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Abstract

Background: Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns
represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns
combined with the absence of economically important species have been a barrier to the development of
genomic resources. However, high throughput sequencing technologies are now being widely applied to non-
model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the
gametophyte transcriptome of bracken fern (Pteridium aquilinum) to develop genomic resources for evolutionary
studies.

Results: 681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled de novo into 56,256 unique
sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average
read-depth coverage of 7.0x. We estimate that 87% of the complete transcriptome has been sequenced and that
all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database,
representing 22,596 unigue best hits. The longest open reading frame in 52.2% of the unigenes had positive
domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation
and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps.
A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes
to be shared across the genomes of Arabidopsis, Selaginella and Physcomitrella, and identified a substantial number

and gene discovery in a non-model plant.

of potentially novel fern genes. By comparing the list of Arabidopsis genes identified by blast with a list of
gametophyte-specific Arabidopsis genes taken from the literature, we identified a set of potentially conserved
gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable
simple sequence repeat loci and 689 expressed transposable elements.

Conclusions: This study is the first comprehensive transcriptome analysis for a fern and represents an important
scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate
the utility of high-throughput sequencing of a normalized cDNA library for de novo transcriptome characterization

Background

As the sister lineage to seed plants, ferns represent a cri-
tical clade for comparative evolutionary studies in land
plants [1,2]. In contrast to seed plants, ferns typically
retain the ancestral condition for a suite of life history
traits (e.g. the lack of secondary growth, homospory,
motile sperm, and independent free-living gametophyte
and sporophyte generations). Ferns are thus an
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important outgroup for studying the evolution of wood,
seeds, pollen, flowers, and fruit among other economic-
ally important characteristics found in seed plants, as
well as the evolution of development in these complex
structures and the expansion of gene families associated
with seed plant evolution (e.g. transcription associated
proteins). For reasons not yet fully understood, ferns
typically have much higher chromosome numbers and
larger genomes than seed plants [1,3,4].

Understanding the factors that influence these differences
and their evolutionary consequences will require develop-
ing genomic resources in ferns to provide the necessary
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comparative context to understand the evolution of these
traits [3-5]. Additionally, because ferns have evolved and
maintained free-living and photosynthetic gametophyte
and sporophyte life stages, they are an ideal group for stu-
dies of life-cycle evolution in land plants and genome func-
tion in independent haploid and diploid phases.

Among the genomic tools available for non-model
organisms, expressed sequence tags (ESTs) have proven
to be a rapid and cost effective strategy to develop
sequence markers for comparative evolutionary and
functional studies. While taxonomic sampling of plants
in genome-scale projects has expanded substantially
with dramatic decreases in sequencing cost, and
increases in throughput, the development of genomic
resources in ferns has lagged far behind those of other
plant groups. This deficit has primarily been attributed
to technical and economic barriers associated with the
complex and large genomes in ferns, but is compounded
by the limited agronomic value of most ferns [4]. To
date (December 2010), genomic information in ferns is
limited to a genetic linkage map [6] and a modest EST
data set comprised of about 5,000 Sanger cDNA
sequences [7] for Ceratopteris richardii, just over 30,500
ESTs for Adiantum capillus-veneris [8], and over 2,600
ESTs in Osmunda lancea [9]. Fewer than 500 ESTs for
Pteridium aquilinum have previously been sequenced
and deposited in Genbank [9].

With the introduction of cost efficient and massively-
parallel high-throughput sequencing technologies, gen-
ome-scale studies in non-model organisms are being
actively pursued for gene discovery, expression profiling,
SNP and SSR marker development, and studies in func-
tional, comparative, and evolutionary genomics in taxa
where little or no previous genomic information exists
[10-27]. We chose the Roche 454 GS-FLX Titanium pyro-
sequencing technology to sequence a full length enriched
normalized cDNA library for the gametophyte generation
of the bracken fern, Pteridium aquilinum (L.) Kuhn.

Pteridium (family: Dennstaedtiaceae) is a cosmopolitan
fern genus comprised of several closely related species
that are well differentiated from other genera in the
family. Pteridium aquilinum is the most widespread of
the bracken species and is distributed throughout the
northern hemisphere and Africa [28]. Bracken is notor-
ious as a weed in open fields and is toxic to people and
livestock. Despite its toxicity, bracken is eaten as a deli-
cacy in several parts of the world, and due to its often
high local abundance and large coarse stature, is some-
times used as thatching or packing material. Because
bracken is common, easily cultured and manipulated,
and can have a major economic impact, it has become
one of the most intensively studied fern species.

Bracken has been used as a model system for the study
of the fern life cycle [29-37], gametophyte development
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and the pheromonal mechanism of sex determination
[38-45], cyanogenesis [46], carcinogenesis [47-49], inva-
sion ecology [50-52], and climate change [53]. Pteridium
aquilinum has a diploid chromosome count of 2n = 104
and a total genome size of about 9.8 Gbp [54].

