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Abstract

Background: Genome rearrangements are studied on the basis of genome-wide analysis of gene orders and
important in the evolution of species. In the last two decades, a variety of rearrangement operations, such as
reversals, transpositions, block-interchanges, translocations, fusions and fissions, have been proposed to evaluate
the differences between gene orders in two or more genomes. Usually, the computational studies of genome
rearrangements are formulated as problems of sorting permutations by rearrangement operations.

Result: In this article, we study a sorting problem by cut-circularize-linearize-and-paste (CCLP) operations, which
aims to find a minimum number of CCLP operations to sort a signed permutation representing a chromosome.
The CCLP is a genome rearrangement operation that cuts a segment out of a chromosome, circularizes the
segment into a temporary circle, linearizes the temporary circle as a linear segment, and possibly inverts the
linearized segment and pastes it into the remaining chromosome. The CCLP operation can model many well-
known rearrangements, such as reversals, transpositions and block-interchanges, and others not reported in the
biological literature. In addition, it really occurs in the immune response of higher animals. To distinguish those
CCLP operations from the reversal, we call them as non-reversal CCLP operations. In this study, we use
permutation groups in algebra to design an O(δn) time algorithm for solving the weighted sorting problem by
CCLP operations when the weight ratio between reversals and non-reversal CCLP operations is 1:2, where n is the
number of genes in the given chromosome and δ is the number of needed CCLP operations.

Conclusion: The algorithm we propose in this study is very simple so that it can be easily implemented with 1-
dimensional arrays and useful in the studies of phylogenetic tree reconstruction and human immune response to
tumors.

Background
Genome rearrangements are studied on the basis of gen-
ome-wide analysis of gene orders and important in the
evolution of species [1-6]. Since a DNA molecule has
two strands, a gene in the genome rearrangement stu-
dies is usually denoted by a signed integer, with sign
indicating the DNA strand to which the gene belongs,
and a chromosome by a series of integers corresponding
to those genes on the chromosome. In the last two

decades, a variety of rearrangement operations have
been proposed to evaluate the differences between gene
orders in two or more genomes. Basically, these opera-
tions can be classified into two categories: (1) ‘intra-
chromosomal’ rearrangements, such as reversals, trans-
positions and block-interchanges (also called ‘general-
ized transpositions’), and (2) ‘inter-chromosomal’
rearrangements, such as fusions, fissions and transloca-
tions. Reversals, often called inversions in the biological
literature, rearrange a segment of continuous integers
on the chromosome by reversing the order of the inte-
gers and changing their signs [3,7-11]. Transpositions
act on two adjacent and non-overlapping segments on
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the chromosome by exchanging their locations
[10,12-15]. Block-interchanges function as a generalized
transposition that exchanges two non-overlapping but
not necessarily adjacent segments on the chromosome
[11,15-19]. Translocations affect two chromosomes by
exchanging their end segments [2,11,20-22]. Fusions
merge two chromosomes into one chromosome and fis-
sions split a chromosome into two chromosomes
[2,11,13,18].
Recently, great attention has been paid to the study of

genome rearrangement using block-interchanges, since
block-interchanges contain transpositions as a special
case and, currently, the computational models involving
block-interchanges are more tractable than those invol-
ving transpositions. More recently, Yancopoulos et al.
defined a double cut and join (DCJ) operation that can
model all the rearrangement operations described pre-
viously [23]. The DCJ is an operation that cuts one or
two chromosomes in two places and rejoins the four
broken ends in a new way. Intriguingly, block-inter-
changes, as well as transpositions, can be modeled by
two consecutive DCJ operations, while others by one
DCJ operation. In fact, as mentioned in [24], the two
consecutive DCJ operations can be viewed as the follow-
ing procedure to model transpositions or block-inter-
changes. (1) Excision: cut a segment from a
chromosome that can be linear or circular. (2)

