SNPs (defined as lying within a
200 kb region to either side of the gene location) were
sought in this population. Nearly all of the confirmed
bimodally expressed genes and half of the entire bimo-
dal set had highly significant (unadjusted p < 10°®) asso-
ciations between muscle tissue expression and SNP
genotype (Table 5 and Additional file 5), and were
hence expression quantitative trait loci (eQTL). Using
the intersection of the two underlying normal distribu-
tions as the threshold for assigning individuals to either
component of the bimodal distribution, the coefficient
of agreement between expression component and SNP
genotype was high (x > 0.80) for the majority of the
confirmed bimodal genes (Table 5). Still, some genes
had little or less than expected agreement for the den-
sity of coverage of the SNP chip. For example, NR4A2
had no agreement at all (x = 0.0). We further investi-
gated this gene for any trans-determinant cause across
the entire genome, but no SNP approached a genome
wide significance level. We also noted that while
GSTM1 had the clearest separation of expression
modes, it had the lowest kappa coefficient of the seven
cis-associated bimodals, possibly indicating influences
other than nearby SNPs on the expression levels, such
as environmental exposure or more complex genetic
models.

Prevalence of copy number variation in bimodal genes
As polymorphic deletions may greatly affect expression
levels, we sought to determine the frequency with
which such copy number variation (CNV) may be
responsible for producing the bimodal expression pat-
terns. The genes listed in Table 3 were assessed from
the UCSC Genome Browser for structural variation
(gain, loss, or both) that involved segments of DNA
larger than 1 kb. Of the 8 confirmed bimodally
expressed genes, copy number variation is known to
be present in 3, while 18 of the total 32 possible bimo-
dal genes have currently identified copy number varia-
tion. As a comparison, we also assessed a random
sample of 32 genes with normally distributed gene
expression, and found the same number of genes -
eighteen, with reported CNV in this database, indicat-
ing no difference in the prevalence of CNV in bimodal
as compared to unimodally expressed genes. Hence
while CNV may well cause bimodal expression for
some genes (most notably GSTMI), for the majority of
confirmed bimodals, known CNYV is likely not the
explanation for such a distribution.
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Table 3 Summary of 32 genes (not associated with gender) which met group criteria for bimodality

Transcript number  Chromosome  Gene symbol Group A Group B All chips p-value Meets
p-value p-value p-value Gender bimodal
Bimodality Bimodality Bimodality criterion in
N =71 N = 47 N = 225 chip group(s)
2350981 1 GSTM1 7.28E-19 4.79E-20 3.53E-72 0.808 A,BAIl
4048265 6 HLA-DRB1 6.18E-16 5.61E-08 5.43E-44 0.822 ABAI
2821347 5 ERAP2 9.33E-14 6.06E-06 1.87E-34 0.943 ABAI
4048241 6 HLA-DRB5 4.87E-09 1.00E-08 1.41E-28 0.907 ABAI
3975227 X MAOA 2.83E-07 2.55E-05 1.42E-23 0.537 ABAI
3336324 11 ACTN3 1.04E-06 7.09E-04 6.77E-20 0.275 ABAI
3618333 15 MEIS2 1.16E-06 1.35E-14 0995 AAIl
3103494 8 TMEM70 1.76E-06 0382 A
2418570 1 SLC44A5 3.97E-06 4.17E-19 0954 AAIl
2582124 2 NR4A2 1.09E-04 3.20E-04 6.00E-10 0.171 ABAI
3822074 19 RAD23A 2.26E-04 0.137 A
3682182 16 ABCC6 2.36E-04 1.86E-04 0953 AAIl
3590275 15 CHACT 442E-04 0724 A
3680953 16 FLITTIST 5.34E-04 9.34E-08 0.594 AAIl
3393257 11 BACET 5.67E-04 0.547 A
2492783 2 THNSL2 6.03E-04 4.74E-04 5.27E-10 0.372 ABAI
3963990 22 PKDREJ 8.75E-04 0403 A
3404660 12 KLRD1 8.85E-04 0417 A
3737274 17 KIAAT618 9.33E-04 0.106 A
3824153 19 C19orf62 2.39E-06 0367 B
3471427 12 MYL2 5.88E-06 0.144 B
3867223 19 RPL18 2.80E-05 0841 B
2948887 6 HLA-C 5.15E-05 9.33E-04 0929 BAll
3146433 8 COX6C 1.52E-04 1.90E-16 0.103 BAll
3402697 12 COPS7A 1.53E-04 0773 B
3845782 19 PLEKHJT 1.69E-04 0090 B
2324616 1 HSPC157 1.87E-04 1.63E-05 0.062 BAll
2431031 1 HMGCS2 2.32E-04 3.59E-04 0.202 BAll
3373392 11 OR8H1 4.63E-04 0581 B
2344888 1 CYR61 5.60E-04 0611 B
3851055 19 ELOFT 5.98E-04 0699 B
2383726 1 ARF1 945E-04 0.078 B

P-value for bimodality is shown for each group of microarray chips when all criteria for bimodality were met. Blank cells indicate that at least one bimodal
criterion for the given gene and group was not met. Genes identified as bimodal in all groups are shown in bold.

