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Abstract

Background: Besides being building blocks for proteins, amino acids are also key metabolic intermediates in living
cells. Surprisingly a variety of organisms are incapable of synthesizing some of them, thus named Essential Amino
Acids (EAAs). How certain ancestral organisms successfully competed for survival after losing key genes involved in
amino acids anabolism remains an open question. Comparative genomics searches on current protein databases
including sequences from both complete and incomplete genomes among diverse taxonomic groups help us to
understand amino acids auxotrophy distribution.

Results: Here, we applied a methodology based on clustering of homologous genes to seed sequences from
autotrophic organisms Saccharomyces cerevisiae (yeast) and Arabidopsis thaliana (plant). Thus we depict evidences
of presence/absence of EAA biosynthetic and nitrogen assimilation enzymes at phyla level. Results show broad loss

of the phenotype of EAAs biosynthesis in several groups of eukaryotes, followed by multiple secondary gene
losses. A subsequent inability for nitrogen assimilation is observed in derived metazoans.

Conclusions: A Great Deletion model is proposed here as a broad phenomenon generating the phenotype of
amino acids essentiality followed, in metazoans, by organic nitrogen dependency. This phenomenon is probably
associated to a relaxed selective pressure conferred by heterotrophy and, taking advantage of available
homologous clustering tools, a complete and updated picture of it is provided.

Background

Creation and analysis of groups of orthologous genes
have been widely used for gene function prediction, evo-
lutionary and divergence time studies [1]. Moreover,
orthology is also a valuable source for evolutionary com-
prehension of pathways through phylogenetic analysis.
In respect to a central issue on cellular metabolism, the
order of appearance for universal cellular metabolisms
was estimated by Cunchillos and Lecointre [2,3], with
amino acid catabolism and anabolism being respectively
the first and second pathways to appear, even earlier
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than glycolysis and gluconeogenesis. The amino acids
biosynthesis, rather than linear and universal series of
reactions with homologues occurring in different organ-
isms, sometimes relies on alternative pathways, as
shown by Herndndez-Montes et al. [4]. Moreover, gene
loss and pathway depletion, important events in genome
evolution, can be inferred from the orthologous groups
through comparative genomics. Today, a vast amount of
information is provided by intensive genome sequen-
cing, and the efforts of grouping homologous genes had
reached great standards.

Amino acid anabolism is responsible for about 20% of
the energy that cells spend on protein synthesis [5,6].
The nutritional requirements of essential amino acids
and nitrogen are of striking importance and they have
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been estimated as ~22mg/kg of EAAs and 3mg/kg of N
in human body [7,8]. More recent approaches for diet-
ary requirement calculations, using amino acid oxidation
as an indicator, reveal that the requirement is over five
fold what the classical approaches indicated, and the
requirement has now been determined for each of the
nine human EAAs [9]. It is of general understanding
that plant, as well as fungi, synthesize all amino acids
required for protein synthesis and that evolutionary pro-
cesses culminated in human inability to synthesize nine
amino acids (histidine, phenylalanine, tryptophan, valine,
isoleucine, leucine, lysine, methionine and threonine),
thus called essential amino acids (EAAs), which must be
obtained through diet. Amino acids also constitute our
source of organic nitrogen. There have been few
attempts to understand why some amino acids have
become essential. However, genome deletion events
have happened in the past and many organisms have
lost a number of important enzymes necessary for de
novo biosynthetic pathways. Hitherto, the pattern of loss
versus retention for amino acids biosynthetic pathways
was analyzed for a few protists and metazoans by Payne
and Loomis [10]. They verified that the set of essential
amino acids is the same in animals and protists. Cur-
iously, most of the retained amino acids are intermedi-
ates in secondary pathways like purine ring biosynthesis
and nitrogen metabolism.

An overview for the presence/absence of the enzymes
which compose the amino acid biosynthetic pathways,
among distinct phyla in the tree of life, could be accom-
plished with (i) rich protein databases such as the Uni-
Prot Knowledgebase (UniProtKB) [11] comprising over
10 million full-length sequences and (ii) the current
initiatives to group these proteins by evolutionary relat-
edness - called homologues - such as COG-Cluster of
Orthologous Groups [12] and KEGG Orthology [13].
Unfortunately these initiatives consider only proteins
derived from complete genomes and thus a large
amount of information is currently lost, with over 6 mil-
lion remaining full-length proteins that belong to organ-
isms with still incomplete genomes.

Here, we applied a methodology that takes into
account all available protein information to depict, at
phyla level, the EAA biosynthetic and nitrogen assimila-
tion enzymes scenarios to inspect how and when amino
acid auxotrophy has first appeared along evolution.

A Great Genomic Deletion model is proposed to
explain the phenotypic inability to synthesize amino
acids that appears independently in distinct phylogeneti-
cally distant clades of eukaryotes. Such events should be
followed by subsequent steps of gene loss due to relaxed
selective pressure in already incomplete pathways, lead-
ing to an eventual loss of all genes for a particular bio-
synthesis pathway in some clades. Accordingly, in
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metazoans but Cnidaria, dependence on organic nitro-
gen accompanies the evolution of heterotrophy, thus
organisms become dependent even on NEAA for sup-
plying their nitrogen requirements.

