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Abstract

predict and rank new interactions.

not easily observed from a mass of documents.

Background: Biological systems are commonly described as networks of entity interactions. Some interactions are
already known and integrate the current knowledge in life sciences. Others remain unknown for long periods of
time and are frequently discovered by chance. In this work we present a model to predict these unknown
interactions from a textual collection using the vector space model (VSM), a well known and established
information retrieval model. We have extended the VSM ability to retrieve information using a transitive closure
approach. Our objective is to use the VSM to identify the known interactions from the literature and construct a
network. Based on interactions established in the network our model applies the transitive closure in order to

Results: We have tested and validated our model using a collection of patent claims issued from 1976 to 2005.
From 266,528 possible interactions in our network, the model identified 1,027 known interactions and predicted
3,195 new interactions. Iterating the model according to patent issue dates, interactions found in a given past year
were often confirmed by patent claims not in the collection and issued in more recent years. Most confirmation
patent claims were found at the top 100 new interactions obtained from each subnetwork. We have also found
papers on the Web which confirm new inferred interactions. For instance, the best new interaction inferred by our
model relates the interaction between the adrenaline neurotransmitter and the androgen receptor gene. We have
found a paper that reports the partial dependence of the antiapoptotic effect of adrenaline on androgen receptor.

Conclusions: The VSM extended with a transitive closure approach provides a good way to identify biological
interactions from textual collections. Specifically for the context of literature-based discovery, the extended VSM
contributes to identify and rank relevant new interactions even if these interactions occcur in only a few
documents in the collection. Consequently, we have developed an efficient method for extracting and restricting
the best potential results to consider as new advances in life sciences, even when indications of these results are

Background

In a biological system there are entities of different types
such as diseases and drugs performing important biolo-
gical activities. The action of an entity can mediate or
interfere with the action of other entities developing a
complex network of interactions. Frequently entities
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perform more than one activity in the system, some
which are known and integrate the current knowledge
in life sciences. Other activities are not so well docu-
mented or remain unknown for long periods of time
and are generally discovered by chance. Drugs, for
instance, have a primary pharmacological activity and
secondary activities responsible for side effects. How-
ever, drug side effects can be explored as new uses for
the treatment of different diseases. A remarkable exam-
ple is the impotence drug sildenafil citrate (Viagra®™)

© 2011 Maciel et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:scampos@dcc.ufmg.br
http://creativecommons.org/licenses/by/2.0

Maciel et al. BMC Genomics 2011, 12(Suppl 4):S1
http://www.biomedcentral.com/1471-2164/12/S4/S1

that was originally designed for the treatment of angina
and hypertension. Viagra® clinical trials revealed, never-
theless, the drug ability of increasing erectile function as
its side effect [1].

On the other hand, research achievements in the post
genomic age have promoted an enormous and continu-
ous increasing on biological knowledge. These achieve-
ments often describe biological entity activities and have
been published around the world aiming to assist,
increase and speed up the number of discoveries in life
sciences. A similar process has occurred since the incep-
tion of the World Wide Web and the rise of digital
libraries. Web pages have been continuously and rapidly
published given rise to a enormous amount of inter-
linked information. This allowed the conduction of
many studies about methods for extracting and analys-
ing the information published in this ocean of informa-
tion. In many of these studies the vector space model
(VSM) [2-4] has been recognized as an important tool
to extract the most relevant information in a given
context.

In this work we have developed an inference model
based on the VSM in order to predict new interactions
between biological entities of distinct categories such as
ecosystems, organisms, organs, tissues, cells, organelles,
genes, proteins, diseases and drugs. Our model con-
structs a network of known entity interactions from a
textual collection. The documents in this collection
describe the current knowledge in life sciences. Known
entity interactions represent entity co-occurrences in at
least one document of the textual collection. After find-
ing all known interactions, our model traverses and ana-
lyzes the network predicting new entity interactions.
Our objective is to use the known interactions to infer
new (unknown) ones and to rank all found interactions.
The ranking of interactions allows researchers to focus
in the most promising activities, thus promoting further
advances in life sciences.

The prediction of new interactions is performed using
the VSM along with a transitive closure similar to that
used in literature-based discovery [5]. The transitive clo-
sure relies on the fact that “IF an entity x interacts with
entities y and w AND another entity z also interacts
with entity y, THEN z probably also interacts with
entity w”. Different from previous work, in our model
we adapt this transitive closure in order to exploit the
primary and secondary activities performed by entities
of distinct biological categories. In the context of our
model, x and z are entities of the same biological cate-
gory, y and w are also entities of the same biological
category. However, the category of entities x and z is
different of that of entities y and w.

We have implemented a system called BioSearch [6]
as a proof of concept of our model. The system deals
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with 4 types of distinct entities: diseases, drugs, genes,
and targets. The textual collection used in the system
encompasses a sample of 17,830 patent claims gathered
from the United State Patent and Trade Mark Office
(USPTO) [7]. We have used the patent claim because it
is an important section in patent specifications, present-
ing the invention and defining the scope of patent pro-
tection [7,8]. From 266,528 possible interactions
between entities in our network, the system has found
1,027 known interactions in the patent claim collection
and has inferred 3,195 new interactions. Thus, based on
our model, the system has constructed a network with
4,222 interactions that can be further analyzed in order
to promote new advances in science and technology.