Circularization: join the ends of the excised segment
into a temporary circle. (3) Linearization: cut the tem-
porary circle in any place as a linear segment. (4) Rein-
corporation: paste the linearized segment back to the
remaining chromosome at a new site. As also pointed
out in [24], this process of fragment excision, circulari-
zation, linearization and reincorporation indeed occurs
in the immune response of higher animals. Here, we
make a little modification to the reincorporation step in
the above process by allowing the linearized segment to
be possibly inverted before its reinsertion and also
allowing inverted or non-inverted linearized segment to
be pasted back to the remaining chromosome at any
site (see Figure 1 for the modified model). This modifi-
cation enables the above cut-circularize-linearize-and-
paste (CCLP for short) operation to model seven differ-
ent kinds of rearrangements, as will be detailed below. It
is interesting to note that in addition to transposition
and block-interchange, a CCLP operation can model
reversal, inverted transposition (or transversal) [10] and
others that are currently not reported in the biological
literature. The seven rearrangements modeled by the
CCLP operation are described as follows (see Figure 1
for a reference).
• Case I – reversal:
As illustrated in Figure 1, a segment with genes 2, 3

and 4 is cut from a chromosome (1,2,3,4,5,6) and joined

Figure 1 Illustration of a cut-circularize-linearize-and-paste operation. A modified cut-circularize-linearize-and-paste operation that can
model seven different kinds of rearrangement, where the cutting site of the temporary circle with genes 2, 3 and 4 can be either a, b or c, and
the inserting place of the linearized segment at the remaining chromosome can be either d, e, f or g.
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as a temporary circle, which is then cut in the same
place as it was created by the join (i.e., the a site in Fig-
ure 1), and inverted and pasted back to the chromosome
at the cutting site (i.e., the e site in Figure 1). As a
result, this CCLP operation performs as a reversal that
changes the chromosome (1,2,3,4,5,6) into (1,-4,-3,-
2,5,6).
• Case II – transposition:
The temporary circle is cut in a new place (e.g., the b

site in Figure 1) and pasted back to the chromosome at
the cutting site. This CCLP operation performs as a
transposition that changes (1,2,3,4,5,6) into (1,3,4,2,5,6).
• Case III – two consecutive, adjacent reversals:
The temporary circle is cut in a new place (e.g., the b

site in Figure 1), and then inverted and pasted back to
the chromosome at the cutting site. This CCLP opera-
tion changes (1,2,3,4,5,6) into (1,-2,-4,-3,5,6), which is
equivalent to that (1,2,3,4,5,6) is first changed into (1,2,-
4,-3,5,6) by a reversal, which is further changed into (1,-
2,-4,-3,5,6) by another reversal. Note that the chromoso-
mal regions affected by these two consecutive reversals
are adjacent.
• Case IV – transposition:
The temporary circle is cut in the same place as it was

joined and then pasted back to the chromosome at a
new site (e.g., the f site in Figure 1). This CCLP opera-
tion performs as a transposition that changes
(1,2,3,4,5,6) into (1,5,2,3,4,6).
• Case V – transversal:
The temporary circle is cut in the same place as it was

joined, and then inverted and pasted back to the chro-
mosome at a new site (e.g., the f site in Figure 1). This
CCLP operation performs as an inverted transposition
(i.e., transversal) that changes (1,2,3,4,5,6) into (1,5,-4,-
3,-2,6).
• Case VI – block-interchange:
The temporary circle is cut in a new place (e.g., the b

site in Figure 1) and then pasted back to the chromo-
some at a new site (e.g., the f site in Figure 1). This
CCLP operation performs as a block-interchange that
changes (1,2,3,4,5,6) into (1,5,3,4,2,6).
• Case VII – two consecutive, overlapping reversals:
The temporary circle is cut in a new place (e.g., the b

site in Figure 1), and then inverted and pasted back to
the chromosome at a new site (e.g., the f site in Figure
1). This CCLP operation changes (1,2,3,4,5,6) into (1,5,-
2,-4,-3,6), which is equivalent to that (1,2,3,4,5,6) is first
changed into (1,2,-5,-4,-3,6) by a reversal, which is
further changed into (1,5,-2,-4,-3,6) by another reversal.
Note that the chromosomal regions affected by these
two consecutive reversals are overlapping.
All these seven rearrangements described above are