Results

Clustering homologues of amino acid biosynthetic
enzymes

To determine the distribution of amino acid biosyn-
thetic enzymes, a homologue clustering process was
developed to allow the use of both complete and incom-
plete genomes [14,15]. The procedure starts with Seed
Linkage software [14] that clusters cognate proteins
from multiple organisms beginning with a single seed
sequence through connectivity saturation with it. Since
basal eukaryotes such as plants and fungi are auto-
trophic, sequences coding for all the enzymes used in
the biosynthesis of EAAs from the plant Arabidopsis
thaliana and the fungus Saccharomyces cerevisiae were
manually inspected using KEGG Pathway and used as
seeds to search for homologues. Moreover, our group
has been developing a procedure to enrich secondary
databases such as COG [12] and KEGG Orthology (to
be published) with UniRef50 clusters [16] available from
UniProt, therefore allowing the inclusion of data from
incompletely sequenced genomes. Additional file 1:
Sequences and genome status distribution reflects the
abundance of proteins derived from incomplete gen-
omes and evidences the importance of their inclusion.
In this work we took advantage of a home-built Uni-
Ref50 Enriched KEGG Orthology database (UEKO) to
additionally cluster sequences with the seed sequences
mentioned above. Since these searches recruit sequences
from diverse clades, which may or may not contain
organisms with completely sequenced genomes, we
represented this information in Figure 1 as: (a) black
filled circles for phyla containing complete genomes; (b)
grey filled circles comprise clades with at least one draft
genome available, but no complete genome, and (c)
empty circles represent phyla with no complete nor
draft genomes. Protein fragments are not included in
the search for homologues because they may represent
partial sequenced full length proteins at mRNA level or
incompletely modeled from genome. Moreover since
some full length proteins might have not been captured
in databases due to high sequence divergence, a second
search round used UniProt to query all clustered
sequences. This step also captures partial sequences
(entries labeled as fragments in UniProt) which were
approved by the coverage filtering applied (see Methods
for details). These additional significant hits are repre-
sented by triangles in Figure 1. Furthermore, enzymes
required for the biosynthesis of the indicated amino
acids are ordered in the anabolic pathway from left to
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Figure 1 Essential amino acid anabolic pathways. Schematic representation for presence/absence of anabolic enzymes for nine essential
amino acids and the non-essential amino acids serine and glycine. Eukaryotic taxonomic tree displayed at phyla level. Circles represent detection
of complete proteins and triangles detection of complete and fragmented proteins. Black: phyla containing complete genomes; Grey: at most
organisms with draft genomes; White: phyla with no complete or draft genomes. Saccharomyces cerevisiae (Ascomycota) and Arabidopsis thaliana
(Streptophyta) were used as seeds. The 4 distinct aminotransferases in phenylalanine pathway are: (i) aspartate aminotransferase (ii) histidinol-
phosphate aminotransferase (iii) aromatic amino acid aminotransferase (iv) tyrosine aminotransferase. The 4 distinct methyltransferases in
methionine pathway are: (i) 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase (i) homocysteine S-methyltransferase (iii)
betaine-homocysteine methyltransferase (iv) 5-methyltetrahydrofolate—-homocysteine methyltransferase. The 3 distinct transaminases in glycine
pathway are: alanine-glyoxylate transaminase, serine-glyoxylate transaminase and serine-pyruvate transaminase.
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right. All pathways refer to EAAs biosynthesis except
serine and glycine (the rightmost ones) used as experi-
mental controls. Serine is represented with two alterna-
tive pathways observed in human and other eukaryotes:
S(1), from 3P-D-glycerate; and S(2), from pyruvate. Gly-
cine is also represented by two pathways: G(1) and G(2),
both coming from serine; and G(3), coming from threo-
nine. As expected, serine and glycine biosynthesis were
found to be potentially proficient in almost all phyla.
This control supports the searching mechanism and
attest for the efficacy of methods applied. A few excep-
tions were observed and deserve comments: (i) Serine
biosynthetic pathways was found to be absent in Rhodo-
phyta, although the complete genome of Cyanidioschy-
zon merolae is available. We manually inspected this
result with regular BLAST searches and did not find
additional evidence, although a translation of partial
CDS was obtained for glycine biosynthetic enzyme G1
(Figure 1, triangle); (ii) Serine biosynthesis seems absent
in Apicomplexa as well, a clade comprising two Plasmo-
dium complete genomes lacking enzymes S1 and S4;
(iii) Considering the animals, besides being able to find
serine biosynthetic enzymes, we fail to support the
NEAA character of glycine for Mollusca. However,

evidences could be obtained for ancient organisms such
as Placozoa and Porifera. For the Microsporidia E. cuni-
culi, an obligatory intracellular parasitic fungus with
complete genome, it has been reported that “the reper-
toire for the biosynthesis of amino acids is restricted to
asparagines synthetase and serine hydroxymethyltrans-
ferase genes”, then serine was known as an EAA [17].
Thus, absence of evidence may not guarantee the
absence of the gene. However, out of 28 phyla, discard-
ing both the four clades with no genome project or in
progress (open circles) and the ones with complete gen-
ome (filled symbols), we could not provide evidence of
glycine biosynthesis for two phyla (Fornicata and Mol-
lusca). However evidence for serine has been provided
in all of them.

