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Abstract

Background: The integration of sequencing and gene interaction data and subsequent generation of pathways
and networks contained in databases such as KEGG Pathway is essential for the comprehension of complex
biological processes. We noticed the absence of a chart or pathway describing the well-studied preimplantation
development stages; furthermore, not all genes involved in the process have entries in KEGG Orthology, important
information for knowledge application with relation to other organisms.

Results: In this work we sought to develop the regulatory pathway for the preimplantation development stage
using text-mining tools such as Medline Ranker and PESCADOR to reveal biointeractions among the genes
involved in this process. The genes present in the resulting pathway were also used as seeds for software
developed by our group called SeedServer to create clusters of homologous genes. These homologues allowed
the determination of the last common ancestor for each gene and revealed that the preimplantation development
pathway consists of a conserved ancient core of genes with the addition of modern elements.

Conclusions: The generation of regulatory pathways through text-mining tools allows the integration of data
generated by several studies for a more complete visualization of complex biological processes. Using the genes in
this pathway as “seeds” for the generation of clusters of homologues, the pathway can be visualized for other
organisms. The clustering of homologous genes together with determination of the ancestry leads to a better
understanding of the evolution of such process.

Background
Bioinformatics tools currently allow research to focus on
the integration of large-scale data generated by sequen-
cing, differential expression analysis, gene interaction
studies and others. Several initiatives exist to organize
this knowledge in secondary databases, thus allowing
easier access and visualization. Databases containing
interaction information are a good source for novel
research. iHOP [1] allows users to tag gene names of
interest and browse through the related PubMed litera-
ture with highlighted keywords. Another interaction

database is STRING [2], which contains physical inter-
actions and functional associations between proteins
and integrates data retrieved from literature (PubMed),
genomic context, large scale experiments and conserved
co-expression. Text-mining, therefore, has a fundamen-
tal role in these tools and allows access to interactions
spread throughout the literature. The extraction of bio-
logical events from literature through text-mining tools
is essential to not only update the interaction databases
but also for the creation and annotation of pathways.
Metabolic and regulatory pathways are an example of

organized knowledge that allow a better visualization of
a complex system and can be found in databases such
as iPath [3], BioCyc [4] or KEGG Pathways [5]. When
orthology information is added to pathways, the same
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process can be represented in different organisms.
Orthology is also an important tool for sequence anno-
tation. Current orthologue databases such as COG and
KOG [6], eggNOG [7], OrthoMCL [8] and KEGG
Orthology [5] all provide a good source for manually
curated clusters of orthologues defined for organisms
with complete genomes. We developed a procedure to
enrich the COG database with UniRef50 clusters from
the UniProt database [9], creating the UECOG database
[10]. Recently, a similar procedure was applied to the
KEGG Orthology database creating the enriched UEKO
database (unpublished, Fernandes et al.).
The available tools described raise the possibility of

integrating current information and generating complex
regulatory pathways. Previous publications individually
reported the regulatory interactions that control preim-
plantation embryo development [11-15]. However, a
complete preimplantation development regulatory path-
way has never been built.
In humans, the preimplantation phase of embryonic

development is a period of approximately six days after
fertilization prior to attachment of the embryo to the
uterine wall. Implantation can occur before or in the
seventh embryonic day (E7), a time during which the
uterus is receptive [16]. Mammalian embryonic develop-
ment has been thoroughly studied in mice and the blas-
tomeres remain totipotent, able to generate any other
cell, up to the eight-cell stage, unlike other animals [17].
After fertilization, successive cleavages take place during
the first two days of development, resulting in the eight-
cell embryo. The next stage of development is called the
morula stage. An increase in cell-cell contact results in
formation of a compacted morula. The subsequent divi-
sions increase the complexity of the embryo and cells
may be located on the inside, surrounded by other cells,
or on the outside, in contact with the environment. The
identification of the initial cells for each lineage has
shown that the trophectoderm (TE) is derived mostly
from the outer cells, whereas the inner cells give rise to
the inner cell mass (ICM). Later, the ICM divides into
the primitive endoderm (PE) and the epiblast (EPI).
During the differentiation of the TE from the ICM, the
blastocoel is formed through a process of cavitation.
The embryo is called a blastocyst when all three struc-
tures are present (TE, ICM and blastocoel). Twenty-four
hours after blastocyst formation occurs, the last stage of
preimplantation development takes place when the PE
differentiates from the ICM. The three lineages thus
formed in preimplantation development present differ-
ent fates during subsequent embryonic development.
While the epiblast, which forms from the ICM following
implantation, is still undifferentiated and will give rise to
the fetus itself, the trophectoderm will become the fetal
portion of the placenta and the primitive endoderm (as