This study was conceived to develop an extensive
expressed gene sequence resource in ferns for evolution-
ary and functional genomics. We present the first com-
prehensive transcriptome characterization for a fern
gametophyte, including an assessment of transcriptome
coverage, gene family and functional representation, SSR
identification, and a comparative analysis of gene sets
across land plants.

Results

Sequencing and de novo assembly

Raw Roche 454 GS-FLX Titanium reads were quality
and adapter trimmed and size selected to yield 681,722
cleaned reads with a mean length of 372.6 bp and 254
Mbp of total sequence data (Table 1, Figure 1A). Reads
were first assembled in MIRA v3.0rc4 [55] and the
resulting assembly was passed through a second assem-
bly step in CAP3 [56] to join additional contigs (Table
2). The resulting final assembly consisted of 56,256
unique sequences (i.e. retained singletons plus primary
and secondary contigs, hereafter referred to as unigenes;
Additional file 1). Unigenes had a mean length of 547.2
bp and summed to a total assembly length of 30.79
Mbp (Table 1, Figure 1B). The average read-depth cov-
erage for the final unigene assembly was 7.0x (Table 2).
The distribution of unigene coverage was highly left-
skewed toward low coverage with an extremely long tail
(maximum coverage was 2,078x; Figure 1C, D). The
steep decline in read-depth coverage suggests that
¢DNA normalization was effective and is typical for a
normalized library [15].

Transcriptome coverage and data quality

Because information about the actual size and composition
of the transcriptome is often unknown, we utilized a simu-
lation-based tool, ESTcalc [57], to estimate the expected

Table 1 Sequence statistics

Raw Cleaned Unigenes
reads reads

Number of sequences 730,577 681,722 56,256
Mean length (bp) 363.55 37260 54723
Standard deviation on length 118.60 96.36 276.06
(bp)
Mode length (bp) 416 383 466
Median length (bp) 398 394 479
Range in length (bp) 2-624 78 - 624 86 - 3229
Total length (Mbp) 265.60 254.01 30.79

Summary statistics for sequence data at different stages of processing.
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Figure 1 Overview of P. aquilinum transcriptome sequencing and assembly. (A) A histogram of the filter passed and adapter/quality
trimmed Roche 454 GS-FLX Titanium read lengths. (B) A histogram of unigene lengths for the final unigene set after the 2-step assembly. Note
that the longest unigene is 4,489 bp and the x-axis has been truncated at 3 kb. (C) A histogram of the average read-depth coverage for
unigenes. The steep decline in coverage observed here is typical of normalized libraries [15]. Coverage values between 30x and 1800x have
been binned (see the vertical axis in Figure 1D). (D) A density scatterplot showing the relationship between unigene length and coverage. Points
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depth and breadth of transcriptome coverage for this data
set. The model for transcriptome coverage backing ESTcalc
was parameterized using the well-characterized Arabidop-
sis thaliana transcriptome and several “next-generation”
sequencing runs using normalized and non-normalized
c¢DNA libraries [57]. Using the results from these simula-
tions (retrieved using ESTcalc), our dataset is expected to

cover 87% of the nucleotide positions in the transcriptome
(Table 3), with every gene represented by at least one read
(i.e. percent of genes tagged).

Additionally, 70% of the genes are predicted to be
sequenced to 90% of their length. Consistent with these
estimates, we were able to identify 333 of 357 (93.3%)
Arabidopsis genes that are conserved as single copy
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Table 2 Assembly summary statistics

Primary Secondary assembly

assembly (MIRA+CAP3)
(MIRA)

Number of reads assembled 574,134 640,285
into contigs
Number of reads discarded 31,723 0
during assembly
Number of 454 reads 75,865 9,714
retained as singletons
Number of primary contigs 91,100 24,775
(MIRA)
Number of secondary 0 21,767
contigs (CAP3)
Total number of unique 166,965 56,256
sequences (unigenes)
Mean unigene length (bp) 423.11 547.23
Largest unigene length (bp) 1,746 3,229
Total assembly length (Mbp) 70.65 30.79
Mean read depth coverage 303 6.96

A comparison of the primary and secondary assemblies. Secondary assembly
was used to condense and join contigs and singletons from the primary
assembly to reduce sequence level redundancy in the final unigene set.

genes across all Eukaryotes (i.e. ultra-conserved ortho-
logs; UCOs [58]). Similarly, we detected 754 of 959
(78.6%) shared single copy tribes from Arabidopsis thali-
ana, Populus trichocarpa, Vitis vinifera, and Oryza
sativa in our classification of unigenes in the

Table 3 Transcriptome coverage estimates: ESTcalc

Input Parameters ESTcalc Actual
estimate

Number of technologies 1 1

Technology 454 GS-FLX 454 GS-FLX
(Titanium)

Library type normalized normalized

MB/Plate 254 254.0076

Reads/Plate 681,722 681,722

BP/Read (mean) 3726 3726

Predicted assembly statistics

Total Assembled Sequence (MB) 262 30.97

Unigene count 32,044 56,256

Mean unigene length (bp) 819 54723

Mean unigene length (longest unigene 1,143 -

per gene, bp)