Data presented in Figure 1 clearly depicts the presence
of complete biosynthetic pathways for EAAs in both
plants (Chlorophyta and Streptophyta) and fungi (Asco-
mycota and Basidiomycota), as stated above. In previous
work we hypothesized that a great event of genome
deletion on which many of the intermediate enzymes
for biosynthetic pathways for amino acids have vanished,
ended up affecting the usage of EAAs in chordate pro-
teomes [18,19]. In 2006, Payne and Loomis [10] using
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pFam protein signatures reported that protists and ani-
mals share essentiality for the nine amino acids. Here
we provide a broader analysis covering all genomes
available today and trying to map how and when the
Great Genomic Deletion has happened. Evidence was
found suggesting that this loss of capability to synthesize
EAAs is conspicuous at the base of metazoan evolution,
simultaneously affecting the complete set of EAAs. The
phenomenon is characterized as an initial phenotypic
deficiency, observed in Choanozoa, followed by multiple
secondary gene losses. Accordingly, some enzymes
found in Chordata such as K14, M4 and M9 are missing
in Arthropoda. Remarkably, some components such as
VIL1 and M7 are maintained in most metazoan clades,
despite of pathway loss.

Actually, a Great Deletion causing concurrent pheno-
typic loss of amino acid biosynthesis capability affects
both metazoan and non-metazoan eukaryotes. Several
clades containing complete genomes (black filled sym-
bols) such as Rhodophyta, Euglenozoa and Apicom-
plexa, show similar EAAs pattern. Moreover, some
evidence is provided suggesting the absence of com-
plete pathways in the non-Dikarya Fungi Microsporidia
and Neocallimastigomycota. This gives support to
separate events of Great Genomic Deletion for the ori-
gin of EAAs auxotrophy in at least three other
branches. Similarly to Choanozoa, clades such as Het-
erokontophyta and Rhizaria present various enzymes
and some complete pathways. Evidences of complete
pathways for all EAAs but histidine (H) were obtained
in Heterokontophyta. Valine (V), isoleucine (I), lysine
(K) and threonine (T) are potentially synthesized in
Rhizaria as well as methionine (M) in Euglenozoa and
Amoebozoa. However it is possible that other EAAs
may also be synthesized in some of these clades. The
anabolic capabilities suggested by the current data
might be underestimated because we have only draft
genomes available for most of these organisms. The
Choanozoa clade contains only draft genomes. Though
we observed more enzymes than in metazoan clades, a
final picture of Choanozoan phenylalanine biosynth-
esis, for example, might require completion of genome
sequencing. Further gene loss occurs during metazoan
evolution; however, for Placozoa, Porifera and Cni-
daria, the Great Genomic Deletion seems to be well
established. Since the first available sponge genome is
still an ongoing project and its proteins are not yet
deposited in UniProt, we manually inspected the
deduced proteome using regular BLAST alignments
(see Methods) and evidenced auxotrophy for all nine
EAAs. The same simple approach was applied to all
phyla (Figure 1, triangles). Other clades that do not
present any enzymes were omitted from Figure 1, such
as Apusozoa and Jakobida.
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Lysine biosynthesis

Inspection of Figure 1 depicts a remarkable difference
on lysine (K) biosynthesis pathways present in fungi and
plants. Since the occurrence of an a-aminoadipate
(AAA) pathway K(1) in Fungi [20] as opposite to a dia-
minopimelate (DAP) pathway K(2) known to be present
in plants, algae and bacteria [21,22] has already been
reported, we set up to depict the complete scenario for
K biosynthesis including prokaryotes (Figure 2). A third
pathway K(3) preferentially used by Archaea but also
reported to exist in bacterial groups [23] was also con-
sidered, therefore sequences from the Pyrococcus hori-
koshii archaea were also used as seed for homologue
sequence clustering. Data supports the view that the K
(2) pathway, found to be complete in plants, is often
present in prokaryotic clades of bacteria and archaea, in
agreement with previous findings [21,22]. Curiously,
nine bacterial clades (Acidobacteria, Chlorobi, Deferri-
bacteres, Deinococcus-Thermus, Fusobacteria, Chlamy-
diae, Synergistetes, Tenericutes and Thermotogae) — all
of which contain complete genomes — do not present
K12 enzyme, but there are three other alternative sub-
sets of enzymes present in prokaryotes that could cir-
cumvent this step in lysine biosynthesis. Chlamydiae
may represent an evidence of amino acid essentiality
extended to prokaryotes, since diaminopimelate decar-
boxylase (K14) is absent and there are no known alter-
natives to this reaction. The set of enzymes responsible
for the K(3) pathway, was found to occur in prokaryotes,
and it is complete in the archaeal clades Crenarchaeota
and Euryarcheota, as well as in the bacterial clades
Chloroflexi and Proteobacteria, and probably in Actino-
bacteria and Bacteroidetes. Remarkably, the first four
enzymes that constitute this pathway are coincident
with the K(1) pathway (indicated by gray shading). The
complete K(1) pathway occurs in Proteobacteria (and
possibly in Actinobacteria, Bacteroidetes and Firmicutes,
as evidenced by regular BLAST) and fungi. Thus, it is
tempting to assume that a variant synthesis of K
occurred in Archaea and, being modified in one of the
four bacterial phyla above (with the addition of three
enzymes: aminoadipate-semialdehyde dehydrogenase,
saccharopine dehydrogenase NADP+ and saccharopine
dehydrogenase NAD+), ended up constituting the fungi-
occurring K biosynthetic pathway. The eukaryotic clades
Rhizaria and Heterokontophyta, which present the K(2)
pathway, appear to group with plants.