To validate our results we have conducted an experi-
ment over the patent issue dates. We have reconstructed
the interaction network in a range of 30 years. We have
observed that new interactions found in a given past
year were confirmed by patents issued in a more recent
date. For instance, we have 1 patent claim issued in
2005 specifying the interaction between the disease
heart attack and the gene ppar-gama. When we
removed this patent claim from the textual collection,
61 patent claims indicated this interaction as a possible
new interaction in 2004. We have also found scientific
papers that confirm some of the new inferred interac-
tions. For instance, the best result found in our model
specifies a new interaction between the adrenaline neu-
rotransmitter and the androgen receptor gene in the 2-
dimensional subnetwork gene x target. No patent claim
in our collection indicates this interaction. However,
Sastry et al. [9] reported in 2007 that the antiapoptotic
effect of adrenaline partially depends on androgen
receptor.

Related work

In this work, our objective is to present a model that
employs the VSM in order to identify biological entity
activities from a textual collection. In our approach,
known entity activities represent entity co-occurrences
in the textual collection. On the other hand, new acti-
vies are predicted from the known ones. Jenssen et al.
[10] show that co-occurrence reflects biologically mean-
ingful relationships, thus providing an approach to
extract and structure known biological knowledge.
Accordingly, we have developed a strategy based on the
VSM that constructs a network of biological entity
interactions from the life science literature and ranks
these interactions. Our strategy combines the VSM abil-
ity to extract knowledge from text along with some
underlining principles of literature-based discovery [11].
Don R. Swanson has pioneered the work in the field of
literature-based discovery using the syllogism x — y
AND y —» z THEN x — z in order to discover new
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biological entity activities [12,13]. In this syllogism x —
y and y — z are known interactions stated in the litera-
ture. On the other hand, x — z is a new interaction not
explicitly found in the literature and inferred from pre-
viously known interactions. Afterwards, Smalheiser et al.
[14] have implemented this syllogistic construction in a
software called ARROWSMITH. In addition, Weeber et
al. [15] have contributed to literature-based discovery
introducing a model based on natural language proces-
sing (NLP) techniques in order to find concepts in the
biomedical literature and reduce the search space. None
of these techniques associates weights with these biolo-
gical interactions in order to rank them.

As mentioned, a challenge we face when dealing with
literature-based discovery is how to rank a large num-
ber of inferred interactions in a way that can facilitate
new discoveries by prioritizing the ones with the lar-
gest potential. In order to tackle this challenge, Swan-
son et al. [16] have proposed and tested strategies to
rank and filter the output of the ARROWSMITH sys-
tem. Hristovski et al. [5,17-19] presented a method for
literature-based discovery based on association rules
and implemented it in a system called BITOLA. More-
over, Wren et al. [20] have considered the construction
of networks from the biomedical literature describing a
method based in the syllogism proposed by Swanson.
They have defined areas of research interest such as
genes and diseases, and model and rank the interac-
tions using the fuzzy set theory. The ranking strategies
used in these works consider that entities co-occurring
frequently in a textual collection are more likely to
represent biologically meaningful relationships [10].
Therefore, these strategies promote new interactions
which are predicted from a large number of indica-
tions. However, in literature-based discovery there are
many distinct scenarios and in some situations a great
number of indications may not reveal the most rele-
vant new interactions. For instance, many indications
may lead to a set of new interactions that were already
studied but were not published because they are not
feasible or they are unwanted in practice. On the other
hand, there exist situations in which new interactions
predicted from a few number of indications are in fact
the ones with the best potential. In this sense, ranking
strategies for new interactions predicted from few indi-
cations are an important tool for literature-based dis-
covery because they help in the identification of
relevant interactions not easily observed and extracted
from textual collections. In this scenario the VSM pro-
vides a great aid to the literature-based discovery. The
TFIDF weighting strategy exploited in the VSM pro-
motes interactions with many occurrences in few
documents in the collection and penalizes interactions
commonly occurring in many documents of the

Page 3 of 16

collection. Consequently, the VSM fosters rare interac-
tions over the trite ones.

In literature-based discovery we must avoid the infer-
ence of interactions already stated in the literature.
Kostoff [21,22] has discussed this problem and issues
related to the quantity and quality of interactions. Kost-
off et al. [23] have presented a generic methodology for
literature-based discovery and have used this methodol-
ogy to identify interactions concerning Raynaud’s phe-
nomenon [24], cataracts [25], Parkinson’s disease [26],
multiple sclerosis [27] and water purification [28]. Kost-
off et al. [29] have also compiled the lessons learned in
these experiments and presented guidelines for further
research. However, in this series of works the authors
have not used any numerical filter to rank the new
interactions found.

We have also to cope with the coverage problem
when looking for biological entity activities by searching
several information sources such as experimental data
[30,31], drug labels [32], scientific papers [5,12-20] and
patents. Patents are very important instruments of
knowledge transfer and researchers commonly resort to
this literature because its great value as a source of stra-
tegic, technical and business-related information [33,34].
Trippe [35], for example, described patinformatics as
the science of analyzing patent information to discover
relationships and trends. Mukherjea et al. [36] developed
a system to retrieve information from biomedical
patents. Larkey [37] described the patent retrieval and
classification system developed for the USPTO. Fall et
al. [38] evaluated the best ways to deal with patent clas-
sification and presented a comparison of the classifica-
tion effectiveness of several algorithms in this task.
Tseng et al. [34] described and evaluated several text
mining techniques to create patent maps and improve
patent analysis tasks such as classification and knowl-
edge sharing. Particularly, the claim section is consid-
ered the most important section in patent specifications
[7,8]. Thus, Shinmori et al. [8] proposed a framework to
represent the structure of the patent claim section and a
method to automatically analyze it. Accordingly, here
we also explore patents, more specifically, the patent
claim section, along with our proposed model in order
to discover new biological entity interactions of potential
interest.