part of the extraembryonic endoderm) will form the
yolk sac [14]. Complex regulatory processes such as ani-
mal development are a result of the interaction of many
different gene products and elements that control the
expression of these genes. Traditional experiments that
determine the function of one or a few genes are essen-
tial, but do not result in a comprehensive view of com-
plex systems. A complex regulatory network should be
able to portray specific and general aspects of develop-
ment, such as the embryonic fate of certain cells [18].
In this work, we noticed the absence in databases of a

pathway describing the preimplantation phase of embryo
development and sought to develop the given pathway
using text-mining tools, complementing it with orthol-
ogy information. The resulting pathway comprises 86
genes and the interactions between them. Clusters of
orthologous groups were generated for each gene repre-
sented in the pathway and provided the necessary infor-
mation to determine the last common ancestor. This
determination revealed that the preimplantation devel-
opment pathway is an ancient Chordata pathway with
addition of modern elements throughout evolution.

Results
Text-mining
Initially, we used the PubMed platform to search for
articles related to the embryo preimplantation develop-
ment (query: “preimplantation development”) and
obtained 3524 entries as a result. To obtain a more effi-
cient set of articles with relevancy to our work, the
result entries were submitted to MedlineRanker [19].
This software computes discriminating words by com-
paring a set of user selected abstracts indicated as highly
relevant to a background set and then scores any
abstracts in terms of their content of those discriminat-
ing words. After the classification, we selected the top
1000 abstracts for further analysis, which presented p-
value lower than 0.01 and by manual inspection provide
large amount of information when uploaded in PESCA-
DOR. Since human and mouse embryo development are
highly similar, it was plausible to use abstracts from
work on both organisms as source of information for
the preimplantation pathway construction, paying atten-
tion to any possible conflict.
Using these 1000 highly informative abstracts as our

input, PESCADOR (manuscript in preparation, Barbosa-
Silva et al.) an online platform for friendly operation of
the LAITOR software [20]) was used for tagging of gene
names and biointeractions extraction from each abstract.
As a result, 722 gene names were tagged and 223 type 1
biointeractions were highlighted as well as other infor-
mative biointeractions. Biointeractions are classified by
LAITOR [20] as type 1 when in the same sentence the
software encounters a gene name, a biointeraction word
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and another gene name, in that order (e.g.: CDX2 down-
regulates NANOG). From these tagged abstracts we
manually curated the information and constructed the
pathway for the preimplantation embryo development
describing 86 genes and numerous interactions between
them during the early developmental stages, trophecto-
derm differentiation from the inner cell mass and pos-
terior extraembrionary endoderm differentiation. A
sample abstract tagged by PESCADOR and the manual
extraction of the information it contains is exemplified
in Figure 1. The pathway shown in Figure 2 was con-
structed according to KGML (KEGG Markup Lan-
guage). The large decrease in the initial number of
genes tagged in the abstracts is mainly due to redun-
dancy between abstracts (same genes mentioned) and
also to genes tagged in type 3 and 4 biointeractions,
which not always result in pathway building
information.

Preimplantation pathway
The pathway obtained after the analysis of all the
abstracts from the PESCADOR output is represented in
Figure 2 and the regulations are reviewed below.
First embryonic cleavages
The oncogene c-MYC is an important transcriptional
regulator and its expression is observed in the initial
stages of development, where it is present in embryonic
cells until the morula stage and repressed thereafter
[21]. Two additional genes recently associated with
these early developmental stages are BORIS and ECSA.
BORIS is involved in early development following fertili-
zation and soon afterwards repressed, and ECSA,
expression begins in the blastocyst exclusively in the
cells of the inner cell mass (ICM). The presence of
these genes was compared to the expression pattern of
the Oct4 transcription factor, which is present in the
early cleavages, repressed after this initial stage, and

Figure 1 Biointeraction extraction from PESCADOR. Top: Sample abstract tagged by PESCADOR. Gene or protein names (terms) recognized
are highlighted in violet and the biointeraction words in yellow. The platform allows users to search for their interactions of interest by terms,
abstracts or concepts of interest added initially by the user. Bottom: Manual curation of the information presented in the abstract and its
graphical representation in the form of a regulatory pathway.