Validation in other populations

We further assessed bimodal RNA expression in two pub-
lically available data sets containing expression data from
healthy muscle biopsies (GSE13070 [14]; n = 59 and
GSE5086 [15]; n = 62). We found the prevalence of bimo-
dal RNA expression in these populations to be 0.72% and
1.4% respectively. These estimates were similar to the pre-
valence we observed, providing further validation that
bimodal RNA expression in healthy muscle tissue is a rare
event. We also re-assessed bimodal RNA expression in
healthy lymphoblastoid cells (GSE1485 [28]; n = 193)

which had previously been estimated to have high bimodal
prevalence [18]. We found the prevalence of bimodality in
the restricted genes of that analysis to be only 2.9% by our
criteria, the difference largely reflecting a previously used
statistical threshold which is associated with a much
higher false discovery rate than that used in other bimodal
expression studies. Of great interest, we found that many
of the bimodal genes of our analysis were also highly sig-
nificant for bimodality in these other three populations
(Table 6). These additional validations are most compel-
ling as clear bimodality was also rare in these other
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Figure 2 Histograms of the eight confirmed bimodal genes. Shown is the distribution of RNA expression values for the entire data set of
n = 225. The 8 genes shown above correspond to: glutathione S-transferase mu 1 (GSTMT), major histocompatibility complex, class Il, DR beta
1 (HLA-DRBT), endoplasmic reticulum aminopeptidase 2 (ERAP2), major histocompatibility complex, class Il, DR beta 5 (HLA-DRB5), monoamine
oxidase A (MAOA), actinin, alpha 3 (ACTN3), nuclear receptor subfamily 4, group A, member 2 (NR4A2), and threonine synthase-like 2 (THNSL2).
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Figure 3 Two-way Manhattan plot of significance for bimodality in both of the independent groups. Shown are the -log;, p-values for
bimodality for each of the 17,881 genes from trimmed Group A (blue circles, n = 65) and from trimmed Group B (red circles, n = 43). Genes
with a combined Fisher's FDR < 0.05 are labeled (see Additional files 3 and 4).

populations, with p < 107® of chance concordance of the
bimodal gene sets in each of these populations with the
Pima bimodals (Additional file 6). We also note that while
the most clearly bimodal gene replicating in our analysis
(GSTM1) did not show strict bimodality in these other
populations, related genes were highly bimodal in these
other data sets (e.g. GSTM2 in GSE1485 and GSTT1I in
GSE5086, data not shown).

Discussion

Our detection of bimodal gene expression in skeletal
muscle tissue reveals an apparently rare (<0.2%), yet
potentially new predictor of human disease and pheno-
types. Of the eight confirmed bimodal genes, we found
that seven were expression quantitative trait loci, as
they were strongly to completely associated with possi-
bly causal SNPs occurring within a 200-kb cis region

Table 4 Differences (p-value) in diabetes related traits in the 8 confirmed bimodal genes for those in the high

compared with those in the low RNA expression mode

Gene A BMIP A %fat® A 10g10(Miow)® A AIR®

GSTM1 0408 (p = 067) 088 (p = 0.28) 0015 (p = 046) -1.73 (p = 0.96)
HLA-DRB1 204 (p = 009) 115 (p = 0.32) -0.0033 (p = 0.89) 316 (p = 049)
ERAP2 0122 (p = 09) 0472 (p = 058) -0.0033 (p = 0.86) 544 (p = 0.11)
HLA-DRB5 219 (p = 0072) 122 (p = 0.29) -0.0095 (p = 0.69) 316 (p = 049)
MAOA 0949 (p = 029) 1.78 (p = 0.018) -0.0001 (p = 1.0) 441 (p = 0.17)
ACTN3 071 (p = 046) 0284 (p = 0.72) -0.050 (p = 0.0076) 535 (p = 0.14)
NR4A2 0576 (p = 0.57) -0.836 (p = 0.36) -0.010 (p = 0.63) 2,05 (p = 0.96)
THNSL2 0695 (p = 047) 0671 (p = 048) 00062 (p = 081) 223 (p = 097)

The number of individuals measured for each phenotype varied (n).