Main contribution

We have created a model to construct networks of
entity interactions from the biological literature with the
objective of finding known and new entity activities in a
biological system. In our model we have used VSM to
identify already known entity interactions. In addition,
we have extended the VSM with a transitive inference
process capable of predicting new entity interactions.
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The networks are formed by subnetworks of interactions
between entities of distinct categories. The advantage of
using categories is the ability to restrict the research
space for interactions between entities of specific cate-
gories and promote more accurate results.

Interactions are initially established in a network by
entity co-occurrences in a textual collection. These
interactions represent known interactions already
described in the literature. The known interactions
receive a weight corresponding the interaction level
between entities based on the similarity value derived
from the application of the VSM. The advantage of
using the VSM is to explore its well documented alge-
braic framework for information retrieval from textual
collections in order to find the entity co-occurrences
and also measure their interaction levels. The VSM con-
tributes for literature-based discovery by helping to pre-
dict the best new potential interactions not easily
extracted from textual collections. The VSM also helps
in situations in which entities rarely co-occurring in a
document set are the ones with the potential best con-
tributions for a researcher.

Our model uses the interactions established in the
network to predict new interactions based on the transi-
tive closure that we have employed in the inference pro-
cess. The transitive closure states that “IF an entity x
interacts with entities y and w AND an entity z interacts
with entity y THEN z may also interact with w”. Differ-
ently from previous work, entities satisfying the transi-
tive closure must always follow a constraint. The
constraint imposes that x and z are entities of the same
biological category C;, y and w are entities of another
category C,, and that C; and C, are distinct categories
(C; =2 C,). This constraint gives rise to the subnetworks
that form the network of interactions. The main advan-
tage of using this constraint is to narrow the research
space of entity interactions promoting more accurate
results. New interactions also receive a value for their
interaction levels, based on the interaction levels of the
interactions satisfying the transitive closure, as will be
detailed later. This makes it possible to rank all entity
activities in the network. The main advantage of ranking
the network interactions is to reduce the human effort
spent in their analysis, by focusing in the ones with the
largest potential.

We have implemented the model in a system called
BioSearch which uses a textual collection formed by
patent claims. In our system, users can search all inter-
actions established in the network (Appendix A [addi-
tional file]). Searching known entity interactions, users
have a representation of the prior knowledge in a given
subject that can be extracted from patent literature.
These interactions are very important because they pre-
sent a description of the current knowledge, avoiding
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patent infringements. On the other hand, users can
search new interactions and have a representation of
possible new technologies that may yet receive patent
protection.

In the present work our goal is not to ensure a com-
prehensive coverage of the biological literature. Instead,
we provide a proof of concept demostrating the applic-
ability of our model in disclosing and ranking new entity
interactions. For this, we have used a small textual col-
lection to assess the model. Many new interactions
inferred by our model based on this collection may have
already been reported in scientific papers, thus validat-
ing our results.

Network construction

Entities in a biological system interact with each other
forming an interaction network. We can classify these
entities into categories such as diseases, drugs, genes,
and targets. In this work we have combined these cate-
gories in order to construct a network composed of n-
dimensional subnetworks. We have extracted all entity
interactions of a subnetwork from a textual collection
using the VSM. Given, for instance, the subnetwork
with dimensional space drug x disease, consider that
our model indicates we have documents reporting the
use of drug m; in the treatment of diseases d; and d,
(Figure 1 (a) ). Moreover, suppose the model also indi-
cates we have documents which report the use of drug
m, in the treatment of disease d;. Then, drugs m; and
my possibly share some common characteristic responsi-
ble for the efficacy of these drugs in the treatment of
both diseases d; and d,. Thus, the model infers a new
connection in the subnetwork drug x disease linking
drug m, and disease d,. The new connection represents
a new use of drug m,. Then, in this example, m; — d,
my — d, and m, —> d; are known interactions found in
the literature. On the other hand, m, — d, is a new
interaction inferred from the previous three known
interactions.

We have represented each subnetwork as a weighted
graph whose weights measure the interaction level of
the entities based on the textual collection. In this
graph, nodes are entities of categories forming the sub-
network dimensional space, edges represent interactions
between entities of distinct categories, and the interac-
tion level is a value in the range [0, 1]. We determine
the interaction level based on the VSM when we look
for the entity co-occurrences throughout the textual col-
lection. In a subnetwork with dimensional space drug x
disease, for instance, suppose that drug m; treats dis-
eases d; with interaction level A and d, with interaction
level B (Figure 1 (b)). In addition, suppose drug m,
treats disease d; with interaction level C. Then, the
model assigns an interaction level to the new connection
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Figure 1 Representations of entity interactions in a 2-dimensional subnetwork.

linking drug m, and disease d, whose value is deter-
mined based on 4, B e C.

The graph in our model is represented by a matrix
that receives biological entities of the subnetwork
dimensions in its lines and columns (Figure 1 (c)). We
have defined that three interactions in the matrix are in
transitive closure when they satisfy the condition (x, )
and (x, w) and (z, y) > (z, w) that means "IF entity x
interacts with entities y and w AND entity z interacts
with entity y THEN z may also interact with w”. Then,
the model infers a new interaction in the matrix when-
ever it finds three interactions satisfying this transitive
closure.