simply called CCLP operations. But, to distinguish those
CCLP operations from the reversal, we call them as

non-reversal CCLP operations in the sequel of this
paper. In this article, we are interested in designing effi-
cient algorithms to solve the genome rearrangement
problem involving all the seven CCLP operations. If all
these CCLP operations are weighted equally, the pro-
blem aims to find a minimum number of operations to
sort a signed permutation of representing a chromo-
some. In this case, however, non-reversal CCLP opera-
tions are favored in the rearrangement scenario of the
optimal solution, as will be clear later, which contradicts
with the observation made by biologists that in most
organisms, reversals are observed much more frequently
when compared with other rearrangements. Therefore,
it may require a reversal to be weighted differently from
other CCLP operations. In this circumstance, the pro-
blem is then called weighted sorting problem by CCLP
operations, which is to find a series of CCLP operations
whose weight sum is minimum. In this study, we pay
our attention on the case in which the weight ratio
between reversals and non-reversal CCLP operations is
1:2 and use the permutation group in algebra to design
an O(δn) time algorithm for solving the problem, where
n is the number of genes in the given chromosome and
δ is the number of needed CCLP operations.

Preliminaries
Below, we introduce some definitions about the basics
of permutation groups, as well as a couple of lemmas
from Huang and Lu [11], that are useful for the study of
genome rearrangements. Let E = {1, 2, …, n} be a set of
n positive integers. Then a permutation of E is defined
as a one-to-one function from E into itself and can sim-
ply be denoted by a product of some cycles. For exam-
ple, a permutation expressed as a = (1, 6, 4) (2, 5, 3)
means that a(1) = 6, a(6) = 4, a(4) = 1, a(2) = 5, a(5) =
3 and a(3) = 2. Basically, a cycle is cyclic and hence it
does not matter which element in the cycle is written as
the first. If the cycles in a permutation are all disjoint (i.
e., any two cycles have no common elements), then
their product is called the cycle decomposition. If a cycle
has k elements, then it is called a k-cycle. The element
in a 1-cycle is usually called fixed. It is a convention
that the 1-cycles in a permutation are not written expli-
citly. If all the elements in E are fixed in a permutation,
then this permutation is called an identity permutation
and simply denoted by 1 = (1)(2)...(n).
The composition (or product) of two given permuta-

tions a and b of E is a permutation, denoted by ab,
such that ab(e) = a(b(e)) for all e Î E. For example,
suppose that a = (1,6,4)(2,5,3) and b = (4,3) are two
given permutations of E = {1,2, …,6}. Then ab =
(1,6,4,2,5,3). It is not hard to see that if a and b are dis-
joint, then ab = ba. The inverse of a, denoted by a–1, is
a permutation such that aa–1 = a–1a = 1. The
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conjugation of b by a, denoted by a ⋅ b, is the permuta-
tion aba–1.
As demonstrated in [11,17,18], the permutation

groups can serve as a useful tool for studying genome
rearrangement, because a genome can be expressed
using a permutation, in which each cycle corresponds to
a chromosome in the genome, and a fusion or a fission
acting on the genome can be simulated by the product
of a 2-cycle and the corresponding, as detailed as fol-
lows. Let a = (a1, a2) be a 2-cycle and b be an any per-
mutation of E. If both a1 and a2 belong to the same
cycle of b, then the effect of ab (or ba) is equivalent to
a fission acting on b and hence a is called a split opera-
tion of b. For instance, suppose that a = (1, 2) and b =
(1, 6, 4, 2, 5, 3) . Then ab = (1, 6, 4)(2, 5, 3) and ba =
(5, 3, 1)(6, 4, 2). On the other hand, if a1 and a2 belong
to two different cycles of b, then the effect of ab (or
ba) equals to a fusion acting on b and a is called a join
operation of b. For instance, if a = (1,2) and b = (1, 6,
4)(2, 5, 3), then ab = (1, 6, 4, 2, 5, 3) and ba = (6, 4, 1,
5, 3, 2).
In fact, any permutation a of E can be written as a