Nitrogen auxotrophy

Consumption of amino acids is an important route for
nitrogen assimilation in other biological compounds for
heterotrophic organisms, such as those comprised by
some of the clades shown in Figure 1 (e.g. Chordata).
Assimilation of free ammonium in eukaryotes is done
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Figure 2 Lysine anabolic pathways. Schematic representation for presence/absence of enzymes involved in lysine biosynthesis. K(1) represents
Fungi a-aminoadipate (AAA) pathway; K(2) bacteria, plants, and algae diaminopimelate (DAP) pathway; K(3) archaea a-aminoadipate (AAA)
variant pathway. Taxonomic tree displayed at phyla level. Circles represent detection of complete proteins and triangles detection of complete
and fragmented proteins. Colors are as for Figure 1. Saccharomyces cerevisiae (Ascomycota), Arabidopsis thaliana (Streptophyta) and Pyrococcus
horikoshii (Euryarchaeota) were used as seeds.
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by a cytoplasmatic reaction catalyzed by glutamate dehy-
drogenase (EC:1.4.1.4) which incorporates ammonium
into alpha-ketoglutarate yielding glutamate, using elec-
trons from a reduced cytoplasmatic co-enzyme NADPH.
Two isoforms are present in fungi and one in plants,
the latter having the additional option to not only
assimilate nitrogen, but also to fixate it, often with the
association of nitrogen-fixating bacteria. Thus, to inves-
tigate if the Great Genomic Deletion of biosynthetic
enzymes for EAAs co-occurred with the heterotrophy
for nitrogen, we generated clusters of the assimilative
isoforms (EC:1.4.1.4) and, as a control, the mitochon-
drial enzymes (EC:1.4.1.2) which tend to operate in the
reverse direction, i.e. glutamate degradation, by oxidiz-
ing it and delivering ammonium, loading electrons in
NAD+ co-enzyme. In yeast, the cytoplasmic assimilative
isoforms are named GDHI and GDH3, and the catabolic
(mitochondrial) is known as GDH2. Arabidopsis thali-
ana proteins were also used as seed together with the
Saccharomyces cerevisiae sequences: one known as puta-
tive GDH which grouped with the fungi assimilative
ones, and three catabolic GDHs, that grouped with the
human mitochondrial GLUDI, though not with the
yeast catabolic GHD2. Results are shown in Figure 3A.
The left column shows a cluster that groups assimilative
isoforms with the two from yeast and the putative GDH
from A. thaliana. The catabolic mitochondrial isoforms
from yeast (central column) and plant (right column)
formed two independent clusters. In metazoan organ-
isms, an assimilative enzyme was found in the basal
group Cnidaria, all others being dependent on amino
acid consumption to build nitrogenated compounds
such as DNA, Porifera included. Assimilative isoforms
were also lacking in Choanozoa although complete gen-
omes are unavailable. The same was observed for Placo-
zoa. Comparing these results with those shown in
Figure 1, it is remarkable that Choanozoa, while still
registering many amino acid biosynthetic enzymes (37
out of 61, redundancy eliminated) shows a simultaneous
deletion in both EAAs biosynthesis and nitrogen assimi-
lation. It is also apparent that the Great Genomic Dele-
tion attains its almost final broad distribution in
Cnidaria, which may be the last metazoan clade still
capable to assimilate nitrogen from free ammonium.
Therefore a few biosynthetic enzymes remain, in this
clade and other Metazoa, probably by connective func-
tions in metabolism (e.g. EC: 1.2.1.31 aminoadipate-
semialdehyde dehydrogenase K5 and EC: 1.5.1.7 sacchar-
opine dehydrogenase K7 also participates in the lysine
degradation pathway). We have also observed that mam-
malian GDH (GLUDI) presents a specialized allosteric
control [24] which might have turned the enzyme
toward glutamate catabolism rather than anabolism.
Such control was first observed in Ciliophora [25] and it
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is thought to have been transferred by lateral gene
transfer to the metazoan ancestor [26]. To confirm the
grouping in three clusters of enzymes with so similar
activities, Figure 3B shows a phylogenetic tree built with
eukaryotic glutamate dehydrogenase sequences, which
clustered the isoforms in total accordance with data
shown in Figure 3A.

The non-Metazoa eukaryotes with complete genomes,
such as Alveolata, Apicomplexa and Euglenozoa, lack
EAA biosynthetic enzymes (Figure 1) but keep the cap-
ability of nitrogen assimilation (Figure 3). Fornicata and
Parabasalia, although represented only by draft genomes,
have shown to contain the nitrogen assimilation enzyme
even if they appear to be auxotrophic for all EAAs.
Lacking detection of any isoform of glutamate dehydro-
genase and with available draft genomes is Rhizaria (no
complete genomes available), which still presents some
EAA biosynthetic capability. It is possible that the
dependency of organic nitrogen has been attained earlier
in Rhizaria, although complete sequencing is required
for a sound conclusion. In general, data support a ten-
dency for nitrogen heterotrophy succeeding the amino
acid essentiality. In Rhodophyta, a clade containing
complete genomes sequenced, surprisingly no catabolic
homologues were found; however a sequence that clus-
ters with the assimilative isoforms has been found.