All cells in the matrix initially receive the value 0 indi-
cating no entity interactions (Figure 2 (a)). We use the
entities of a cell in order to form a query. This query
represents a conjunction of entities of distinct cate-
gories. The conjunction is important because it ensures
that documents in which the entities occur are not
orthogonal, i.e., they must have occurrences of all enti-
ties present in the query. Then, we perform searches in

the textual collection in order to find documents satisfy-
ing the query of each matrix cell (Figure 2 (b) ).

The VSM assigns weight values for each query entity
based on the TFIDF strategy (Equation 1). We use these
weights to measure the importance of the entity for a
query of the matrix and also for a document of the tex-
tual collection.

fx,i

max

wx,i = tfx,i X ldfx =

— xlog(+) 1

ji X

In the TFIDF weight strategy w, ; is the weight of
entity e, in a document d; in the textual collection, tf} ;
is the normalized frequency of entity e, in document
d;, idf, is the inverse document frequency of entity e,,
J.i is the frequency of entity e, in document d;, max;,
is the number of times the most frequent entity e;
occurs in document d;, N is the number of documents
in the textual collection, and #, is the number of
documents in the textual collection in which entity e,
occurs.
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Figure 2 Network construction.
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Each query of the matrix receives a similarity value for
each document in the textual collection based on the
VSM (Equation 2). For the VSM similarity, g; is a query
j of the matrix representing a conjunction of entities, ¢
is the number of biological entities of the network, w,;
is the weight of entity e, in document d;, w, is the
weight of entity e, in query g;. In our model, the entity
weights in a query are always 1 (w,; = 1). The similarity
value stated in the VSM indicates the relevance of a
document for a query.

Z::1 (wyixwy ;)
I3 w3,y

We use the similarities returned by equation 2 to
determine the interaction level of the query entities. The
cell linking the query entities receives this interaction
level which represents a known interaction in the sub-
network (Figure 2 (b)). In our current experiments we
determine the interaction level of a known interaction
in 3 different ways: (i) the arithmetic average of the
similarities, (ii) the maximum similarity found, and (iii)
the sum of all the similarities.

After all searches in the textual collection are con-
cluded, we have established all known interactions of
the network. However, some cells remain equal to 0
indicating that some entity interactions are not explicitly
mentioned in the collection (Figure 2 (c)). These cells
with value O represent the potential new interactions
between the biological entities they relate.

The model infers a new interaction in the matrix
whenever it finds three interactions satisfying the transi-
tive closure (Figures 2 (d) and 2 (e)). In our current
experiments the interaction level of a new interaction is
the arithmetic average of the interaction level of the
three interactions satisfying the transitive closure. If
many interactions satisfy the transitive closure, the
model chooses the one with highest arithmetic average
(Figure 2 (f)).

We have applied several iterations of our model on
the matrix of a subnetwork in order to infer new inter-
actions from interactions previously inferred. In iteration
0 the model discovers all known interactions reported in
the textual collection. In iteration 1 the model discovers
new interactions based on the known interactions. In
iteration 2 the model discovers new interactions based
on interactions discovered in iterations 0 and 1. The
model stops iterating when all cells of the matrix
receives a value different from 0 or when it is no more
possible to find interactions satisfying the transitive clo-
sure. Starting from iteration 1, our model divides the
interaction level of new interactions by the number of

sim(d;, q;) = (2)
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iterations performed. This penalty ensures that interac-
tions found in earlier iterations have higher interaction
levels.

Methods

In our experiments, we have considered a sample of
patent claims crawled from the USPTO Web site consti-
tuting a textual collection with 17,830 documents. All
these patents were issued between 01/01/1976 and 12/
31/2005. Besides, in the claim section of all these
patents we are able to find at least one entity of the four
biological categories considered in our crawling process,
namely diseases, drugs, genes, and targets. In the
USPTO Web site the query we have used to retrieve
these patents is represented as aclm/"entity” and isd/1/
1/1976 — 31/12/2005 where aclm specifies the patent
claim section, entity is the biological entity name, and
the isd specifies the patent issue date, respectively. The
entity names are quoted in order to specify the phrase
search mode.

As mentioned, we have considered entities of 4 biolo-
gical system categories: diseases, drugs, genes, and tar-
gets (Table 1). We have chosen these categories based
on their importance for life sciences research and the
practical applications of their entity interactions for the
society. The category disease corresponds to a set of
possible states of a biological system (e. g. breast cancer,
type 2 diabetes, and atherosclerosis). The category drug
corresponds to a set of molecules capable of changing
the state of a biological system (e. g. aspirin, diclofenac,
and tamoxifen). The categories gene and target corre-
spond to a set of building blocks of the biological sys-
tem. The category gene is a set of building blocks
responsible for generating other building blocks (e. g.
major histocompatibility complex class I, and tumor sup-
pressor p53). The category target is a set of building
blocks generated by genes and over which a drug acts
(e. g. cachectin, and progesterone receptor).

In order to detect the entity occurrences throughout
the collection, we have used exact string matching over
the entity names and we have also considered entity
related names such as synonyms. For instance, we have
considered diabetes mellitus type 2 and type 2 diabetes
as the same biological entity of category disease. We
have formed clusters of related names for each entity
(Appendix B [additional file]). A representative single
name in each cluster is used to represent the whole
cluster during the network construction. Some syntactic
variation in entity names are also considered in each
cluster (e. g. Alzheimer’s disease and Alzheimer disease).