Singleton yield (%) 19 17.2400

Percent transcriptome (%) 87 -

Percent of genes tagged (%) 100 -

Percent of genes with 90% coverage (%) 69.8 -

Percent of genes with 90% coverage by 564 -

largest unigene (%)

Percent of genes with 100% coverage 237 -

(%)

Percent of genes with 100% coverage by 222 -

largest unigene (%)

Estimates of transcriptome coverage based on simulations modeled using the
Arabidopsis thalliana floral transcriptome [57].
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PlantTribes database [59,60]). These two gene sets
(UCOs and shared single copy tribes) represent a highly
conserved subset of genes expected to be present in
eukaryotic and plant genomes, respectively, and can be
used as a proxy for gene detection and sampling
breadth. As a final measure of gene detection in this
data set, we utilized a bootstrapped data resampling
approach using the distribution of reads in our final
assembly (see methods section) to generate a unigene
accumulation curve which plots the number of unigenes
detected as a function of sequencing effort (Figure 2).
Using this method, we estimate that on average 90%,
95% and 99% of the unigenes were tagged after approxi-
mately 378,683; 455,145; and 543,727 reads were
sampled (Figure 2). On average, it took 59 reads to
detect each of the last ten unigenes.

To identify potential contaminant sequences in the
sample or sequencing library, we examined the taxo-
nomic distribution of blastx hits for each unigene
searched in the NCBI nr database. We examined both
the taxonomic classification of the best hit as well as the
lowest common ancestor (LCA) assignment for each
unigene using MEGAN v.3.7.2 [61]. 34,740 unigenes had
a positive a blast hit, of which only 1.8% had a best hit
to an organism outside of the green plants and 1.1%
received an LCA assigned taxon which is not within, or
a super set of land plants (Table 4). We also examined
the unigene set for potential genomic DNA contamina-
tion by screening unigenes for blastn hits to the com-
plete chloroplast genome sequence of Pteridium
aquilinum (HM535629 [62]). None of the chloroplast
sequences identified in the transcriptome were longer
than 3.5 kb or contained more than five adjacent genes
(most spanned only a single gene) and thus can reason-
ably be considered putative transcripts [63,64]. That we
did not detect any long fragments of chloroplast DNA
in the transcriptome assembly gives us confidence that
our DNase treatment during RNA extraction was effec-
tive and the resulting cDNA library used in sequencing
is free of contaminant genomic DNA.

Functional annotation

Unigenes were annotated with gene ontology (GO)
terms, enzyme codes, and conserved protein domain
functions using the Blast2GO suite [65-67]. Unigenes
were first interrogated against the NCBI nr protein data-
base using a blastx e-value threshold of 1e-10, keeping
the top 10 high scoring alignments, resulting in 34,740
unigenes (61.8%) with positive blast hits. The best blastx
hits for these unigenes corresponded to 22,596 unique
protein accessions in the nr database. The longest open
reading frame (uncorrected six-frame translations auto-
mated in Blast2GO) from 29,357 unigenes (52.2%) had
positive matches to conserved protein domains using
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Figure 2 Unigene accumulation curve. The mean number of unigenes detected as a function of the number of reads sampled. The complete
set of reads in the 2-step assembly were shuffled and drawn at random for 1,000 bootstrap replicates.

InterProScan (IPS) searches implemented in Blast2GO.
These results (nr blastx and IPS) were used to assign
87,137 GO terms to 25,999 unigenes (Additional file 2).
These GO terms were used to map 11,243 enzyme
codes to 8,993 unigenes. Enzyme codes were then used

then to retrieve and color 144 KEGG pathway maps. To
assess whether the frequency of functional categories
present in the Pteridium transcriptome differ signifi-
cantly from the suite of gene functions present in other
plants, we compared the GO terms assigned to

Table 4 Taxonomic distribution of unigene blastx hits in the nr database

Best blastx hit

Lowest common ancestor for blastx hits

Taxonomic category Number of Percent of unigenes Number of Percent of Unigenes
unigenes with hits unigenes with hits

Eukaryotes 33,776 97.2% 32,059 92.3%
Green plants 33,406 96.2% 31,373 90.3%
“Green algae” 175 0.5% 78 0.2%

Land plants 33,231 95.7% 30,822 88.7%
"Bryophytes” 394 1.1% 2,197 6.3%

Vascular plants 32,837 94.5% 16,731 48.2%
Lycophytes 74 0.2% 13 0.0%

Ferns 928 2.7% 435 1.3%

Seed plants 31,835 91.6% 16,015 46.1%
Gymnosperms 8,000 23.0% 866 2.5%
Angiosperms 23,835 68.6% 10,572 30.4%