®adjusted for age, gender, sibship, and heritage; BMI = body mass index (n = 225), %fat = percent body fat (n = 223).

Padjusted for age, gender, sibship, heritage, and % body fat; M, = insulin sensitivity (n = 182).
“adjusted for age, gender, sibship, heritage, % body fat, and Me; AIR = acute insulin response (n = 79 normal glucose tolerant individuals with full heritage and

covariates).
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Table 5 Associations of 32 bimodal genes with cis-determining SNPs and reported CNV

Bimodality Gene SNP association Kappa # of SNPs Reported CNV®
confirmed symbol with expression coeff. within 200 KB
in all p-val®
data sets

Yes GSTM1 1.20E-11 0.65 36 Yes

Yes HLA-DRB1 <1E-16 0.83 119 Yes

Yes ERAP2 <1E-16 0.85 94 No

Yes HLA-DRB5 2.12E-14 0.86 104 Yes

Yes MAOA <1E-16 0.80 69 No

Yes ACTN3 <1E-16 0.90 9 No

MEIS2 0.04 017 86 No

TMEM70 <1E-16 0.39 76 No

SLC44A5 <1E-16 0.74 112 Yes

Yes NR4A2 0.26 0.00 36 No

RADZ23A 0.22 0.09 13 No

ABCC6 2.88E-10 0.36 59 Yes

CHACT 0.035 012 12 No

FLJ11151 8.62E-7 043 181 No

BACET 0.0037 017 79 No

Yes THNSL2 <1E-16 0.95 74 No

PKDREJ 0.023 0.02 24 Yes

KLRD1 0.084 0.01 61 No

KIAAT618 0.088 0.09 63 Yes

C19orf62 0.022 0.01 41 Yes

MYL2 0.061 0.00 52 No

RPL18 0.17 0.10 19 Yes

HLA-C <1E-16 0.51 153 Yes

COX6C 0.000097 0.15 36 No

COPS7A 0.048 0.04 47 No

PLEKHJT 0.048 0.14 22 Yes

HSPC157 <1E-16 0.84 64 Yes

HMGCS2 0.0026 025 76 Yes

OR8H1 0.049 023 49 No

CYR61 0.012 0.1 100 No

ELOF1 0.019 0.04 32 No

ARF1 0.065 0.12 55 Yes

“Highest SNP association shown. All other significant SNPs are listed in Additional file 5. Apparent cis-acting eQTL are identified in bold.

PCopy number variation (CNV) as identified in the UCSC Genome Browser.

of the gene. This finding suggests that the majority of
bimodal genes which may be found in healthy human
tissue may be the result of polymorphisms within such
gene regulatory regions. In the remaining potential
bimodal genes, highly significant SNP associations
were less common (possibly reflecting misclassification
of bimodal genes), though still more frequent than
occurs genome-wide. Hence in healthy individuals,
eQTL are prime (yet not exclusive) locations for find-
ing bimodally expressed genes. We also found that
known copy number variation - while a potential

explanation for some bimodal expression, was not
found in higher abundance than across the genome,
and is hence likely not the main source of such
distributions.

The current study also assessed the relationship of
RNA expression mode with known predictors of diabetes.
We observed a likely association of insulin sensitivity
with mode of ACTN3 expression, with 42.2% of the indi-
viduals falling in the higher expressed mode which was
associated with insulin resistance. While not meeting
strict correction for multiple testing, this gene has
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Table 6 Further validation of genes having bimodal expression (FDR < 0.05) in Pima Indians with bimodal expression