Donnard et al. BMC Genomics 2011, 12(Suppl 4):S3
http://www.biomedcentral.com/1471-2164/12/S4/S3

Page 3 of 13



then its expression is afterwards stimulated again in the
blastocyst [22]. The expression of the gametogenesis
associated gene Gse was also recently identified in cells
of the early embryo; later this protein is found only in
the ICM, suggesting a role in the specification of cell
lineage [23].
Methylation patterns and correct preimplantation
development
Genomic methylation patterns in mammalian cells depend
on Dnmt1 (DNA methyltransferase-1). In the mouse, an
embryo-specific variant called Dnmt1o is expressed in the

early stages of development. In the 8-cell stage this protein
relocates to the cell nucleus where maintains essential
methylation patterns, allowing embryos to complete early
developmental events [24]. It was recently shown [25] that
the inability of Dnmt1o to properly relocate not only
results in a developmental arrest at the 5-7 cell stage, but
is also responsible for the downregulation of five genes
involved in the formation of gap and tight junctions
(Cx31, Cx43, Cx45, Cdh1 and Ctnnb1). These junctions
are crucial for early processes such as compaction of the
8-cell embryo and cavitation of the blastocoel.

Figure 2 Preimplantation development pathway. The figure shows a pathway representation of the genes involved in the regulation of the
preimplantation development and interactions between them. Some functions are also detailed in the grey rectangles. In the upper part of the
figure are located genes involved in the early stages of development (until blastocyst formation) below these, the left part corresponds to the
regulations that occur in the inner cell mass, the portion of cells that remains undifferentiated during a longer period of time, part of these cells
will give rise to the primitive endoderm and the genes that regulate this process are shown in the bottom left. In the right are the genes
involved in the development of the outer cells of the blastocyst, which differentiate to form the trophectoderm. The interactions are described
in the text. KEGG Markup Language was used for pathway representation. The developmental stages figures were adapted from Yamanaka et al.
2006 [14]. The pathway genes are represented according to their ancestry based on the determination of their Last Common Ancestor. Genes
considered recent are shown in green while genes of more ancient origin are shown in lilac. Genes that present an ortholog in D. melanogaster
are marked (*). This will be further adressed in the text section “Pathway Ancestry”. DPPA1 and hRSCP are shown in grey due to the fact that the
lack of corresponding SwissProt annotated gene product to be used as seed prevented their use in this analysis.
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TE versus ICM dichotomy: key role of Lats controlling Tead4
co-activator Yap
Cells destined to become part of the ICM are marked by
repression of two genes (aPKC and PARD3) [26] and by
upregulation of Sox2 [11]. In these cells, the major plur-
ipotency transcription factors, including Nanog and
Oct4, remain active due to the expression of an impor-
tant player and member of the Hippo signaling pathway:
Lats. This serine/threonine protein kinase is responsible
for phosphorylating Yap, leading to its cytoplasmic loca-
lization and thus preventing its association with the
transcription factor Tead4.
Triggering TE differentiation: Tead4/Yap target Cdx2 to
repress Nanog and Oct4
Conversely, in the outer cells that will differentiate and
form the trophectoderm, Yap is unphosphorylated,
remains in the nucleus and associates with Tead4, lead-
ing to the activation of Cdx2, a key repressor of Nanog
and Oct4 [27]. Repression of Oct4 and Nanog transcrip-
tion by Cdx2 then releases the inhibition that these two
key factors were exerting on many different genes, in
turn activating these targets [28,29]. Activation of Cdx2
requires release from basal repression; Nanog [30] and
Oct4 [31] repress basal levels of Cdx2 and induction of
higher levels of Cdx2 by Tead4/Yap overcomes this
repression, allowing Cdx2 to play its role [28]. Tead4
was also recently determined to activate another tro-
phectoderm differentiation factor, GATA3 [32], which
acts alongside Cdx2 and affects transcription of a num-
ber of genes independent of Cdx2. The Tead4-depen-
dent activation of GATA3 seems to be independent of
Yap, suggesting Tead4 interacts with another partner as
well as Yap. Also required for high level expression of
Cdx2 in trophectoderm cells is the cell motility protein
Arp3; experiments with complete knockdown of this
protein show trophoblast cells unable to develop prop-
erly, possibly undergoing apoptosis as a result of loss of
Cdx2 [33]. The TGFbeta pathway is another important
pathway for trophectoderm differentiation; TGFbeta sig-
naling is stimulated by BMP4, which leads to the activa-
tion of SMAD proteins. These proteins can also
stimulate transcription of Cdx2 [34], and BMP4 is
known to inhibit Id2, an inhibitor of differentiation [35],
and to activate Hand1, which is involved in trophoblast
cell differentiation [36].
In the absence of Oct4 and Nanog
The downregulation of Oct4 in the outer cells of the
embryo leads to the activation of a positive regulator of
TE cell fate, Eomes (T-box protein eomesodermin)
[29,37], which is also a possible Cdx2 target [38]. The
subsequent differentiation of these cells into trophecto-
derm is accompanied by the expression of several genes,
such as the glycoprotein PSG2 [39] and the marker
KRT18. PSG2 and KRT18 expression are among the