Animals 288 0.8% 63 0.2%
Fungi 0 0.0% 4 0.0%
Other eukaryotes 77 0.2% 12 0.0%
Bacteria 22 0.1% 91 0.3%
Artificial sequences, hits don't pass threshold, or taxon 20 0.1% 216 0.6%

not assigned

Unigenes were searched in the NCBI nr protien database using blastx with an e-value threshold of 1e-10, keeping the best ten hits. Of the 56,256 unigenes,
34,740 (61.8%) had a positive hit. The lowest common ancestor (LCA) assignment for a sequence was calculated using the LCA algorithm implemented in
MEGAN v3.9 [61] based on at least three blastx hits with a bitscore greater than 75 and within 10% of the best bitscore. Note: the predicted proteins from

Selaginella moellendorffii are not currently included in the nr database and thus are not reflected in these results.
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Pteridium unigenes with the GO classification for all
genes in the Arabidopsis thalliana genome (TAIR9 GO
annotation downloaded on 13 September 2010) using a
two-tailed FDR-corrected Fisher’s exact test. When using
the full GO classification, none of the GO terms in Pteri-
dium are significantly enriched or underrepresented
relative to the full GO classification for Arabidopsis (FDR-
corrected alpha = 0.05). To examine broad-level classifica-
tion of gene functions in the bracken transcriptome, we
mapped GO terms to the GO-slim vocabulary (Figure 3)
and repeated the Fisher’s exact test. 42 GO-slim categories
were overrepresented and 88 categories were underrepre-
sented in the Pteridium transcriptome relative to the Ara-
bidopsis thalliana GO-slim annotation (FDR-corrected
alpha = 0.05; Additional file 3).

Comparative genomics

Unigenes were classified into 6,987 tribe (inflation level
3) and 9,395 orthogroup MCL clusters (Additional file
4) in the PlantTribes gene family database on the basis
of the best blastx hit to the inferred protein models of
ten complete plant genomes included in an updated ver-
sion of the PlantTribes database ([60] and CWD,
unpublished). To evaluate the level of gene overlap
between the Pteridium gametophyte transcriptome and
other land plants, we examined overlap in both Plant-
Tribes orthogroup cluster membership and blastx hits
for predicted proteins in Physcomitrella patens, Selagi-
nella moellendorffii, and Arabidopsis thaliana (Figure 4).
Among genes in the Arabidopsis genome with positive
blastx hits with Pteridium unigenes, we examined for
the presence of “gametophyte genes” previously identi-
fied in the literature. Honys and Twell [68] used micro-
arrays to identify 1,355 genes specifically expressed in
haploid male gametophyte tissues in Arabidopsis, that is,
genes consistently expressed in at least one of four male
gametophyte developmental stages and absent in six
sporophytic tissue gene expression profiles. Similarly, Yu
et al. [69] and Wuest et al. [70] identified 911 genes
(combined) that were significantly over-expressed in
female gametophytic cells relative to sporophytic tissues.
In total, we identified 1,156 known Arabidopsis gameto-
phyte genes that produced significant alignments with
Pteridium unigenes in our blastx search (Figure 5).

Repetitive sequence characterization

A total of 2,679 perfect di-, tri-, tetra-, and pentanucleo-
tide simple sequence repeats (SSRs) longer than 9, 8, 6,
and 5 repeats, respectively, were identified in 2,285 uni-
genes (Additional file 5) using msatCommander [71].
Sufficient flanking sequences existed to design high
quality primers for 548 potentially amplifiable SSR loci.
PCR primers were chosen using Primer3 [72] as imple-
mented in msatCommander [71] (Additional file 6).
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Since this RNA was extracted from gametophytes
derived from spores collected from a single diploid spor-
ophyte, we are unable to determine the level of variation
present at these SSR loci in natural populations.

To identify and classify expressed repeat sequences,
we screened the Pteridium unigenes with RepeatMasker,
using RepBase sequences belonging to land plants
(Embryophyta). In total, 416 retrotransposons were
identified, representing 0.17% of the total unigene
sequence length (Table 5). Additionally, 269 DNA trans-
posons were identified, representing 0.07% of the total
sequence length (Table 5).

Discussion

We have used high-throughput sequencing data to char-
acterize the gametophyte transcriptome of Pteridium
aquilinum, a species for which very little genomic data
are available. These data represent an 865-fold increase
over the expressed sequence data previously available
for Pteridium in Genbank [9].

Assembly quality

Because contaminant adapter/primer sequences, polyA/
T repeats, and low complexity end sequences can sub-
stantially compromise de novo assembly and can be dif-
ficult to completely remove (KM Dlugosch, personal
communication), we aggressively filtered and trimmed
the reads beyond the default instrument-level processing
routines at the cost of sequence information loss
(approximately 11.6 Mbp were removed, representing
4.4% of the filter-passed data).

Considering the sheer quantity and depth of sequen-
cing produced by next-generation sequencing platforms,
we deemed this an acceptable level of loss to improve
accuracy in the assembly. We also used a two-step
assembly strategy to minimize redundancy in our final
unigene sequence set. We adopted this approach
because MIRA is able to handle the large number of
reads produced by 454 sequencing and utilizes a multi-
pass strategy to identify and correct sequencing and
assembly errors to produce a highly accurate assembly,
but is sensitive to uneven sequencing depth of coverage
and allelic diversity, resulting in a high number of
redundant contigs. CAP3 is a proven and efficient DNA
sequence assembler that can be used to join highly
similar overlapping sequences, but is unable to handle
the large number of reads produced by new high-
throughput sequencing platforms. By combining these
two assembly tools, we were able to join contigs and
singletons that failed to assemble in MIRA to reduce
sequence-level redundancy in our final unigene
sequence set.