We also investigated nitrogen assimilation in prokar-
yotes. Homologues of assimilative enzymes are present
and detected by our clustering procedure, but besides
finding homologues of the catabolic seeds in bacterial
clades, assimilative enzymes were not found in Aquifi-
cae, Chlamydiae and Synergistetes, all of them contain-
ing complete genomes available. This absence is
consistent with the lysine auxotrophy suggested in Chla-
mydiae (Figure 2) and support the idea that EAA auxo-
trophy is associated with the lack of nitrogen
assimilation even in the prokaryotic clades. It is hard to
infer differential enzymatic activity in prokaryotes, since
the annotated sequences available often report mixed
use of coenzyme, either NADPH or NAD, although the
homologous tools had grouped them distinctively. If the
homology is related to function, it may indicate that
these organisms also demand the consumption of
NEAA to constitute a source of organic nitrogen. The
presented scenario suggests that the loss of nitrogen
assimilation forcing consumption of NEAA shortly suc-
ceeds the Great Genomic Deletion of EAA biosynthetic
enzymes in metazoans. If this hypothesis is true, the
Cnidaria would be an exception.

EAA biosynthetic enzymes maintained

The remaining EAA biosynthetic enzymes in organisms
that do not have the complete amino acid pathway (Fig-
ure 1) are more susceptible to evolutionary
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Figure 3 Glutamate dehydrogenases. Schematic representation for presence/absence of glutamate dehydrogenases. A: Left column:
assimilative GDH1 and GDH3 from Saccharomyces cerevisiae and putative GDH from Arabdopsis thaliana; Central column: catabolic GDH2 from
Saccharomyces cerevisiae; Right column: catabolic GDHT, GDH2 and GDH3 from Arabdopsis thaliana. Taxonomic tree displayed at phyla level.

Circles represent detection of complete proteins and triangles detection of complete and fragmented proteins. Colors are as for Figure 1.
Saccharomyces cerevisiae (Ascomycota) and Arabidopsis thaliana (Streptophyta) were used as seeds. B: Phylogenetic tree with eukaryotic
sequences from glutamate dehydrogenase isoforms. Green branches: EC1.4.1.4; Red branches: EC:1.4.1.2; Blue branches: EC:1.4.1.3.

modifications. It is also possible that paralogue subfunc-
tionalization occurred in the common ancestor of ani-
mals, fungi and plants, and thus the divergent copy has
remained in detriment of the original gene. Considering
both hypothesis we set up to analyze enzymes from
EAA and functional NEAA pathways present in metazo-
ans. Phylogenetic trees for acetolactate synthase (VIL1
code in Figure 1) and for a group of alanine-glyoxylate,
serine-glyoxylate and serine-pyruvate transaminases (G1
code in Figure 1) are represented in Figure 4. As

expected, the distance between the ancestors of the two
prototrophic groups varies, plant (green circles) and
fungi (yellow circles): 0.4 and 0.7, for VIL1 (Figure 4A)
and G1 (Figure 4B), respectively. The distance from the
ancestors of plant (green circles) to metazoans (red cir-
cles) are relatively higher for the remaining enzyme
VIL1: 1.0 (as compared to 0.4 measured from plant to
fungi, 2.5 fold) than for the NEAA biosynthetic enzyme
G1: 0.7 (as compared to 0.7 measured from plant to
fungi, 1.0 fold). Thus, the remaining EAA enzymes are
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Figure 4 Phylogenetic analyses for EAA and NEAA enzymes. Phylogenetic trees for (A) acetolactate synthase (VIL1 code in Figure 1), an

enzyme for EAA valine, isoleucine and leucine biosynthesis and (B) a group of alanine-glyoxylate, serine-glyoxylate and serine-pyruvate

green circle to the yellow and red circles are, respectively, 0.4 and 1.0. In (B), these values are, respectively, 0.7 and 0.7.

transaminases (G1 code in Figure 1), a NEAA biosynthetic enzyme for glycine biosynthesis. The green, yellow and red circles are marking the
plant (Streptophyta), fungi (Dikarya) and animals (Metazoa) branches, respectively. In (A), the distance (given by substitutions per site) from the
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experiencing higher divergence after the attainment of
amino acids auxotrophy.