composition of 2-cycles in many ways [11]. The norm of
a, denoted by ||a||, is the minimum number k such
that a can be expressed by a composition of k 2-cycles.
The number of disjoint cycles in the cycle decomposi-
tion of a is denoted by nc(a), which needs to count
those non-expressed 1-cycles in a. For instance, if a =
(1, 3, 2)(5,6) and E = {1, 2, …,6}, then nc(a) = 3, rather
than nc(a) = 2, because a = (1, 3, 2)(4)(5, 6). For any
permutation a of E, it can be shown that ||a|| = |E| –
nc(a) [11,17]. For any two permutations a and b of E, a
divides b, denoted by a|b, if and only if ||ba–1|| = ||b||
– ||a||. Actually, whether a divides b or not can be
easily determined using the following lemma from [11].
Lemma 1[11]. Let e1, e2, …, ek Î E and b be any per-

mutation of E. Then e1, e2, …,ek appear in the same
cycle of b in the order of e1, e2, …, ek if and only if (e1,
e2, …, ek)|b.
It is required to further extend the definition of E as E

= {±1, ±2, …, ±n} for properly modeling reversals using
the permutation groups, as described in Lemma 3
below. Let Γ = (1, –1)(2, –2) ··· (n, –n). It is not difficult
to verify that Γ2 = 1 and Γ–1 = Γ. If a cycle contains no
e and –e at the same time, where e Î E, then it is called
admissible and can be used to denote a DNA strand.
Let π+ denote a strand of a DNA molecule π. Then π–

= Γ · (π+)–1 is the reverse complement of π+, represent-
ing another strand of π. Note that π+ and π– are dis-
joint. For the purpose of modeling reversals using the
permutation groups, the DNA molecule π is represented
by the composition of its two strands π+ and π– (i.e., π
= π+π– = π–π+), as demonstrated in [11].

Lemma 2 [11]. Let π and s be two different chromo-
somes. Suppose that a is a cycle in sπ–1. Then (πΓ) · a–

1is also a cycle in sπ–1.
Actually, a and (πΓ) · a–1 are mate cycles for each

other in sπ–1 according to Lemma 2.
Lemma 3[11]. Let u and v be in the different strands

of a chromosome π, that is, (u, v) ł π. Then g = (πΓ(v),
πΓ(u)) (u, v) affects π as a reversal.
Note that in Lemma 3, (u, v) acts on π as a join

operation and (πΓ(v),πΓ(u)) acts on (u, v)π as a split
operation, indicating that a reversal acting on π can be
implemented using the product of two 2-cycles and π.
Actually, other non-reversal CCLP operations can be
implemented by multiplying four 2-cycles (πΓ(x),πΓ(w))
(w, x)(πΓ(v),πΓ(u))(u, v) with the given chromosome π if
the following conditions are satisfied: (1) (u, v)|π, (2) (w,
x) ł (u, v)π (3) w ≠ Γ(x) or Γ(w) ≠ x and (4) (w, Γ(x)) ł
(u, v)π or (Γ(w), x) ł (u, v)π. The first condition is to
make sure that (u, v) and (πΓ(v),πΓ(u)) respectively act
on the two strands of π as splits, which lead to two tem-
porary circles excised from π. Note that these two tem-
porary circles are complement to each other. The
second condition is to make sure that (w, x) and (πΓ(x),
πΓ(w)) respectively act on the two temporary circles and
the cycles of the remaining π as joins, which paste back
the two temporary circles into the remaining π. It is
worth mentioning that the joins also fulfill the process
of linearization with possible inversion. The inversion is
performed when the temporary circles are reinserted
into the chromosome strands different from the ones
they come from. The third and fourth conditions are to
make sure that the resulting π are admissible (i.e., no e
and –e from E are in the same chromosome strand).
Therefore, we have the following lemma.
Lemma 4. Let π be a chromosome and b = (πΓ(x),