In examining the taxonomic distribution of nr blastx
hits for the unigenes, we identified only a small
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Figure 3 Distribution of plant GO-slim functional categories. The relative proportion of plant GO-slim terms represented by more than 150
unigenes for the three major categories in the GO vocabulary (biological process, cellular component, and molecular function).

proportion of sequences with best blast hits or LCA
assignments outside of the green plants. When we
examine these hits in greater detail, we find that many
of them only align to short conserved domains, are
hypothetical proteins of unknown function from model
organisms, or are genes which are conserved across

broad taxonomic levels, such as cytochrome P450,
alpha-tubulin and dynein proteins. Additionally, because
no other fern genomes have been sequenced, some of
these sequences may represent novel fern genes. Thus,
the evidence indicates that there is very little heterospe-
cific sequence contamination in these data.
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Figure 4 Homologous gene detection in diverse plant proteomes. (A) Blastx: The complete unigene set was queried against the complete
set of predicted proteins in the genomes of Arabidopsis thaliana, Physcomitrella patens, and Selaginella moellendorfii using an e-value cut off of
Te-5. Unigenes with positive hits in more than one proteome are shown in the intersect for those species. Of 56,256 total unigenes, 21,425
unigenes did not have a positive blast hit. (B) PlantTribes OrthoGroups: Unigenes were assigned to Tribe- and OrthoMCL clusters derived from
the updated PlantTribes classification based on the best blast hit for each unigene. The presence of genes from Arabidopsis thaliana,
Physcomitrella patens, and Selaginella moellendorfii in each OrthoGroup was evaluated. Of 56,256 total unigenes, 18,368 unigenes were not
assigned to an OrthoGroup cluster and an additional 2,309 were assigned to clusters having no homologs from Arabidopsis, Physcomitrella, or

B Unigene OrthoGroup cluster membership (PlantTribes 2.0)

Arabidopsis thaliana  Physcomitrella patens
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Selaginella moellendorfii 20677

Transcriptome coverage

While the simulations that underlay ESTcalc are based
on the well characterized Arabidopsis thaliana floral
transcriptome (approximately 18,000 genes with tran-
scripts averaging 1,500 bp long) and assume perfect
c¢DNA normalization and sequence assembly, Wall et al.
[57] show that their results were highly predictive for
empirical datasets from diverse eukaryotic species and
tissues, making their simulations useful as a null model
for predicting transcriptome coverage in other organisms.
The predictions for transcriptome coverage produced by
ESTcalc are largely consistent with that observed in our
two-step assembly. However, the larger assembly size,
greater number of unigenes, and shorter unigene lengths
observed in our data set relative to the ESTcalc predic-
tion may be explained by imperfect cDNA normalization
or inefficient de novo assembly. Additionally, it is also
becoming evident that with increased transcriptome
sequencing throughput, it is possible to capture a richer,
more nuanced, picture of transcriptome complexity (e. g.
partially processed transcripts and alternative splice forms)
[73-75]. This increased information content, however, pre-
sents significant challenges for de novo assembly and often

results in a fragmented or partially redundant assembly
[76,77]. Also consistent with the ESTcalc estimate that we
have tagged all of the transcripts present in this sample,
our unigene accumulation curve shows that the rate of
new unigene detection for this cDNA library has declined
to the point that additional sequencing is unlikely to detect
new genes, but may however serve to condense and join
non-overlapping contigs in our assembly. Similar
approaches to evaluate sufficient sampling in transcrip-
tome projects have been used by other researchers when
other information about the transcriptome is absent
[15,78].

Functional annotation

The GO functional categories represented in the Pteri-
dium gametophyte transcriptome are not significantly
different from the suite of functional categories present
in the full Arabidopsis genome GO annotation. Most of
the unigenes annotated with a cellular component are
localized to plastids or mitochondria, but a large num-
ber of them are also targeted for ribosomes or the
plasma membrane (Figure 3). The molecular function of
unigenes is heavily dominated by binding nucleic acids
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Arabidopsis thaliana male

Pteridium aquilinum unigenes gametophyte specific genes

Arabidopsis thaliana female
gametophyte specific genes

Figure 5 Detection of homologs to Arabidopsis gametophyte
genes. To screen for the presence of potential gametophyte genes,
Arabidopsis genes producing significant alignments with Pteridium
unigenes in a blastx search (e-value cutoff = 1e-10) were compared
with the list of male gametophyte specific and female gametophyte
enriched genes identified from the literature [68-70].

or proteins and metabolic activity, including hydrolase
and kinase activity (Figure 3). The biological processes
represented include all of the major cellular processes
from transport and cellular organization to transcrip-
tion, translation, and metabolism (Figure 3).