first signs that a blastomere has lost its totipotent com-
petence, prior to any visible differentiation [33].
Removal of Oct4-dependent repression also results in
activation of genes such as ETIF2B and Rps14 [40],
allowing these cells to engage in an intense translation
routine. Knockdown studies targeting Oct4 also show
that it represses the expression of Gcm1, which is nor-
mally placenta specific [41], and of the hCG hormone’s
beta chain [42].
Concurrently, Nanog downregulation allows the

expression of a number of genes associated with both
trophectoderm (GATA2, hCG-alpha and hCG-beta) and
extraembryonic endoderm (GATA4, GATA6, LAMB1
and AFP) [30]. These latter genes will in turn initiate
the formation of tissues such as the primitive endoderm,
a component of the yolk sac. From the early blastocyst
stage on, desmosomes are assembled in the trophecto-
derm in response to desmocollin (DSC2), which is also
not expressed in the ICM [43].
Thus, Tead4/Yap activation of Cdx2, accompanied by

the subsequent repression of Nanog and Oct4, describes
a scenario for the TE differentiation.
Underneath the maintained activation of Oct4 and Nanog
Back in the ICM, the main pluripotency genes remain
active and form a complex regulation pathway. Recently it
was discovered that transcription of Nanog is further sti-
mulated by the presence of compounds such as retinol
[44]. Klf2, Klf4 and Klf5 exert a redundant role in the acti-
vation of Nanog. These krüppel-like factors were described
as essential for the maintenance of pluripotency. Indeed,
Klf4 was already known for this role and is commonly used
in reprogramming of differentiated cells into induced pluri-
potent stem cells. However, only the simultaneous deple-
tion of Klf4, 2 and 5 results in the differentiation of stem
cells, indicating functional redundancy [45]. Other proteins
known to activate Nanog include the two other main pluri-
potency regulators, Oct4 [37,46] and Sox2 [47]. The estro-
gen receptor ESRRB is also reported to be involved in the
activation of Nanog by Oct4 and Sox2 [47]. Conversely,
Nanog can activate Oct4 [46], and ESRRB is necessary to
maintain Oct4 promoter activity [48].
Each of the three key factors, Oct4, Sox2 and Nanog,

also act as self-activators, e.g. the partners Oct4 and
Sox2 bind and activate Oct4 transcription [49]. Another
key transcription factor involved in the maintenance of
cell pluripotency is Sall4 [50]. Sall4 binds to the con-
served regulatory region in the Pou5f1 (the Oct4 gene)
distal enhancer and activates its transcription [31]. Stu-
dies with microRNA interference of Sall4 show that the
loss of this factor leads to reduction of Oct4 mRNA
levels and significant expression of Cdx2 in the ICM
[31]. b-MYB, a gene expressed in proliferating cells, is
also a positive regulator of Oct4 and studies report early
differentiation of ICM in the absence of b-MYB [51].
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The Notch signaling pathway is a conserved pathway
that is involved in cellular communication processes
and correct cell fate decisions that also has a role in
ICM development [52]. Nle protein, a direct regulator of
this pathway, is essential for survival of the ICM [53].
Another protein associated with development and survi-
val of the ICM is Tbn (Taube nuss), whose absence pro-
motes cell apoptosis in the ICM [54].
Expression of the platelet and endothelial cell adhe-

sion molecule (PECAM1 or CD31) was detected by
immunofluorescence confocal microscopy in the blasto-
cyst and restricted to the ICM cells. Subsequently,
PECAM1 remains only in the pluripotent epiblast cells,
disappearing the moment these cells undergo differen-
tiation [55], and indicating a new role for this molecule
during embryo development.
Activation, but with moderation
Other control pathways maintain expression of these
genes at a steady-state concentration and balance these
many mechanisms for activation and upregulation of
transcription. A complex regulation feedback loop con-
sists of FOXD3, Nanog and Oct4 [46]. To keep Oct4
and Nanog expression within steady-state levels, these
three genes interact so that (i) expression of Nanog acti-
vates FOXD3 and Oct4 but not above steady-state levels
due to Oct4 exerted repression; and (ii) FOXD3 and
Nanog activate Oct4 expression but not above steady-
state levels due to Oct4 self-repression.
Dax1 is an orphan nuclear hormone receptor recently