of those genes in other populations

Gene symbol Chr. Pima GSE1485 GSE13070 GSE5086 GSE1485 GSE13070 GSE5086

Bimodalit! Bimodalitz Bimodalit): Bimodalit)d/ ID ID ID

p-value p-value p-value p-value
Genes with no Association of Expression and Gender
GSTM1 1 3.54E-44 0.042 0532 0405 204550_x_at 215333 _x_at 215333_x_at
ERAP2 5 8.76E-18 2.19E-26 0.038 0.00768 219759_at 227462 _at 227462 _at
HLA-DRB1 6 833E-15 1.74E-13 0.859 0.515 204670_x_at 208306_x_at 208306_x_at
ACTN3 11 341E-10 - 3.34E-06 9.09E-08 206891 _at 206891_at
MAOA X 397E-10 - 9.55E-06 5.48E-04 204388_s_at 204389_at
HLA-DRB5 6 1.20E-09 - - -
NR4A2 2 3.21E-08 - 1.37E-04 0468 216248_s_at 204622_x_at
HLA-C 6 2.02E-07 1.84E-07 0471 0.607 216526_x_at 216526_x_at 216526_x_at
SLC44A5 1 1.76E-06 - 0.324 0.043 235763_at 235763_at
NR4A3 9 6.63E-06 - 0.690 0.347 207978_s_at 207978_s_at
HSPC157 1 1.13E-05 - 0.987 0.204 219865_at 219865_at
THNSL2 2 1.42E-05 - 0.022 0.315 219044 _at 239949_at
ABCC6 16 3.73E-05 - 0.721 0.045 208480_s_at 208480_s_at
C19orf62 19 5.60E-05 - 0.230 0.094 221711_s_at 221711_s_at
Genes with Association of Expression and Gender

DDX3Y Y 7.86E-54 4.27E-86 1.31E-16 2.30E-18 205000_at 205000_at 205000_at
EIFT1AY Y 391649 1.36E-75 1.02E-28 2.87E-23 204409_s_at 204409_s_at 204409_s_at
RPS4Y1 Y 7.50E-45 1.20E-138 1.22E-34 7.20E-42 201909_at 201909_at 201909_at
ury Y 1.15E-42 8.33E-05 0.00269 1.39E-14 211149_at 211149_at 211149_at
UspoYy Y 1.46E-32 1.68E-22 2.81E-09 5.08E-16 206624 _at 228492 _at 228492_at
ZFY Y 6.01E-22 - 3.86E-04 1.89E-12 230760_at 230760_at
CYorf15B Y 9.51E-21 - 0.0324 0.00508 214131_at 223646_s_at
ACTB 7 1.94E-14 - 0.111 3.75E-04 AFFX-HSAC07/X0  AFFX-HSACO07/X0
TTTY10 Y 1A48E-11 - 0.194 0.798 224293_at 224293_at
CD24 Y 9.99E-08 0.998 1.18E-04 0.0101 208650_s_at 216379_x_at 266_s_at
ARG2 14 1.23E-06 - 1.45E-04 0.910 203946_s_at 203945_at
TPRG1 3 2.10E-06 - 0.0353 0.961 229764 _at 229764 _at

“Present study in skeletal muscle tissue of non-diabetic Pima Indians. P-value from Fisher’s meta-analysis of trimmed Group A (n = 65) and trimmed Group B
(n = 43) for bimodality of RNA expression; shown are all genes having an FDR < 0.05. See additional files 3 and 4.

PBimodality of RNA expression assessed in lymphoblastoid cells from CEPH Utah residents (n = 193). Not all genes were represented on the chip or had excessive
intra-individual variation (-). ID shown is affy_id. P-values < 0.001 from a likelihood ratio test with 6 d.f. shown in bold. GSE1485 expression data provided to GEO
as part of unrelated study [28].

“Bimodality of RNA expression assessed in abdominal muscle from patients undergoing gastrointestinal surgery (n = 59). Not all genes were represented on the

chip (-). ID shown is affy_id. P-values < 0.001 from a likelihood ratio test with 6 d.f. shown in bold. GSE13070 expression data provided to GEO as part of

unrelated study [14].

9Bimodality of RNA expression assessed in skeletal muscle from subjects with a broad range of insulin sensitivity/resistance (n = 62). Not all genes were
represented on the chip (-), ID shown is affy_id. P-values < 0.001 from a likelihood ratio test with 6 d.f. shown in bold. GSE5086 expression data provided to GEO

as part of unrelated study [15].

previously been associated with slow- and fast-twitch
muscle fiber, with correlation to athletic performance
[29]. The bimodal expression of ACTN3 could reflect a
bimodal distribution in the proportion of type 2 fibers
present in the subjects, though we are not able to assess
this directly. As insulin resistance is a known predictor of
diabetes [30], the role of ACTN3 expression deserves
further investigation.

Many of the other bimodal genes identified have pre-
viously been reported to be associated with other diseases
and characteristics ranging from cancer to arthritis
[31-39], some of these also reporting marked dichotomies
in expression levels [38,39]. Perhaps the most intriguing
disease-related bimodal genes are the HLA loci, as the
HLA system is known not only to convey risk for a vari-
ety of immune-related diseases, but contains the main
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genetic risk factors for type 1 diabetes [32]. That three of
the HLA genes (DRBI, DRBS, and C) were found to have
bimodal distributions - as well as ERAP2 which plays a
final role in producing HLA peptides [34], is of great
interest, and we are currently further investigating the
role of these genes in relation to diabetes and various
metabolic phenotypes in the Pima population.