Visual examination of annotated/colored KEGG maps
(not shown) indicates that we have captured all of the

Table 5 Repetitive transposon classification

Transposon class Number of Total Percentage of
elements length sequence

Retroelements 416 51,070 0.17%
LINE/LT 38 2458 0.01%

LTR 378 48,612 0.16%
Copia 183 21,750 0.07%

Gypsy 195 26,862 0.09%

DNA transposons 269 22,699 0.07%
hobo-Activator 20 2,022 0.01%
Tc1-15630-Pogo 1 46 0.00%
En-Spm 180 13,395 0.04%
MuDR-1S905 33 1,834 0.00%
Harbinger 6 368 0.00%
Rolling circle 29 5034 0.02%

Helitrons

Classification and frequency statistics for repetitive elements identified by
RepeatMasker. The database used to screen unigenes was built with repeat
sequences identified in RepBase as belonging to land plants (Embryophyta).
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genes required for glycolysis, the citrate cycle, and plant
hormone biosynthesis including gibberellin, abscisic
acid, strigolactone, cytokinin, brassinosteroid, and auxin.
We also detected Enzyme code signatures for most of
the genes involved in nucleic and amino acid metabo-
lism and chlorophyll biosynthesis.

Comparative genomics
The PlantTribes database contains an objective MCL
cluster-based classification system for plant genes and
gene families [60,79,80]. By identifying similar sequences
in this classification system, we assigned unigene
sequences with putative gene family identities. The most
abundant of these gene families present in the unigene
set was the pentatricopeptide repeat protein (PPR)
family, with over 600 unigenes classified as PPR pro-
teins. We were also able to identify 65 unigenes classi-
fied in the MADS-box transcription factor family. Using
this classification, gene sequences from Pteridium can
be extracted for gene families of interest for use in stu-
dies of gene family evolution or phylogenomics. The
overlap in orthogroup membership and blast hits for
proteins in Arabidopsis thaliana, Selaginella moellen-
dorffii, and Physcomitrella patens is similar (Figure 4A/
B), but some striking differences can be observed. In
both the PlantTribes and blast-based Venn diagrams,
most of the unigenes which were identified in Arabidop-
sis, Selaginella, or Physcomitrella are also shared across
all three species. In the PlantTribes classification, most
of the genes are shared with Arabidopsis (21,649 uni-
genes), the species in this comparison that shares the
most recent common ancestor with Pteridium, while
slightly fewer and approximately equal gene representa-
tion is shared with Selaginella and Physcomitrella (19,649
and 19,485 unigenes, respectively). This is in contrast to
the blast-based examination of gene set overlap in which
Arabidopsis again has the greatest number of unigenes
with hits (23,148 unigenes), but Physcomitrella has hits
with 6,122 more unigenes than Selaginella (Figure 4). At
first this seems counterintuitive because Pteridium shares
a more recent common ancestor with Selaginella than
with Physcomitrella. This pattern may be explained by
the expression of “gametophyte genes” in Pteridium that
are conserved with genes in the Physcomitrella genome,
however little is known about the expression and evolu-
tion of genes between sporophyte and gametophyte
stages. Both Physcomitrella and Pteridium have main-
tained a homosporous life cycle with a large independent
gametophyte stage. These life history differences may
also play a role on the selective pressures and/or con-
straints influencing gene evolution and more work is
needed to address these hypotheses.

In our examination of Arabidopsis gametophyte genes,
we identified gametophyte-expressed homologs in



Der et al. BMC Genomics 2011, 12:99
http://www.biomedcentral.com/1471-2164/12/99

Pteridium for over half (52.7%) of the previously charac-
terized Arabidopsis gametophyte specific or enriched
genes. This finding suggests that a highly specific suite
of genes required for gamete production and syngamy
may be conserved over long periods of evolutionary
time, despite substantial differences in life cycle and
reproductive strategies between Pteridium and Arabi-
dopsis. It should be noted also that these conserved
genes are not the genes required for meiosis because the
tissues sampled in this study and those used to identify
gametophyte specific genes in Arabidopsis were all post-
meiotic. An in-depth study of sporophytic genes in Pter-
idium is needed to better understand the evolution and
expression of genes between the sporophyte and game-
tophyte stages.

Conclusions

This study is the first comprehensive sequencing effort
and analysis of gene function in the transcriptome of a
fern and represents the most extensive expressed
sequence resource available in ferns to date, nearly 16
times more data than exists for Adiantum capillus-
veneris. These data are an important new scientific
resource for comparative evolutionary studies in land
plants and will be of great value for studies of genome
structure and function in ferns. These data can be used
to develop microarrays for gene expression assays or
serve as a reference transcriptome for future RNA-seq
experiments in Pteridium. As additional genome-scale
projects in diverse plants are undertaken, these data will
be of immense value in representing ferns, the sister
clade to seed plants, in comparative genomic analyses.