identified as a repressor of Oct4 transcription [56].
Dax1 expression was also capable of reducing Nanog

and Rex1 expression. Assays show that Dax1 binds to
Oct4 and abolishes its DNA binding activity, thus
decreasing the transcription of Nanog and Rex1, targets
of Oct4 activation.
Another repressor in the ICM is Tcf3, a Wnt signaling

pathway effector. TLE2 (a Groucho family protein) and
CtBP (C-terminal binding protein) are key partners of
Tcf3 in mediating this repressive effect. Tcf3 binds to
and represses the Oct4 promoter, and this repressive
effect requires both the Groucho and CtBP interacting
domains of Tcf3 [13]. Tcf3 also limits the steady-state
levels of Nanog mRNA, protein, and promoter activity
in self-renewing embryonic stem cells (ESCs); the Tcf3
Groucho domain is involved in this repression [57].
Thus, Tcf3 is critical for maintaining the appropriate
levels of both Oct4 and Nanog in ESCs. Experiments
show that loss of Tcf3 by RNA interference (RNAi)
knockdown blocks the ability of ESCs to differentiate
[13], emphasizing the importance of this interaction.
Downstream of Oct4 and Sox2
Oct4 activates embryonic stem cell-specific gene 1
(Esg1), which encodes an RNA binding protein present
in the ICM that is responsible for regulating several

specific target transcripts [58]. Oct4 and Sox2 are also
responsible for the regulation of the fibroblast growth
factor 4 (FGF4) [49]. Expression of FGF4, therefore,
requires the combined activity of these two transcription
factors that bind to adjacent sites on the FGF4 enhancer
DNA region [59]. Once expressed, the FGF4 protein can
interact with its receptor FGFR2 and activate ICM and
adjacent TE cell proliferation, activating extraembryonic
endoderm cells as well in later stages.
Several other genes with important functions in

embryonic development are also targets of Oct4-depen-
dent activation. These include growth factor TDGF1,
growth inhibitor SAP18, regulator of nonsense tran-
scripts RENT1, two proteins involved in stem cell self-
renewal DPPA4 and DPPA1 (developmental pluripo-
tency associated), anterior visceral endoderm (AVE)
markers LEFTY1 and LEFTY2, surface antigen THY1,
and other genes encoding proteins involved in specia-
lized cellular processes (DPP3, ATP6AP2, DDB1) and
hypothetical proteins (GK003, hRscp) [37,40].
The master regulation exerted by Sox2 and Oct4 dur-

ing mammalian embryogenesis is believed to operate
through their cooperative binding to DNA regulatory
regions composed of adjacent HMG and POU motifs
(HMG/POU cassettes) [60]. Exemplifying this arrange-
ment, DPPA4 is one such gene with the presence of an
HMG/POU cassette in its promoter region [61].
Downstream of Nanog and STAT3
Activation of JAK/STAT pathway also has an important
contribution to pluripotency. In mice, the LIF/STAT3
pathway [44,62,63] for maintenance of cell pluripotency
comprises LIF and LIF receptor, which deliver intracel-
lular signaling through STAT3. STAT3, a signal trans-
ducer and activator of transcription is activated by the
JAK1 kinase and binds to several promoters inducing
transcription of pluripotency related genes [64]. Nanog
and Stat3 were found to bind to and synergistically acti-
vate Stat3-dependent promoters [64]. Nanog also func-
tions as a transcriptional inhibitor to NF�B, a factor
known to have pro-differentiation activity [64]. Nanog is
also responsible for SMAD1 repression, thereby prevent-
ing BMP4-induced differentiation through the TGFbeta
signaling pathway, for which SMAD1 is a key signal
transducer [65].
Extraembryonic endoderm differentiation from ICM cells
Prior to embryo implantation one more differentiation
takes place. Certain cells from the ICM give rise to the
primitive endoderm, the first morphologically distinct
cell type of the extraembryonic endoderm. The extraem-
bryonic endoderm comprises the primitive, parietal and
visceral endoderm components and will become the
yolk sac during posterior development stages.
Wnt6 was recently identified as an inducer of primi-