The prevalence of bimodal gene expression we have
observed in a healthy single tissue is approximately 100-
times lower than what has been reported in mixed-tis-
sue studies [21,22]. Since these studies assessed distinct
expression differences across heterogeneous tissues, a
larger number of bimodally expressed genes would be
expected. Our consistently low estimate gives confidence
that at least in healthy muscle tissue, unambiguous
bimodal expression is not common - providing a new
reference prevalence for bimodality in healthy tissue to
which studies of bimodality in diseased and mixed tis-
sues may be compared.

Our estimate also differs greatly from the only other
prevalence reported for bimodal expression in a popula-
tion comprised solely of healthy persons - 28% in lym-
phoblastoid cells [18,28]. As the threshold for assessing
bimodality in that study was much more liberal, we
re-analyzed the data from this population and found
only 2.9% of genes of the limited gene set previously
analyzed to show bimodality consistent with the thresh-
olds used in our analysis (see Methods). We also
assessed two other publically available data sets contain-
ing muscle biopsies, finding estimates of clear bimodal-
ity in these populations to be 0.72% and 1.4%, and again
with <0.2% prevalence with replication of bimodality
across these two data sets (data not shown). These vali-
dation sets used chips which had on average 1 or 2
probes per gene, whereas our present study is the first
to assess bimodality in expression data from exon arrays
which contained on average 49 probes per gene. Hence,
the bimodality we observed represents a strong repli-
cated signal which could be missed by a single probe,
yet could also miss uniquely bimodal probes when aver-
aged at the gene level. The additional validation of our
confirmed bimodal genes in these other populations
with low bimodal prevalence (Table 6) provides even
more convincing evidence of their authenticity.

We highlight two technical issues for future studies to
be aware of: use of a model that allows for unequal var-
iances in the bimodal distribution and the determining
of batch effects. We observed that a model that allows
for unequal variances was clearly more appropriate than
a constant variance model for approximately 20% of the
genuine bimodal genes identified in our data, and hence
the failure to allow for such as well as differences in
data scaling may contribute to some variability in preva-
lence estimates. Even more important is the potential of
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batch effects to cause artifactual bimodal expression.
Such confounding can occur when any set of experi-
mental factors is not uniform - causing the expression
levels to be uniformly over- or under-estimated for a
given transcript for a portion of the samples. We noted
that these batch effects were associated more frequently
with genes of higher transcript abundance levels. We
also identified that chips which had distinct lot number
differences and which had been processed on distinctly
different fluidics station sets gave rise to such artifactual
bimodality, though it was not possible to determine
which of these factors had a more primary role in this
study. However, because this grouped source of hetero-
geneity was identified for most arrays, bimodality could
be analyzed in homogeneous groups, eliminating not
only the unwanted bias, but also providing distinct repli-
cation sets in which tests for bimodality could be
confirmed.

Conclusions

In conclusion, the prevalence of bimodal RNA expres-
sion in homogeneous tissue is quite low, and hence has
been unrecognized in most expression analyses. The few
prior genome-wide studies which have reported bimod-
ality may have over-estimated its prevalence, possibly
due to the presence of batch effects and/or overly leni-
ent statistical thresholds. Differences in cell type, micro-
arrays, and populations may also be responsible for
some of the large difference in estimated prevalence. An
additional novel insight from this analysis is that the
majority of genes with bimodal RNA expression appar-
ently exhibited this pattern due to cis-polymorphisms,
being expression quantitative trait loci. Future investiga-
tions of bimodality in homogeneous tissues from healthy
persons will be of great interest in assessing similarities
and differences across other tissues and populations, as
well as their association with other human characteris-
tics and diseases. In the Pimas, the association of a
bimodal gene with insulin resistance and the presence
of bimodality in genes from the HLA locus which car-
ries the greatest risk for type 1 diabetes underscore the
need to further investigate and understand this interest-
ing phenomenon.

Methods

Subjects

All subjects were part of our study of the etiology of
type 2 diabetes among Pima Indians living in Arizona.
Volunteers providing muscle biopsies were non-diabetic,
healthy, and were not taking any medications. Subjects
were assessed for diabetes-free status via a fasting blood
draw as well as a 75 gram 2 hour oral glucose tolerance
test (OGTT) to confirm that the subject was indeed
non-diabetic (fasting glucose <126 mg/dl and 2 hour
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glucose <200 mg/dl). All subjects provided informed
consent (which places some restrictions on access to
data and intended research purposes) and all studies
were approved by both the institutional review board of
the National Institute of Diabetes and Digestive and
Kidney Diseases and the council of the Gila River Indian
Community.