In our experiments all categories forming a subnet-
work are disjoint sets. For instance, the categories gene
and target do not have entities in common when form-
ing the subnetwork gene x target. Combining these 4
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Table 1 Categories and web sources of the biological entities

Category Number of Entities Number of Clusters Web Source
Disease 52 22 Karolinska Institute [45],
Mayo Clinic [46],
Therapeutic Target Database [47],
Drug Bank [48],
Medline Plus [49]
Drug 44 22 Drugs.com [50],
Patient.uk [51],
Therapeutic Target Database,
Drug Bank
Gene 43 20 Kyoto Encyclopedia of Genes and Genomes [52],
HUGO Gene Nomenclature Committee [53],
NCBI Entrez Gene [54]
Target 50 23 The Free Dictionary [55],
Therapeutic Target Database,
Drug Bank
Total 189 87

biological categories, we have a network composed by
11 subnetworks (Table 2). Of these, 6 have 2 dimen-
sions, 4 have 3 dimensions, and 1 has 4 dimensions.

In the current implementation of our model we
neither use natural language processing (NLP) [5,15]
nor heuristics to capture the context in which the entity
names are applied in the documents. Notwithstanding,
the entity names we have selected were satisfactory for
our purpose of validating the model, as we shall see.

Results

Network construction

In our experiments the biological network has 266,528
possible interactions. Searching the patent claim collec-
tion our model has identified 1,027 known interactions
(Table 3). Based on these known interactions our model
was able to infer 3,195 new interactions.

We have ranked the subnetworks according to their
best new interactions (Table 4). In most cases, subnet-
works with few dimensions had the higher interaction
levels. This happens because in a subnetwork with many
dimensions it is more difficult to find documents in

Table 2 The subnetworks

Subnetwork

Dimensional Space

disease X drug
disease x gene
disease X target
drug x gene
drug x target
gene X target

disease X drug X gene
disease x drug X target
disease x gene x target

— O 0 N|Oo L1 A W N —

0 drug x gene X target

11 disease X drug X gene X target

which entities of all dimensions co-occur. However, we
find more accurate results in subnetworks with more
dimensions because the model is able to better constrain
the research space when we increase the number of
dimensions of a dimensional space.

Validation

Removing patent claims from our collection according to
the years in which they were issued and applying our model
after each remotion, we observed that new interactions
found in a year were confirmed by patent claims removed
from the collection and issued in more recent years (Figure
3). For example, in order to better assess the quality of our
model, we have analyzed known interactions established in
the network in 2005 that became new interactions in 2004
when the patent claims issued in 2005 were removed from
our textual collection (Table 5). These known interactions
in 2005 represent patents filed in 2005 that our model
would have identified in 2004. Thus, we used these known
interactions in 2005 as confirmation patent claims for new
interactions inferred in 2004. For instance, the interaction
between the disease heart attack and the gene ppar-gama
has 1 patent claim issued in 2005. When we removed this
patent claim from the collection, 61 patent claims indicated
this interaction as a new one in 2004.

Removing all patent claims issued in 2005, our model
predicted 2,930 new interactions based on patents issued
up to 2004. Among these new interactions in 2004, we
had 32 confirmation patent claims filed in 2005. We
then verified the top 100 new interactions found in
2004 for each subnetwork in order to check whether
these 32 confirmation patents were among the highest
ranked indications of our method (Figure 4).

We have observed the distributions of confirmation
patent claims when the known interactions were deter-
mined by the average, maximum and sum strategies
applied over the similarities returned by the VSM. In the
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Table 3 The subnetworks and their number of known and new interactions.

Subnetwork Dimensional Space Known Interaction New Interaction Total
1 disease x drug 192 270 462

2 disease X gene 76 184 260

3 disease X target 138 346 484
4 drug x gene 38 130 168

5 drug x target 105 294 399
6 gene X target 50 175 225

7 disease X drug X gene 71 304 375
8 disease X drug X target 199 958 1.157
9 disease X gene X target 55 269 324
10 drug X gene X target 34 76 110
11 disease x drug X gene X target 69 189 258
Total 1027 3195 4222

subnetwork disease x drug, for instance, we had 275 new
interactions in 2004 (Table 6). This subnetwork had 5 new
interactions with confirmation patent claims issued in
2005. When we used the arithmetic average strategy for
known interactions we had 3 new confirmed interactions
at the top 100 new interactions of this subnetwork rank-
ing. On the other hand, with the maximum and sum stra-
tegies we found 4 new confirmed interactions at the top

100 new interactions of this subnetwork. Further, the first
confirmed new interaction in this subnetwork is among
the top 10 interactions of the ranking and the second one
is among the top 20 when we used the arithmetic average
strategy. In sum, when we applied the average, maximum
and sum strategies, we found 53%, 56%, and 69% of the 32
confirmation patents at the top 100 new interactions of all
subnetworks, respectively.

Table 4 Ranking of subnetworks based on their best new interactions and number of dimensions. The interaction
level of known interactions was determined by the arithmetic average of all similarities returned by the vector space

model.