Methods

Gametophyte culture, library preparation, and sequencing
Pteridium aquilinum ssp. aquilinum spores (collection
number: Wolf 83; sourced from a single sporophyte
individual collected in Norwich, UK) were sown onto
sterile agar nutrient media containing Bold’s macronu-
trients and Nitch’s micronutrients (prepared as
described by [81]) and grown under white light. Whole
gametophytes including both vegetative and sexually
mature male, female, and hermaphroditic individuals of
various ages (up to 9 months from germination) were
flash frozen in liquid nitrogen and ground to a fine
powder. Total RNA was isolated using the Sigma Spec-
trum Plant Total RNA Kit, incorporating on-column
DNase I (Qiagen) digestion during extraction to remove
traces of genomic DNA. Total RNA was concentrated
by precipitating in 2.5 M ammonium acetate and 70%
ethanol, then resolubilizing the RNA pellet in RNase-
free water to approximately 500 ng/uL. Total RNA was
quantified and its quality verified using an Agilent Bioa-
nalyzer 2100. Total RNA was sent to the Center for
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Genomics and Bioinformatics at Indiana University,
Bloomington (IU CGB), where a normalized transcrip-
tome (cDNA) library optimized for Roche 454 GS-FLX
Titanium sequencing was prepared [82].

Briefly, full-length enriched cDNA was synthesized
with the CloneTech SMART c¢DNA synthesis kit using
modified 454-ready adapter/primer oligos (K Mockaitis,
unpublished). The frequency of abundant cDNA species
was reduced using the Evrogen Direct Trimmer normal-
ization kit. Normalized cDNA was fragmented by soni-
cation, blunt end repaired, and ligated to custom 454
sequencing adapters. Amplification of the sequencing
library incorporated an adapter-mediated PCR suppres-
sion effect to preferentially amplify ligation products sui-
table for 454 sequencing [17]. The final transcriptome
library was size selected and 454 sequencing proceeded
according to the manufacturers recommended protocol
on 3 regions of a four region PicoTiter plate.

Sequence preprocessing, transcriptome assembly, and
coverage assessment

Sequence reads generated in this study were deposited
in the NCBI sequence read archive (SRA012887). Raw
sequence reads that passed instrument software quality
filters were trimmed of custom oligonucleotide adapter
sequences (Justin Choi, unpublished, IU CGB). The
resulting sequences were further processed with Seq-
Clean [83] and SnoWhite v1.0.3 [84] to remove low
quality, short, and contaminant sequences, and to
aggressively trim polyA/T sequences. Cleaned reads
were assembled de novo in MIRA v3rc4 [55,85] using a
minimum percent identity of 94% to align reads, retain-
ing singleton reads in the assembly (-OUT:sssip = yes).
This primary assembly was passed through a secondary
assembly step in CAP3 (95% identity, 25 bp overlap)
[56] to reduce redundancy in the final assembly and join
additional contigs. Custom perl scripts were used to
extract summary information about the reads and
assemblies (Tables 1 and 2; Additional file 7).

We utilized a web-based tool, ESTcalc [57], to esti-
mate the predicted level of transcriptome coverage for
our data set. Input parameters to ESTcalc require that
we specify the sequencing technology used (or a combi-
nation of technologies) and either the total sequencing
level (Mbp), or the number of reads and an estimate of
read lengths. We used the best approximation for
sequencing technology available (454 GS-FLX) and the
empirical values observed for the cleaned sequence data
(254 Mbp or 681,722 reads with an average of 372.6 bp/
read) to obtain our estimates. The estimates reported
were identical whether we parameterized on total
sequence or supplied read length information as well.

To determine the number of eukaryotic ultra con-
served orthologs (UCOs [58]) we captured in the
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Pteridium transcriptome data set, we queried a list of
357 UCO coding sequences from Arabidopsis
(sequences available at: http://compgenomics.ucdavis.
edu/compositae_reference.php) into the unigene set
with an e-value threshold of 1e-10 using NCBI tblastx.
These blast results were then parsed to determine then
number of UCOs with a positive hit that returned an
amino acid alignment greater than 30 residues long.

We assessed the changing rate of new gene detection
as a function of sampling effort (unigene accumulation
curve, Figure 2) using a bootstrapped random sampling
protocol implemented in a custom perl script (Addi-
tional file 8). This script uses the empirical distribution
of read number per unigene in our final assembly to
randomly sample reads one at a time and tracks the
total number of unigenes detected at each step. Because
the order of sampling can impact the shape of this
curve, we computed 1,000 replicate random sample
orders and calculated the mean number of unigenes
detected after each draw. To evaluate the level of varia-
tion in the number of unigenes detected, we also calcu-
lated the 95% confidence interval on the number of
unigenes. Using this curve, we then estimated the num-
ber of reads it took to capture an average of 90%, 95%,
and 99% of the unigenes and the average number of
additional reads required to detect each of the last 10
unigenes.