Tissue Samples

Most muscle biopsies were performed within one week’s
time of the diabetes assessment (all biopsies were per-
formed within 30 days). After a 12 hour overnight fast
and monitored physical inactivity, percutaneous needle
biopsies were carried out on the vastus lateralis muscle
under local anesthesia with 1% lidocaine. The biopsy
specimens were snap frozen and stored at -20 to -70°C.
Variation in storage time ranged up to 16 years, how-
ever no effect of the amount of time frozen on RNA
quality was found.

RNA Isolation

Muscle tissue samples were homogenized using a PT
1300D (Brinkmann, Westbury, NY, USA) homogenizer
with 12 mm rotor/stator head in 2.0 ml of cold TRIzol
reagent (Invitrogen/Life Technologies, Carlsbad, CA,
USA). The samples were then heated to 65°C and 0.4
ml chloroform (Sigma, St. Louis, MO, USA) was added.
5 pL of 4 ng/pL Carrier RNA was added to each sample
to aid precipitation with ETOH and further purified
using RNeasy Micro Kit (Qiagen, Valencia, CA, USA).
1 pg Total RNA Labeling Protocol starts with a riboso-
mal RNA (rRNA) reduction procedure where the 28S
and 18S rRNA portion is significantly reduced from the
total RNA sample minimizing the background and
increasing the array detection sensitivity and specificity.
All RNA was isolated by a single technician.

Expression Measurements

The rRNA was prepared and the cDNA synthesized for
the Human Exon 1.0 ST Array microarray chips (Affy-
metrix, Santa Clara, CA, USA) using the GeneChip
Whole Transcript Sense Target Labeling Assay Kkits
(Affymetrix). Chip washing and staining was performed
in two distinct sets of fluidics stations (GeneChip Flui-
dics Station 450, Affymetrix) and scanned on as many
as five different scanners (GeneChip Scanner 3000 7G,
Affymetrix). Two technicians performed the scanning
measurements in discrete sets of dates.

Quality control metrics and technician insight were used
to determine the need for re-scans. When re-scanning did
not resolve the problem, such chips were discarded and
c¢DNA hybridization mix placed on completely new chips
(this occurred in 9.8% of the samples). A total of 225 base-
line samples which passed such quality control metrics
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resulted in expression results available for analysis. Only
transcript clusters identified as “core” (genes which have
been identified with a high level of confidence) were ana-
lyzed, comprising a total of 17,881 genes.

Normalization Techniques

To account for varying intensity levels and other varia-
bility between different scans, we normalized the 225
chips using the Robust Multichip Average method with
quantile normalization of the log, intensities with prior
GC correction (GC-RMA [40,41]), using the mean of all
probes associated with the given gene. Visual inspection
of chip intensities found some chips with limited smears
or mars (a common occurrence in such experiments),
however, the bimodal methods employed are likely to be
robust to such occasional random technical events, and
hence no chips or regions of chips were excluded.

Batch Effect

In analyzing the 225 muscle files, we discovered a batch
effect which was associated with distinctly different
expression values by clusters of sample processing dates
for some genes (Additional file 1). Investigating this
batch effect, we determined that the final two clusters
consisted of microarrays with distinctly different chip lot
numbers and which had been processed on different
fluidics stations. Initially (i.e. before discovering that a
batch effect was present), use of all available chips led
to the false detection of many bimodal genes - as com-
bined expression values of normally distributed genes
from different batches produced an apparent overall
bimodal distribution. Hence, we conducted our analyses
on the expression data from each batch separately - pro-
viding not only an independent confirmation set, but
also an analysis free from this bias. While common lin-
ear adjustments may remove batch effects for normally
distributed data, due to natural unequal proportions of
data lying in each component of bimodal data, similar
adjustments could result in bimodal data from two
batches having 4 modes. Hence, we restrained our ana-
lysis to unadjusted data in separate batches.

The remaining 107 microarray chips could not be
identified for lot number or for the fluidics station set
they were processed on. Hence, we did not explore
bimodality in this data separately, but constrained our
initial analysis to the two identifiable clusters that had
also been processed by a single technician (a cluster of
47 chips - group A, and another cluster of 71 chips -
group B). While differences between clusters were
observed for some genes, other genes appeared to be
free from this batch effect. For these unaffected genes,
power to detect associations with true bimodality would
be greater in the total data set (225 chips) due to
increased sample size. Hence, we first confirmed



Mason et al. BMC Genomics 2011, 12:98
http://www.biomedcentral.com/1471-2164/12/98

bimodality in the separate clusters before using the
entire data set for further confirmation and association
analyses.