Subnetwork Dimensional Space New Interaction Level of Interaction

6 gene androgen receptor 09757
target adrenaline

2 disease HIV 09738
gene transforming growth factor, beta 1

5 drug verapamil 0.9597
target cyclooxygenase 2

1 disease erectile dysfunction 0.9470
drug divalproex

3 disease arrhythmia 09272
target cyclic.gmp phosphodiesterase

4 drug ciclosporin 0.8211
gene androgen receptor

8 disease alzheimer dementia 0.8807
drug acetylsalicylic acid
target adrenaline

10 drug acarbose 0.8723
gene apolipoprotein a 1
target lymphotoxin

9 disease parkinson disease 0.8695
gene apolipoprotein e
target choline acetylase

7 disease gout 0.8357
drug hydrochlorothiazide
gene endothelin 1

1 disease breast adenocarcinoma 0.7826
drug tamoxifen
gene ppar-gamma

target

hmg-coa reductase
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Figure 3 Interactions with confirmation patent claims by year.

2004 |-

In addition, we have looked for papers on the Web in
order to confirm some of the new interactions found in
2005. For instance, the best result found in our model
relates the interaction between the androgen receptor
gene and the adrenaline neurotransmitter in the 2-
dimensional subnetwork gene x target. Sastry et al. [9]
reported that the antiapoptotic effect of epinephrine
partially depends on androgen receptor. A modest
decrease in the antiapoptotic effect of epinephrine in
cells where androgen receptor expression was reduced
provides evidence that epinephrine reduces sensitivity of
cancer cells to apoptosis.

We have found confirmation papers on the Web for
the first new interaction of five 2-dimensional subnet-
works (Table 7). Out of six 2-dimensional subnet-
works, four have had their most relevant new
interaction confirmed by later papers issued from 2007
up to 2009. In just one case we have not found a con-
firmation paper for the first new interaction, in the
ranking of the 2-dimensional subnetwork drug x tar-
get. We have not found any confirmation paper for the
first new interaction in the ranking of the 3-dimen-
sional subnetworks neither for the 4-dimensional sub-
network. We have not looked for papers on the Web
for new interactions in other positions of the rankings
in each subnetwork.

12 Tep 100 nev

Interaction Level

Ranking Position

Figure 4 Distribution of confirmation patent claims filed in
2005 throughout the levels of the ranking constructed with
patents issued up to 2004 for the subnetwork drug x target.
The number of new interactions predicted in this subnetwork in
2004 is 282. We have found 4 confirmation patent claims filed in
2005 for the new interactions predicted in 2004. The position of
these 4 confirmation patent claims in the ranking of new
interactions predicted in 2004 are respectively 3, 14, 39, and 159.
Thus, we have observed that 3 confirmation patent claims were
among the top 100 best ranked indications of subnetwork drug X

target.

Example session

Research space of new interactions

In our model, subnetworks with more dimensions con-
strain better the search space for new interactions, thus
promoting more accurate results. For instance, consider
a researcher using our system who is interested in new
interactions related to the drug aspirin. Initially, the
researcher decides to analyze the interactions of aspirin
with HMG-CoA reductase, cachectin and acetylcholines-
terase targets (Figure 5).

Our system shows that the best option would be to
conduct research about the interaction between aspirin
and acetylcholinesterase, since this interaction has a
high interaction level (l, = 0.9514 where [, is the inter-
action level in the n-dimensional subnetwork, n = 2, 3,
4...) and the other two are known interactions. There-
fore, our model predicts the interaction between aspirin

Table 5 The top 5 known interactions with high interaction level in 2005 that became new interactions in 2004. The
interaction level of known interactions was determined by the arithmetic average of all similarities returned by the

vector space model.

Subnetwork Dimensional Space Interaction Level in 2005 Level in 2004 Patents in 2005 Patents in 2004

5 disease heart attack 0.9999 0.8324 1 61
gene ppar-gamma

1 target adrenaline 0.9866 0.8676 1 36
disease cardiac ischemia

11 target hmg coa reduct. 0.9190 0.6383 1 5
disease breast cancer
drug tamoxifen
gene kennedy disease

2 target gp iib/iiia 09137 0.8354 1 103
drug neoral

4 disease HIV 0.9041 0.8825 1 30
drug bonyl
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Table 6 The subnetworks and their number of confirmation patent claims at the top 100 new interactions predicted in

2004.

Subnetwork Dimensional Space

New Interactions in 2004 Confirmations Issued in 2005 Distribution at the Top 100 New

Interactions

AVG MAX SUM
1 disease x drug 275 5 3 4 4
2 disease X gene 167 2 2 2 2
3 disease X target 348 2 1 1 1
4 drug x gene 119 0 0 0 0
5 drug x target 282 4 3 3 3
6 gene X target 152 3 2 2 3
7 disease x drug X gene 308 4 1 1 4
8 disease X drug X target 786 9 2 2 3
9 disease X gene X target 242 2 2 2 2
10 drug x gene X target 76 0 0 0 0
11 disease x drug x gene X target 175 1 1 1 0
Total 2 930 32 17 18 22
% 53 56 69

and acetylcholinesterase as a very promising research
topic. However, the researcher can still reach more pre-
cise results since the search space is still very large and
these entities can interact with several other entities of
distinct categories. In other words, the researcher may
obtain even more accurate results when considering
subnetworks with more dimensions.

Using a 3-dimensional subnetwork, the researcher
now considers the dimension gene in the analysis. Then,
the researcher discovers that the interaction between
aspirin and the acetylcholinesterase becomes less pro-
mising because no interaction between these entities is
established in the 3-dimensional subnetwork. The
researcher realizes that in the 3-dimensional subnetwork

Table 7 Confirmation papers for the first new interaction predicted in 2005 for each subnetwork.