To support this observation, Figure 5 shows the ratios
calculated for 12 enzymes. Only trees that show signifi-
cant bootstraps for the branches of interest were consid-
ered. Enzyme codes in bars are described as in Figure 1.
The Y axis at the right side corresponds to the distance
measured from plant (Streptophyta) to the ancestor of
fungi (Dikarya). This distance was assumed as a back-
ground distance to normalize the distances measured
“from” plant (green bars) “to” the clades indicated in the
X axis. The three enzymes on the right, S1, G1 and G2,
belong to NEAA pathways, and the ratios are low. For
the enzymes H5, FW7, F8, VIL1, VIL3, MT3 and M7,
the ratio shown by green bars are conversely high, ran-
ging from around 1.5 up to 7 fold. These preliminary
data suggest that the additional evolutionary modifica-
tions have occurred in distinct levels in the enzymes
maintained after the loss of biosynthetic capability. M(2)
pathway appears as incomplete in Basidiomycota (Figure
1; M8 is absent), however MT3 enzyme used here is
present in threonine pathway which is complete in this
clade. K6 and K10 are involved in incomplete pathways,

MT3
7 | ™ from Streptophyta A
from Dikarya

o

viL3

w

06

Distance Streptophyta to Dikarya
(substitutions per site)

2 H5

ﬂm
%
%

Figure 5 Relative distance of Metazoa enzymes from
homologues of EAA and from NEAA biosynthetic enzymes
present in plant and fungi. Phylogenetic trees were obtained for
12 enzymes, using all eukaryotic clustered proteins. Codes for
enzymes are the same as in Figure 1 and are shown over the bars.
For normalization, a background distance from the plant phylum
Streptophyta to the fungi subkingdom Dikarya was measured and
represented by triangles (right Y axis). The distance “from” either
Streptophyta (green bars) or Dikarya (yellow bars), “to” the branches
that group the clades indicated below the bars, were measured and
normalized by the distance Streptophyta/Dikarya, yielding the ratio
represented by bars (left Y axis). Only the three enzymes on the
right (S1, G1 and G2) participate of biosynthesis of NEAAs: serine
(S1) and glycine (G1 and G2). K6 and K10 are enzymes that
compose lysine biosynthetic pathways which are not complete,
respectively, in Streptophyta or Dikarya (see Figure 1). Abbreviations:
Art, Arthropoda; Cho, Choanozoa; Cni, Cnidaria; Nem, Nematoda; Pla,
Placozoa.

Ratio [distance / [distance Streptophyta to Dikarya)]
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respectively, in plants and fungi. Accordingly, the dis-
tance measured from plant to fungi is high, and so is
the drift between plant to Chordata (K6) or to Arthro-
poda (K10), therefore yielding balanced lower ratios.
Since the ancestor of fungi and plants seems to be
equally distant from both of these two groups, and the
divergence between plant and Fungi/Metazoa group
tends to a trifurcation (see Figure 4), the yellow bars
(which represent the distance from fungi to the animal
clades in the X axis divided by the background distance
from plant to fungi) are similar to the ratios represented
by the green bars, independently of how much modifica-
tion has been occurred to the animal sequences (e.g.
VIL1, MT3, G1). Furthermore, a detailed inspection of
phylogenetic trees seems to indicate that subfunctiona-
lized paralogues have appeared in basal clades such as
Fungi, and those divergent paralogues remain in the
more recent groups of organisms, while the copy that
previously participated in the biosynthesis was actually
deleted in animals. Note some Streptophyta and Asco-
mycota divergent paralogues (outparalogues) [27]
grouped with animal sequences under 100% bootstrap
(Figure 4A). Accordingly, similar divergent paralogues
were observed for M7 enzyme (Ascomycota and Basi-
diomycota divergent paralogues grouped with animal
sequences, 98% bootstrap, see additional file 2: Phyloge-
netic tree of 5-methyltetrahydropteroyltriglutamate—
homocysteine methyltransferase (M7)). Moreover, for
K10 enzyme that participates in the K biosynthetic path-
way which is defective in fungi, a divergent paralogue
from Streptophyta groups with fungi enzymes (92%
bootstrap) near the Arthropoda sequence (Additional
file 3: Phylogenetic tree of dihydrodipicolinate synthase
(K10)). Thus, the enzymes remaining from biosynthetic
pathways show higher divergence, and this might have
been acquired due to subfunctionalization in ancient
clades.