Unimodal and Bimodal Distribution Fitting

For each gene, we had 47, 71, or 225 data points cor-
responding to the expression levels coming from each
participant in the two batch groups or in the entire
study. To avoid skewness with a unimodal distribution
resulting in an artifactual inference of bimodality, the
log, expression data for each gene were transformed
by the Box-Cox method to reduce skewness [42]. The
Box-Cox parameter was systematically varied in incre-
ments of 0.01 over the range of -4 to 4 to select the
most appropriate value for each gene. Subsequently,
maximum likelihood methods were used to estimate
the parameters of a unimodal Gaussian distribution
and of a bimodal Gaussian distribution (allowing for
unequal variances of the two modes) that were most
consistent with the transformed data. The unimodal
density distribution is described by two parameters,
the mean (p) and standard deviation (o), while the
bimodal involves the means and standard deviations in
each component (y;, 61, {3, 62) and the proportion of
area in one of the components (e.g., p;). Such methods
for model fitting have been used previously [43,44]. A
potential difficulty with maximum likelihood techni-
ques is that it is difficult to be certain that the model
has converged at the global, rather than a local, maxi-
mum of the likelihood. To ensure such convergence,
parameters were estimated using a novel automatic
parameter estimation technique. Essentially this
method calculates the likelihood at various plausible
values of the parameters chosen systematically
(200,000 estimations per gene for the present study);
the optimal values are then taken as initial estimates
for a final maximum likelihood estimation using the
Newton-Raphson algorithm. The result of this method
was to greatly increase the likelihood of converging to
the global maximum, with a coinciding increase in
computational time that was not prohibitively long for
the bimodal model (time was less than 1 minute per
gene).

Model Selection

There is no unequivocal selection test for bimodal ver-
sus unimodal distributions, despite the fact that the
models are nested [22,24,45]. Hence, a number of differ-
ent criterion have been proposed, which we adopted.
These include using a p-value threshold of 0.001 from a
chi-square distribution with six degrees of freedom (as
opposed to three in order to provide a more stringent
cutoff) on the minus 2 log likelihood difference from
the models, as well as a simultaneous requirement of
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misclassification area <0.1 based on the best estimated
bimodal distribution [21,22,45]. This area is calculated
as the minimum area under either curve to the right or
left of the intersection of the two separate modes. The
number of intersections can be 0, 1, or 2. When 0, the
mean values were used as the dichotomous intersection
estimates. When multiple, both intersections were used,
with the intersection providing the minimal misclassifi-
cation selected.

Additionally, we introduced a new requirement that
the minimum number of data points to the left and
right of the selected intersection point be at least 10%.
This prevented bimodal model selection when a single
or small number of outliers would otherwise have
caused bimodal selection. Such a requirement is neces-
sary to eliminate potentially large numbers of bimodal
misclassifications for genes in which the best fit distri-
bution’s misclassification area is not significant, yet the
bimodal fit is clearly the result of a single or small num-
ber of outlier points. As a consequence, this additional
criterion will permit only the detection of bimodal genes
that are dichotomously expressed in a non-trivial per-
centage of individuals, yet with greater confidence that
these genes are not mis-assessed due simply to outlier
points.

We confirmed the need for such a strategy in a sepa-
rate analysis in which the lowest 5% and highest 5% of
expression values were dropped. Such a strategy would
prevent misclassification of bimodality due to a small
number of outliers, though it would reduce the power
to detect such in clean data. We noted this method to
give very similar end-result prevalence estimates.

As some genes are expressed differently by gender, we
fit a separate linear model on GC-RMA normalized
expression levels to assess this association, using the
resulting two-sided p-value as an additional tool to
determine which genes exhibit bimodal expression due
to different expression levels in men and women. If this
p-value was > 0.05, it was assumed that the bimodality
was not due to gender.

SNP Associations

A total of 149 individuals with expression data were also
genotyped with Affymetrix Genome-wide Human SNP
Array 6.0 chips. Potential cis-acting SNPs (expression
quantitative trait loci, [46]) were identified as falling
within 200 kb regions upstream or downstream of the
start and stop locations of each bimodal transcript.
A linear model was used to assess the association with
adjustment for age, gender, and heritage with sibship
included as a random effect to account for relations.
A total of 1,221,921 SNP-expression associations were
tested, from which a conservative Bonferroni estimate of
significance would be 4.09 x 10°®. Expression levels were
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rank transformed with subsequent back-transformation
to a normal distribution prior to fitting the linear
models.