Subnetwork Dimensional Space

First Interaction

Confirmation Papers

1 disease X drug

disease x gene
disease X target
drug x gene
drug x target

gene x target

impotence
divalproex

acquired immunodeficiency syndrome
transforming growth factor, beta 1
arrhythmia

cyclic-gmp phosphodiesterase
ciclosporin

androgen receptor

verapamil
cyclooxygenase 2

androgen receptor
adrenaline

[56,57]

[58,59]

[60]

[61,62]

none

Bl

disease X drug X gene

disease X drug X target

disease x gene x target

drug x gene X target

gout
hydrochlorothiazide
endothelin 1

alzheimer's disease
aspirin

adrenaline
parkinson's disease
apolipoprotein e
choline acetylase
acarbose
apolipoprotein a-1
lymphotoxin

none

none

none

none

disease X drug x gene X target

breast cancer
tamoxifen
ppar-gamma
hmg-coa reductase

none
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Figure 5 Research space for some possible interactions with
the drug aspirin. Gray lines are known interactions and green lines
are new interactions. The interaction level of known interactions
was determined by the arithmetic average of all similarities returned
by the vector space model.

drug x gene x target the interaction between aspirin,
HMG-CoA reductase and leptin with interaction level /3
= 0.6861 becomes the most promising research topic.
Finally, going a step further by searching the 4-dimen-
sional subnetwork, the researcher discovers that the
interaction among aspirin, HMG-CoA reductase, leptin
and type 2 diabetes with interaction level [, = 0.7178 is
in fact the most promising interaction for research.
Interaction history

The history of how each new interaction may have been
established in the network can be followed with the Bio-
Search system. As an example, we observe the history of
the new interaction with highest interaction level in the
network when we used the arithmetic average strategy
to determine the known interaction values. Our model
inferred this interaction in 3 steps on the matrix of sub-
network gene x target (Figure 6).

In the first step the model identifies the possible new
interaction between the androgen receptor gene and the
adrenaline target (Figure 6 (a)). In the second step, the
model finds three known interactions in the transitive
closure. These known interactions produce an interac-
tion level for the new interaction with value 0.8761 (Fig-
ure 6 (b)).

In the third step, the model finds other three known
interactions in the transitive closure. In this case, the
known interactions produce a new interaction with
value 0.9757 (Figure 6 (c)). No more possibilities are
found for this new interaction. Thus, the interaction
level found at the third step becomes the interaction
level of the new interaction because it is higher than
that found in the second step.
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Discussion

We have been able to achieve significant results in a
strategy that combines the VSM with an inference pro-
cess in order to predict new biological entity activities.
We have used this strategy to model biological systems
and to construct a network of biological entity interac-
tions. Modeling biological systems is a complex task for
many reasons. For example, we must consider a large
number of biological parameters, we must identify entity
concentrations and roles in different reactions, and we
must bear in mind that biological systems are not linear
systems and perturbations commonly give rise to unex-
pected results. Thus, we have abstracted details and stu-
died biological systems in a higher level in order to
decrease their complexities and conduct our analysis
[39]. Our abstraction of biological systems is con-
structed from textual collections that represent a parti-
cular view of the technological advances in life sciences
reported in patent claims.

In our model, we have focused on retrieving biological
entity information from a textual collection consisting of
patent claims using the VSM and expressing this infor-
mation in a transitive closure. This approach has
allowed several analysis with important findings. The
approach has indicated the VSM as a useful tool to
retrieve relevant information in an inference process
and how the biological knowledge is interconnected in
patent claims.

Texts in patents have a particular writing style charac-
terized by a rich technical terminology and an inten-
tional vagueness in order to promote wide protection to
inventions [8,33,34,36,38]. This intentional vagueness
may bring a potential benefit to our inference strategy
of new interactions. The vagueness in patent texts can
indicate some known interactions not easily observed in
other literatures characterized by a more strict writing
style, as scientific papers. From these known interactions
we can infer new ones that are even more innovative
than those predicted from texts with strict writing style.

As observed in some contemporary search engines,
term co-occurrences is a good way to restrict the docu-
ments which can better satisfy an user information
need. Thus, term co-occurrences is a good strategy to
isolate good hits from a big mass of documents. In addi-
tion, previous work in the field of literature-based dis-
covery have indicated many important findings relying
on term co-occurrences [12,13,16]. Particularly, Jenssen
et al. [10] have shown that co-occurrences reflect biolo-
gically meaningful relationships, thus providing an
approach to extract and structure known biological
knowledge. Accordingly, in our work we have relied on
term co-occurrences in order to produce relevant results
from a textual collection.
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Figure 6 History of the inference process. Entities in blue are genes and entities in red are targets. The interaction level of known interactions
was determined by the arithmetic average of all similarities returned by the vector space model.

Our model has predicted 2,930 new interactions con-
sidering patent claims issued up to 2004. In 2005, we
have 32 patent claims in which these new interactions
are mentioned. These 32 patent claims issued in 2005
serve as confirmations for the new interactions pre-
dicted in 2004. We have also observed that using the
VSM we have ranked up to 69% of these 32 new inter-
actions among the 100 first new interactions of all sub-
networks. In other words, 69% of the confirmed
interactions would have been identified within the top
100 new indications of all subnetworks. These 32 confir-
mation patent claims also demonstrate that implicit
interactions not easily observed in a textual collection

must be recognized as important contributions in the
field of literature-based discovery.