πΓ(w))(w, x)(πΓ(v),πΓ(u))(u, v). Suppose that the follow-
ing four conditions are satisfied: (1) (u, v)|π, (2) (w, x) ł
(u, v)π (3) w ≠ Γ(x) or Γ(w) ≠ x and (4) (w, Γ(x)) ł (u,
v)π or (Γ(w), x) ł (u, v)π. Then b affects π as a non-
reversal CCLP operation.

Algorithmic result
In this section, we design an efficient algorithm on the
basis of the permutation groups that sorts a given chro-
mosome π into I = (1, 2, …, n)(–n, …, –2, –1) using the
CCLP operations when the weight ratio between rever-
sals and non-reversal CCLP operations is 1:2. The basic
idea behind this algorithm is as follows. As mentioned
before, any permutation can be written as a product of
2-cycles and the effect of a reversal (respectively, non-
reversal CCLP operation) acting on π can be simulated
by multiplying two (respectively, four) 2-cycles with π.
Moreover, the product of Iπ–1 and π equals to I. All
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these facts indicate that one can derive a product of 2-
cycles from Iπ–1 such that these 2-cycles perform as a
sequence of CCLP operations to optimally transform π
into I. Below, for simplicity of describing our algorithm,
x and y are said to be adjacent in a permutation a if a
(x) = y or a(y) = x.
Lemma 5. Let π = π+π–be a chromosome. Suppose

that (x, y)|Iπ–1and (x, y)|π, that is, there are two ele-
ments x and y in a cycle of Iπ–1such that (x, y) acts on π
as a split. Let b = (πΓ(y), πΓ(x))(x, y). Then there are
two adjacent elements x′ and y′ in a cycle of I(bπ)–1such
that (x′ ,y′) and (bπΓ(y′),bπΓ(x′)) act on bπ as joins.
Moreover, the cycles in b′bπ are admissible, where b′ =
(bπΓ(y′), bπΓ(x′))(x′ ,y′).
Proof. For convenience, let π = π+π– = (a1, a2, … an)(–

an, –an–1, …, –a1). The assumption (x, y)|π indicates
that x and y are in the same cycle of π, say in π+, and
hence πΓ(x) and πΓ(y) are in π–. Hence, both (x, y) and
(πΓ(y),πΓ(x)) act on π as splits and b = (πΓ(y), πΓ(x))(x,
y) divides π into four cycles. Let
bp p p p p= = − − − −+ + − −

− −1 2 1 2 1 1 1 1( , , )( , )( , , )( , ,a a a a a a a ak k n k n k    )) .
For simplicity of our further discussion, we assume that
ai <ai+1 <n for 1 ≤ i ≤ k – 2. This indicates that ak–1 is
the maximum in p1

+ and hence ak–1 + 1 is not in p1
+ .

Moreover, I(bπ)–1(a1) = I(ak–1) = ak–1 + 1, meaning that
a1 and ak–1 + 1 are adjacent in I(bπ)–1. In other words,
there are two adjacent elements a1 and ak–1 + 1 in I
(bπ)–1 such that (a1,ak–1 + 1), as well as (bπΓ(ak–1 + l),
bπΓ((a1)), acts on bπ as a join. If the two cycles in
(bπΓ(ak–1 + 1),bπΓ(a1))(a1, ak–1 + 1)bπ are admissible
(i.e., they represent a chromosome), then we have com-
pleted the proof of this lemma based on Lemma 4.
Now, suppose that the two cycles in (bπΓ(ak–1 + 1),
bπΓ(a1))(a1, ak–1 + l)bπ are not admissible (i.e., for
some 1 ≤ i ≤ n, both i and –i are in the same cycle).
We then show below that we can still find two other
adjacent elements x′ and y′ in a cycle of I(bπ)–1 such
that (x′ ,y′) and (bπΓ(y′),bπΓ(x′)) can join bπ into two
admissible cycles. First of all, ak–1 + 1 must be in p1