Physiological Measurements

Assessment of pre-diabetic traits was made as part of
the research protocol corresponding to the investigation
nearest to the muscle biopsy, usually performed on the
same day, and never greater than 30 days from the
biopsy date. Insulin action in vivo was assessed using
the hyperinsulinemic, euglycemic clamp as described in
[30]. Acute insulin secretion was assessed during an
intravenous glucose tolerance test with analysis
restricted to those with normal glucose tolerance
(OGTT <140 mg/dl) and who were full heritage Pima
[47]. Percent body fat was performed via underwater
weighing and total body dual energy X-ray absorptiome-
try [48].

Additional Validation

We assessed bimodality in three additional data sets
accessed from the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/). We re-analyzed
bimodality in the expression of lymphoblastoid cells
from 193 CEPH Utah residents (GSE1485, [18,28]) and
analyzed for the first time bimodality in 59 normal
abdomen muscle biopsies obtained during gastrointest-
inal surgeries (GSE13070, [14]) and 62 skeletal muscle
biopsies in a population with broad range of insulin sen-
sitivity/resistance (GSE5086, [15]). The expression data
files analyzed came from individuals prior to treatment
when such occurred in the study designs and for which
data were available. Criteria for bimodality were synon-
ymous with those of the present study. When multiple
probes for a gene were present in these data sets, the
probe giving the best evidence of bimodality was used.
Only 3,554 genes from GSE1485 which had less intra-
individual variation (assessed from replicates) than inter-
individual variation were analyzed, as was previously
done [18,28]. This would infer that our re-computed
prevalence of 2.9% bimodality in this gene subset over-
estimates the total genome-wide prevalence of bimodal
expression in that data. A total of 41,789 probes were
analyzed in the GSE13070 and GSE5086 data sets. Prob-
ability of concordance of bimodal genes between the
data sets was assessed via Fisher’s exact test [49].

Additional Analyses

Fisher’s method was used to combine p-values from
independent chip groups. False Discovery Rates [50]
were assessed in the 12,470 genes that were not asso-
ciated with gender (p > 0.05) and separately in the 5,411
genes that were associated with gender (p < 0.05). All
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other p-values listed are not adjusted for multiple com-
parisons. General linear models were used to determine
association of traits with expression mode after adjust-
ment for appropriate covariates with sibships treated as
repeated measures. Coefficients of agreement between
genotype and mode of expression were calculated as the
maximum kappa-Cohen statistic of the four possible
groupings of dominant models and mode pairings. Copy
number variation was assessed from the UCSC Genome
Browser (2006 Assembly) as structural variation (gain,
loss, or both) that involved segments of DNA larger
than 1 kb.

Computer Software

Gene scans were performed using Affymetrix GCOS
software and Affymetrix Expression Console. GC-RMA
normalization was performed using Partek Software
Version 6.4 (6.09.0422). SAS Version 9.1 was used for
Box-Cox transformations, Newton-Raphson maximum
likelihood convergence, pre-diabetic phenotype associa-
tions, Fisher’s exact test, as well as for all SNP associa-
tion analyses. Code was also written in Microsoft Visual
Studios C++ for data manipulation and maximum likeli-
hood with automatic parameter estimation distribution
fitting of unimodal and bimodal models.

Additional material

Additional file 1: Figure illustrating how dichotomous gene level
RNA expression can be artifact of batch effect.

Additional file 2: Summary of 16 genes (associated with gender)
which met all criteria for bimodality in either group A or group B.

Additional file 3: Summary of bimodal genes found on trimmed
bimodal data sets of non-gender associated genes. Listed are 28
genes which had a false discovery rate on the Fisher combined p-value
from the two trimmed data sets <1.0. Fourteen of these have an

FDR < 0.05.

Additional file 4: Summary of bimodal genes found on trimmed
bimodal data sets of gender associated (p < 0.05) genes. Listed are
30 genes which had a false discovery rate on the Fisher combined p-
value from the two trimmed data sets <1.0. Twelve of these have an
FDR < 0.05.

Additional file 5: List of 211 SNPs associated with component of
muscle expression with p < 7 x 10 in the 32 bimodally expressed
genes.

Additional file 6: Comparison of bimodal gene sets found in the
various populations analyzed.
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