Discussion

The advance on genome sequencing and computational
methods for clustering homologous proteins has been
helping the scientific community to reevaluate several
aspects of basic biology. Here we have applied clustering
of protein sequences chosen from two clades of organ-
isms that are known to be autotrophic for the biosynth-
esis of Essential Amino Acids (EAAs). Furthermore, we
searched for the enzymes responsible for nitrogen
assimilation, incorporating ammonium into glutamate.
Lack of cytoplasmic glutamate dehydrogenase leads to a
dependency of amino acids consumption as the source
of organic nitrogen, i.e., the organism in a certain sense
actually becomes auxotrophic to both EAAs and NEAAs
(Non-Essential Amino Acids), in order to build other
nitrogen-containing molecules.
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The work presented here takes advantage of both the
Seed Linkage software and a home-built UniProt
Enriched KEGG Orthology database (UEKO) as source
of information, to rapidly group homologues of fungi
and plant amino acid sequences, respectively repre-
sented by Saccharomyces cerevisiae and Arabidopsis
thaliana. KEGG Orthology contains to date more than
1 million sequences from nearly 1,000 genomes and it
was enriched by a procedure developed by our group to
attain 2,442,384 sequences from 25,024 organisms, con-
stituting the UEKO database (UniRef50 enriched KEGG
Orthology database, to be published elsewhere and
further distributed). Counting the total recruited
sequences reported in this work (31,392), the percentage
of recruitment by (i) Seed Linkage, (ii) original KO or
(iii) the enriched portion of KO (UEKO) was, respec-
tively, 6%, 44% and 50%. Moreover, 26% of all detected
enzymes for the phyla represented in Figures 1, 2 and 3
were exclusively detected by Seed Linkage software and/
or UEKO database. These numbers reinforce the rele-
vance on the development of homologous searching
capability, improving the ability of KEGG Orthology
database to build a scenario for the biological processes
of interest such as those presented here. Moreover, on
top of the search for homologues represented by circles
in the Figures, a complementary search using the 31,392
clustered sequences allowed the investigation of all Uni-
Prot sequences, including fragments (e.g. UniProt acces-
sion B7QGP4, VIL1 from Arthropoda) and some full
length proteins not accessed by the initial search (e.g.
UniProt accession D3AYE6, complete protein K14, from
Amoebozoa; actually a more recent version of KO
already incorporates this entry). It is important to notice
that, in UniProt, the technical term fragment is applied
to partial CDS sequences, a product of incompletely
sequenced mRNA, as well as amino acid sequences
modeled from the genome that lack initial methionine.
Thus they might represent additional evidence of the
enzyme presence rather than a reminiscent pseudogene.
Stringent criteria (1x107'° e-value, 50% identity and 50%
subject coverage cutoffs) were adjusted with extensive
manual inspection and additional evidences were
included as triangles in the Figures. One evidence col-
lected as triangle claimed our attention, since it came
from a clade bearing the complete genome of the well
annotated organism Drosophila melanogaster (Figure 1,
enzyme VIL1, phylum Arthropoda). Manual inspection
reveals that the evidence yielded by the additional search
(represented by triangle) returned a hit from Ixodes sca-
pularis (a genome under “assembly” status), but remark-
ably, the gene was found to be missing in the fly. Thus,
this represents a recent gene loss within a non func-
tional pathway.
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The main interest of this work was to depict the evo-
lution of amino acids essentiality, or heterotrophy.
Grouping organisms into phyla level allowed easy label-
ing of clades that comprise organisms with sequenced
or draft genomes, as shown in Figures 1, 2 and 3, mak-
ing it possible to infer deletion events distinctively in
these clades. It is important to notice that many phyla
contain complete genomes, which allowed us to figure
out the deletion process with more certainty. However,
the picturing of the entire scenario allowed the analysis
to be extended to the branched clades, although this
requires additional caution on interpretation. Even
escaping the scope of this work, it suggests a demand
for planned choice of genomes to be completely
sequenced, since as clearly shown here we lack informa-
tion from several phyla such as the ones represented
with empty circles (e.g. Cryptophyta, Haptophyta, Neo-
callimastigomycota and Glaucophyta). Enzymes not
found by our analysis requires further attention and
search using more sensitive methods and detailed man-
ual or even experimental analysis, to detect divergent
sequences; in other words, the absence of evidence is
not evidence of absence. However, the present work
exemplifies a method that can be easily applied to other
scenarios of gene/pathway loss.

The scenario of amino acid auxotrophy supports the
hypothesis of a Great Genomic Deletion model of
amino acid biosynthesis in association with heterotro-
phy. This phenomenon has probably occurred several
times, particularly at the origin of metazoans. This dele-
tion has been likely associated with endosymbiotic rela-
tionships or with the development of systems
specialized in nutrient absorption. It seems that amino
acid essentiality has been originated as a phenotypic loss
of pathways early in Choanozoa, followed by multiple
losses during metazoan evolution. Similar progresses of
deletions occur closer to Heterokontophyta and Rhi-
zaria, culminating in Apicomplexa. Rhodophyta and
Microsporidia also attain the auxotrophy.

Moreover, remaining enzymes set apart from their ori-
ginal roles in amino acid biosynthetic metabolism seem
to be more prone to evolutionary changes whilst
enzymes present in complete pathways are more struc-
turally conserved among distant phyla (Figures 4 and 5).
Although a detailed investigation is needed, our preli-
minary analysis suggests that the copies which remained
in metazoan genomes may have suffered subfunctionali-
zation and sometimes this might have occurred in more
ancestral organisms (Figure 4 and additional files 2 and
3). Thus, in some sense, the orthologue enzyme might
actually have been deleted in animals, and the divergent
copy is the one remaining. These divergent copies are
sometimes named outparalogues. We are currently
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investigating substitution rate ratios and promoter ele-
ments in these genes.

Subsequent deletion includes the enzymes implicated
in nitrogen assimilation, which takes place just after the
broad deletion of EAAs biosynthetic enzymes (since
except metazoans, other eukaryotic clades lack biosyn-
thetic pathways and contains a nitrogen assimilative
enzyme), as observed in more derived metazoans, but
not Cnidaria. Most Cnidaria are carnivorous, so one
possibility is that Cnidaria may benefit from the assimi-
lation of organic nitrogen under long periods of fasting,
however this finding needs additional investigation.
Thus, the simplest explanation, is that the loss of nitro-
gen assimilative enzymes are related to lower selective
pressure associated with the origin of the most hetero-
trophic organisms, animals.

To our knowledge this is the first initiative to clarify
the complete scenario using powerful homologous
grouping approaches and the total repertoire of
sequenced genomes.