To evaluate for the presence of potential contaminat-
ing sequences, we examined the taxonomic distribution
of blastx hits for the unigene set in the NCBI nr protein
database using an e-value threshold of le-10. The top
10 blast hits for each unigene were kept and examined
in MEGAN v.3.7.2 [61]. MEGAN is a tool built for the
examination of metagenomic data sets and provides a
number of useful functions to explore the information
content of large blast results. The blast results for each
unigene were mapped onto the NCBI taxonomy tree by
examining just the best hit (lowest e-value) or by using
the lowest common ancestor (LCA) algorithm [61]. LCA
was determined using at least three blast hits with a bit-
score greater than 75 and within 10% of the top bitscore
for that unigene.

Functional annotation

The same blast search used to examine the taxonomic
distribution of blast hits was used to identify putative
homologous proteins and annotate each sequence with
gene ontology (GO) terms using Blast2GO [65-67]. Blas-
t2GO was also used to automatically handle InterProS-
can (IPS) searches to identify conserved protein
domains in translations of the longest ORF in each uni-
gene. Any GO terms associated with IPS hits were then
merged into the blast-based GO annotation. GO terms
were then used to map enzyme codes to each sequence.
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Enzyme codes were then used to automatically color
and retrieve KEGG pathway maps [86,87]. As a final
step in examining a broad functional representation of
the gametophyte transcriptome, GO terms were mapped
to the reduced GO-slim ontology and visualized and
explored with directed acyclic graphs (not shown) and
summarized with filtered pie charts including GO cate-
gories represented by at least 150 sequences (Figure 3)

Comparative genomics

Unigenes were classified into tribe- and orthoMCL clus-
ters in the PlantTribes2.0 database using a custom Perl
pipeline (dePamphilis lab, unpublished) which queries
each unigene against the complete inferred protein set
from ten plant species that have complete sequenced
genomes, using a blastx e-value threshold of 1e-10. Uni-
genes were assigned to MCL clusters based on the best
blast hit. Species used for blast searches and gene clus-
tering in the PlantTribes2.0 database include: Chlamydo-
monas reinhardtii v3.0, Physcomitrella patens vi.1,
Selaginella moellendorffii v1.0, Oryza sativa v5.0, Sor-
ghum bicolor v1.0, Vitis vinifera v1.0, Populus tricho-
carpa v1.0, Medicago truncatula v1.0, Carica papaya
v1.0, and Arabidopsis thaliana (TAIR7). Meta-informa-
tion about each assigned cluster was extracted from the
database for each unigene and was output to a file. Sim-
ple text-based searches examined this information to
retrieve gene family names and putative gene family
functional data. The shared single copy tribes [59] for
Arabidopsis, Vitis, Populus, and Oryza were identified in
the PlantTribes2.0 database and the number of these
tribes detected in the unigene set was determined by
examining the pipeline output file. Orthogroup assign-
ments for Pteridium unigenes were examined for cluster
membership by Selaginella, Physcomitrella, and Arabi-
dopsis to generate a Venn diagram showing putative
gene level overlap (Figure 4A). Unigenes were also
directly queried against each of these proteomes using a
blastx e-value threshold of le-10 to examine the distri-
bution of similar proteins in these three species. Venn
diagrams were generated to graphically illustrate the
overlap of unigenes for each proteome (Figure 4B). To
screen for the presence of putative gametophyte genes, a
list of male gametophyte specific genes in Arabidopsis
was extracted from the microarray study of Honys and
Twell [68] and a combined list of significantly enriched
female gametophyte genes was compiled from the stu-
dies of Wuest et al. [70] and Yu et al. [69]. These Arabi-
dopsis gametophyte gene lists compiled from the
literature were examined for overlap with the list of
genes producing significant alignments with Pteridium
unigenes in the blastx search against the Arabidopsis
genome to produce a Venn diagram of gametophyte
genes (Figure 5).
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Additional material

Additional file 1: Unigene builds. Unigene sequences in FASTA format,
compressed zip file.

Additional file 2: Unigene functional annotations from Blast2GO. GO
and EC functional classification for unigenes.

Additional file 3: Functional annotation enrichment for GO-slim
categories relative to the complete Arabidopsis genome. FDR-
corrected Fisher exact test for GO-slim categories represented in the
Pteridium unigene set and the Arabidopsis genome.

Additional file 4: PlantTribes2.0 gene family classification. Tribe and
orthogroup assignments for each unigene and cluster membership for
the ten proteomes included in PlantTribes2.0. Functional and gene family
descriptors for clusters are primarily inherited from the Arabidopsis
thaliana genes included in the cluster.

Additional file 5: SSR loci identified in msatCOMMANDER. Repeat
sequence information (repeat motif, location, and lenth) for SSR loci
identified by msatCOMMANDER.

Additional file 6: Primer sequences and details for SSR loci. Primer
sequences for potentially amplifiable SSR loci selected using
msatCOMMANDER.

Additional file 7: Secondary coverage perl script. Script used to
identify singleton reads and primary and secondary contigs and calculate
assembly statistics.

Additional file 8: Unigene accumulation curve perl script. Script to
randomly select reads from the assembly and calculate the number of
contigs detected to produce the unigene accumulation curve.
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