−

(otherwise, (bπΓ(ak–1 + 1),bπΓ(a1))(a1,ak–1 + 1)bπ is an
admissible chromosome), leading to that the cycle cre-
ated by joining p p1 1

+ − using (a1, ak–1 + 1) is not admis-
sible. Further suppose that aj is the minimum in p1

+ .
Then Γ(aj) = –aj, which is the maximum in p1

− . There-
fore, we have –aj ≥ ak–1 + 1 (since ak–1 + 1 is also in
p1

− ). In addition, –aj–1 and I(–aj) are adjacent in I(bπ)–
1 because I(bπ)–1(–aj–1) = I(–aj). In the following, we
consider five possibilities.
Case 1. aj ≠ –n and aj ≠ 1. Then I(–aj) = –aj + 1,

which is not in p1
− since –aj is the maximum in p1

− . If
–aj + 1 is in p1

+ , then ak–1 cannot be the maximum in
p1

+ , since –aj ≥ ak–1 + 1 and hence –aj + 1 >ak–1
which contradicts to our assumption that ak–1 is the
maximum in p1

+ . In other words, I(–aj) belongs to

either p 2
+ or p 2

− and hence (–aj–1, I(–aj)) acts on bπ
as a join and the cycles in (bπΓI(–aj),bπΓ(–aj–1))(–aj–1,I
(–aj))bπ are admissible.
Case 2. aj = –n and both 1 and –1 are not in p1

+ .
Then I(–aj) = 1 (instead of I(–aj) = –aj + 1 = n + 1).
Because p1

+ and p1
− are complement to each other

from chromosomal point of view, both of them contains
no 1 and –1, as a result, I(–aj) belongs to either p 2

+ or
p 2

− . Therefore, (–aj–1,I(–aj)) acts on bπ as a join and
(bπΓI(–aj),bπΓ(–aj–1))(–aj–1, I(–aj))bπ contains only
admissible cycles.
Case 3. aj = 1 and both n and –n are not in p1

+ .
Then I(–aj) = –n (instead of I(–aj) = –aj + 1 = 0 ).
Clearly, I(–aj) belongs to either p 2

+ or p 2
− . Therefore,

(–aj–1,I(–aj)) acts on bπ as a join and (bπΓI(–aj), bπΓ(–
aj–1))(–aj–1, I(–aj))bπ have two admissible cycles.
Case 4. aj = –n and 1 or –1 is in p1

+ . Because p1
+

and p1
− are complement strands, 1 is in p1

+ if and only
if –1 is in p1

− . Hence, both p 2
+ and p 2

− contains no –
n, 1 and –1. Then we can exchange the roles of p1

+ and
p1

− with p 2
+ and p 2

− , respectively, and follow the simi-
lar discussion as given in Case 1 to show that we can
still find two adjacent elements x′ and y′ in a cycle of I
(bπ)–1 such that (x′ ,y′) and (bπΓ(y′), bπΓ(x′)) can join
the four cycles of bπ into two admissible cycles.
Case 5. aj = 1 and n or –n is in p1

+ . Actually, we
need not consider this case, because we have initially
assumed that all the elements in p1

+ are less than n and
among them, aj is the smallest.
According to the above discussion, we have completed

the proof of this lemma.
Theorem 1. Let F denote a minimum weighted

sequence of CCLP operations required to transform π
into I. Then the weight of F is great than or equal

to E n Ic− −( )p 1

2
.