We consider the 32 new interactions with confirma-
tions as a significant number mainly when considering
the reduction in the number of biotechnological patents
filed from 2001 to 2004 [40], and the fact that patents
are not filed for the majority of scientific discoveries,
being instead published as research papers [41-43]. In
fact, we already expected a small number of confirma-
tion patent claims for two main reasons. First due to the
fact that these are patents filed in 2005, only one year
after the new interactions were indicated by the collec-
tion issued up to 2004. A higher number of patents may
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have been filed in later years which would provide more
indications. Second, filing a patent is the final step of a
long sequence of activities related to scientific discovery,
and most researchers stop in the scientific article publi-
cation phase. As such, a large number of confirmation
patent claims should probably never been expected.

Our findings have encouraged us to further investigate
biological parameters we have to use in order to
improve our representation of biological systems and
achieve better results in the inference process and rank-
ing strategy. These parameters have another important
function in preventing noise propagation. Interactions

poorly established in the network propagate spurious
interactions in the inference process. Thus, this study
should help impose constraints to the identification of
interactions during network construction. The definition
of these parameters for several sources and their inte-
gration in our model is also an important concern.

In literature-based discovery, simple ranking strategies
that promote new interactions based on the raw fre-
quency of known interactions found in textual collec-
tions are often used. However, they show, in some
situations, implicit interactions that have already been
studied but were not documented because they are not
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feasible or are unwanted in practice. Our results demon-
strate, on the other hand, that ranking strategies based
on the VSM are good tools for the identification of sig-
nificant implicit interactions occurring in texts, mainly
those occurring in few documents of a textual collec-
tion. This is an important contribution because it is far
more difficult to find relevant new interactions from
knowledge not frequently co-occurring in a literature
than that often observed. However, we must always
keep in mind that relevance is a subjective concept.
Therefore, biological entity interactions may be consid-
ered differently, i.e., with different importance, by differ-
ent researchers. Then, we must consider strategies in
literature-based discovery as complementary tools that
help to identify the best new interactions based on the
researcher’s interests. In this sense, we should even
think of systems in which new ranking strategies may be
integrated as add-ons.

We should also emphasize that our goal is not to
ensure a complete coverage of the biological literature,
creating an enormous network of known interactions.
Instead, we focus in providing a proof of concept to
show the VSM applicability to disclose and rank biologi-
cal entity activities based on implicit connections found
in biological literature. Accordingly, we have checked
the existence of these implicit connections in patent
claims using a small and restricted textual collection
just for assessing the model. We are aware that many
new interactions inferred by our model have already
been reported in scientific papers. However, we have
observed that these findings had not received patent
protection at the USPTO until 2005 and we have used
some of these scientific papers as validation of our

results, mainly due to the inexistence of textual collec-
tions currently available for validating literature-based
discovery systems [21,22,44]. For a production system
we should index as much as possible of the current bio-
logical literature sources in order to filter prior art.
Nevertheless, we have observed that our strategy pro-
vides a good tool for tracking scientific advances pub-
lished in scientific papers but not yet protected under
the intellectual property law.

Conclusions
In this work we have introduced a technique that
employs the Vector Space Model (VSM) for the identi-
fication of biological entity activities based on a net-
work of biological entity interactions extracted from
textual collections. The algebraic framework of the
VSM has demonstrated to be a helpful tool in the task
of finding known biological entity activities. We have
extended the VSM with a transitive closure approach
in order to predict new potential biological entity
activities. The transitive closure we have used explores
the primary and secondary activities of entities in a
biological system. In addition, we have imposed a con-
straint in this transitive closure in order to ensure that
interactions established in the network connect entities
of distinct categories. This constraint reduces the
search space for new interactions, promoting more
accurate results. Moreover, we have used the similarity
values derived from the VSM to rank the new discov-
ered entity activities.

Our experiments using a collection of USPTO patent
claims demonstrate that the biotechnological patent lit-
erature has implicit connections that can be explored to
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provide further advances in life sciences. Iterating our
model according to the years in which the patent claims
were issued, new interactions found in a year were con-
firmed by patent claims not in the collection and issued
in more recent years. The experiments also showed that
many confirmation patent claims were found for inter-
actions at the top of our ranks of results. For instance,
considering the ranking strategy based on the sum of
the similarities returned by the VSM we had 69% of the
confirmation patents among the first 100 new interac-
tions of all subnetworks. We have also found scientific
papers that validate several of the suggested interactions.

For future work we intend to construct networks
using other patent fields (e.g. title, abstract and descrip-
tion sections), the whole patent text, and other sources,
such as paper abstracts, paper titles and drug labels. We
will analyze the contribution of all these pieces of evi-
dence in our inference process when they are considered
separately and together. In addition, we intend to
explore natural language processing techniques and
ontologies in order to improve the identification of
entity co-occurrences in the textual collection. More-
over, we also want to conduct our analyses by consider-
ing entities co-occurring in one sentence, in a window
of sentences, and in a whole paragraph in order to eval-
uate a phrase-based VSM approach in the context of
our model. Then, we will apply proximity criteria for
these occurrences in order to ensure the semantic inter-
action between entities. Furthermore, we will evaluate a
set of biological parameters extracted from the literature
in order to help with the establishment of interactions
in the networks. Finally, we intend to study other possi-
ble strategies to rank biological interactions and conduct
a trend analysis on how the interaction value evolves
when restricting the number of documents in the tex-
tual collection.

Additional material

Additional file 1: Appendix. A concise explanation of the Biosearch
system interface and the clusters of entity names we have used in our
current experiments.
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