Conclusions

The procedures described here provide a deeper analysis
of amino acid and nitrogen heterotrophy among distinct
taxa, extended to include the entire set of available pro-
teins. They show that amino acid essentiality was a
broad phenomenon in eukaryotes, followed by the sub-
sequent nutritional requirement of organic nitrogen, in
animals.

Methods

Software and databases

Seed Linkage clustering software [14] and detailed
explanation of usability can be obtained at http://www.
biodados.icb.ufmg.br/eaa/. Seed Linkage requires BLAST
(version used was 2.2.20), MySQL (version 5.0.77) [28]
and PHP (version 5.1.6) [29].

The protein database is composed of UniProtKB
entries (version used was 2010_09) available at http://
www.biodados.icb.ufmg.br/eaa/. Except where otherwise
indicated, all fragmented proteins were removed from
analyses by parsing the description line in FASTA files.

To enrich KEGG Orthology clusters with incomplete
genome proteins UniRef50 Enriched KEGG Orthology
(UEKO) was built with the procedure described by Fer-
nandes et al [15]. A local MySQL database was used.

Procedure

Amino acid biosynthetic pathways were depicted with
KEGG Pathway [30] manual inspection where UniProtKB
identifiers for the enzymes used in this work could be
retrieved for the model autotrophic organisms Saccharo-
myces cerevisiae, Arabidopsis thaliana and, for the
archaeal lysine biosynthesis, Pyrococcus horikoshii. The
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procedure starts with the selected sequences used as seed
for Seed Linkage search in UniProtKB. The homologous
cluster is enriched by (i) entries in KEGG Orthology
(KO) belonging to the same KO where the seed is found
and (ii) UEKO entries for this same KO. All steps were
conducted with MySQL consults and PERL v5.8.8 [31]
scripts. To verify the recruitment, seed sequences were
used in PSI-BLAST alignments with the recruited
sequences, having the PSI-BLAST iterations stopped
whenever the score obtained for the seed sequence itself
decreases to below 50% of the initial score. Results of
search for homologues are represented by circles in the
Figures. For more details see additional file 4: List of seed
sequences and additional file 5: List of clusters.

Simple BLASTp analysis (107'° e-value cutoff) were
also conducted with all UniProt proteins, comprising
both UniProt complete and fragment entries, for each
phylum against all clustered proteins in this project.
Resulting output was filtered to remove alignments with
less than both 50% identity and 50% subject coverage.
Results of this analysis are represented by triangles in
the Figures.

Taxonomy information

All UniProtKB identifiers could be associated with an
organism taxonomy ID with the file available at ftp://ftp.
uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/idmapping.

Further association of organism taxonomy ID with
phyla classification was achieved through a local data-
base built with NCBI taxonomy information obtained at
ftp://ftp.ncbi.nih.gov/pub/taxonomy.

Genome statuses were obtained by NCBI Genome
Project analysis at: http://www.ncbi.nlm.nih.gov/
genomepr;j.

Phylogenetic analyses

For phylogenetic analysis Prankster [32] was used for
multiple sequence alignment and MEGA4 [33] to con-
struct the phylogenetic tree using the neighbor-joining
method [34] with 500 bootstrap replicates. Branch dis-
tances were obtained from phylogenetic trees, from the
ancestors of Streptophyta, Dikarya and clades of metazo-
ans. Only branches with significant bootstrap were used.
With the distances, a ratio was calculated as below:

Distance F - T / Distance S - D

where F (from) is either Streptophyta or Dikarya
ancestor and T (to) is an animal ancestor (see Figure 5,
X axis); and S and D are the ancestors of Streptophyta
and Dikarya, respectively. Phylogenetic trees used to
compose Figure 5 can be accessed at our server at
http://www.biodados.icb.ufmg.br/eaa/.
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Additional material

Additional file 1: Sequences and genome status distribution.
Distribution of UniProtkB sequences among available genomes in three
sequencing status groups: Complete, Draft plus In Progress and
Incomplete.

Additional file 2: Phylogenetic tree of 5-
methyltetrahydropteroyltriglutamate-homocysteine
methyltransferase (M7). A phylogenetic tree of one of the four
methyltransferases illustrated in Figure 1 for methionine biosynthesis. Red
circle represents Chordata and Cnidaria ancestor; Yellow circle Dikarya
ancestor and green circle Streptophyta ancestor. Available at [http://
www.biodados.icb.ufmg.br/eaa/].

Additional file 3: Phylogenetic tree of dihydrodipicolinate synthase
(K10). A phylogenetic tree of one of the enzymes illustrated in Figure 1
for lysine biosynthesis. Red circle represents Arthropoda; Yellow circle
Dikarya ancestor and green circle Streptophyta and Chlorophyta
ancestor. Available at [http://www.biodados.icb.ufmg.br/eaa/].

Additional file 4: List of seed sequences. A detailed list of sequences
used as initiators for clustering process with UniProtKB identifier, NCBI
taxonomy identifier and Enzyme Commission (EC) number. Available at
[http//www.biodados.icb.ufmg.br/eaa/].

Additional file 5: List of clusters. A detailed list of created clusters for
all enzymes with UniProtKB identifier and NCBI taxonomy identifier.

Available at [http://www.biodados.icb.ufmg.br/eaa/].
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UniRef50 Enriched KEGG Orthology.
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