Proof. Let F contain a reversals and b non-reversal
CCLP operations. It is not hard to see that a + 2b is the
weight of F. Recall that the effect of a reversal can be
simulated using two 2-cycles and a non-reversal CCLP
operation using four 2-cycles. It indicates that F can be
written by a composition of 2a + 4b 2-cycles such that Fπ
= I, which equals to that Iπ–1 can be expressed as a com-
position of 2a + 4b 2-cycles. In other words, ||Iπ–1|| ≤ 2a
+ 4b. As mentioned before, we also have ||Iπ–1|| = |E| –
nc(Iπ

–1), which bases on the lemma proposed in [11,17].
Therefore, |E| – nc(Iπ

–1) ≤ 2a + 4b and, as a result, the

weight of F is great than or equal to E n Ic− −( )p 1

2
.

Assume that there are at least two adjacent elements x
and y in a cycle of Iπ–1 such that (x, y)|π. Then, accord-
ing to Lemma 5, we can always find a non-reversal
CCLP operation b′b from Iπ–1 to rearrange π into b′bπ,
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where b = (πΓ(y), πΓ(x))(x, y) and b′ = (bπΓ(y′),bπΓ(x′))
(x′, y′). Assume that there are no any two adjacent ele-
ments x and y in a cycle of Iπ–1 such that (x, y)|π,
which implies that (x, y) ł π. Then based on Lemma 3,
(πΓ(y), πΓ(x))(x,y) can serve as a reversal to transform π
into (πΓ(y), πΓ(x))(x, y)π. Using these properties, we
design Algorithm 1 to sort π into I by CCLP operations.
It is not hard to see that a non-reversal CCLP operation
derived in Algorithm 1 decreases the norm of Iπ–1 by 4
and a reversal by 2. Since non-reversal CCLP operations
are weighted 2 and reversals are weighted 1, Algorithm

1 decreases the norm of Iπ–1 by 1 at the weight of
1
2

and hence its total weight equals to
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end while

4 : Φ ccenario with weight w p( , );I

Theorem 2. Given a chromosome π, the weighted sort-
ing problem by CCLP operations can be solved in O(δn)
time when with weight ratio between reversals and non-
reversal CCLP operations is 1:2, where δ is the number
of CCLP operations needed to transform π into I. More-
over, the weight of the optimal solution

is E n Ic− −( )p 1

2
that can be calculated in O(n) time in

advance.
Proof. As discussed before, Algorithm 1 transforms π

into I by a minimum weighted sequence of δ CCLP

operations, whose total weight is E n Ic− −( )p 1

2
that

can be calculated in O(n) time. Below, the time-com-
plexity of Algorithm 1 is analyzed. Basically, the compu-
tation in steps 1 and 2 can be done in O(n) time. As for
step 3, there are δ iterations to perform. For each such
iteration, it takes O(n) time to find (x, y) and (x′, y′) by
determining every pair of adjacent elements in all the
cycles of Iπ–1 and Iπ–1b, respectively, and a constant
time to perform other operations in step 3.1, and also
takes O(n) time to perform step 3.2. Therefore, the cost
of step 3 is O(δn). Step 4 is executed in constant time.
Totally, the time-complexity of Algorithm 1 is O(δn).
It is worth mentioning here that our algorithm is

applicable to both circular and linear chromosomes.
Actually, using similar discussion as in [17], one can
prove that given a gene x on a circular chromosome, a
CCLP operation acting on x has an equivalent one with-
out acting on x. Based on this property, one can further
prove that the problem of sorting by CCLP operations is
equivalent for circular and linear chromosomes.

Conclusion
In this article, we have introduced and studied the sort-
ing problem by CCLP operations, where CCLP is a cut-
circularize-linearize-and-paste operation that can model
several known and unknown rearrangements. In addi-
tion, we have proposed an O(δn) time algorithm for sol-
ving the weighted sorting problem by CCLP operations
when the weight ratio between reversals and non-rever-
sal CCLP operations is 1:2, where n is the number of
genes and δ is the number of needed CLLP operations.
As described in this article, this algorithm is very simple
so that it can be easily implemented using 1-dimen-
sional arrays and useful in the studies of phylogenetic
tree reconstruction and human immune response to
tumors. It would be an interesting future work to design
efficient algorithms for solving the problem of sorting
by CCLP operations when all the CCLP operations are
weighted equally.
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