tive endoderm and this induction is accompanied by
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translocation of beta-catenin (CTNNB1) and Snail1 to
the nucleus [66]. This study also showed that up-regula-
tion of protein kinase A (PKA) induces markers of par-
ietal endoderm. Another Wnt family member, Wnt9a, is
expressed only in ICM cells that surround the bastocoel
[67] and induces repositioning of the cells expressing
GATA6, which is necessary for formation of primitive
endoderm [68].
Sox7 plays a major role in parietal endoderm differen-

tiation. Through studies with short interfering RNA
molecules, it was established that Sox7 is responsible for
transcription induction of GATA4 and GATA6 [69].
Individual or combined silencing of Sox7, GATA4 and
GATA6 result in suppression of cell shape changes and
production of laminin-1 (LAMB1), characteristic
changes present in parietal endoderm differentiation
[69]. Gata4 was previously identified as a transcription
factor responsible for the activation of FGF3 [70]. Sox7
also activates the FGF3 promoter. Conversely, Sox2 can
negatively modulate the GATA4-dependent activation of
FGF3, which is supported by the role of this factor in
ICM pluripotency [71]. Another Sox family member,
Sox17, is responsible for the differentiation of the extra-
embryonic endoderm in the final steps of preimplanta-
tion development [72]. The Runx1 factor is associated
with the expression of Sox17 and is also specific for the
extraembryonic endoderm [73]. HNF4 is a transcription
factor specific of the extraembryonic endoderm with
subsequent roles in post-implantation development and
organogenesis [74]. Its expression may result from
BMP4-induced differentiation [75]. Finally, the Dab2
protein is indispensable for the development of visceral
endoderm; though its exact role is still not established,
it is perhaps related to correct cell positioning [76,77].
The expression of Cer1, a marker of the anterior visceral
endoderm (AVE), commences before embryo implanta-
tion in the subset of cells that comprise the primitive
endoderm. This ancestral population includes both cells
expressing Cer1 together with cells in which Cer1
expression begins after implantation and formation of
the AVE [60].

Search for homologues
To establish an ortholog database and provide sequence
information to the genes contained in the preimplanta-
tion pathway, aminoacid sequences corresponding to the
human and mouse gene products were used as seed for
the software SeedServer (Guedes et al., unpublished, see
Methods for details). In fact, only the UniProt identifier
for these proteins is necessary to execute SeedServer -
gene symbols were verified in the NCBI Gene database
and converted to the corresponding geneID, and the
desired identifiers were obtained afterwards from the
UniProt database. For each gene a cluster of

homologues was generated comprising from 2 to 260
sequences (Additional file 1).
The recruited sequences contained in each cluster can

be Swiss-Prot annotated or unrevised TrEMBL
sequences. In total, 25% of the cluster sequences are
Swiss-Prot, the great majority of clusters being com-
prised of TrEMBL sequences (75%). The search for
homologues through SeedServer provides therefore a
large amount of candidates for manual curation in
Swiss-Prot. Furthermore, SeedServer can recruit
sequences from organisms without a complete genome
due to its use of UEKO (UEKO is built on top of Kegg
Orthology homologues as UECOG [8] has been built on
top of COG database) and bidirectional best hit (BBH)
searches conducted by SeedLinkage [78], and in fact
only 27% of the sequences present in all clusters are
from organisms with a complete genome. The ortholog
clustering by SeedServer was only performed for genes
that had a corresponding SwissProt annotated gene pro-
duct to be used as seed, therefore hRSCP and DPPA1,
which are described in the pathway, did not go through
this analysis.

Pathway ancestry
We then focused on the putative origin of these genes,
determining which clade in the human lineage (e.g.
class, order, family) shares each gene. The generation of
ortholog clusters allowed for the determination of the
last common ancestor (LCA) for each of the genes in
the pathway. Figure 2 shows the genes according to
their origin. Genes were arbitrarily considered ancient
for this analysis if their last common ancestor originated
before the divergence of the clade Euteleostomi and are
coloured grey. Genes with a LCA belonging to the clade
Euteleostomi or originated after divergence of Euteleos-
tomi are considered recent genes and are coloured blue.
Ancient origin genes with an ortholog in Drosophila
melanogaster are marked with a red asterisk. This arbi-
trary classification was meant to attract attention to the
two key pluripotency controlling genes, Nanog (ancient)
and Oct4 (modern).
The graph shown in Figure 3 represents the distribu-

tion of all the genes in the pathway according to their
origin respect to clades of the human lineage. It may be
observed that a large quantity of genes originates in cer-
tain periods as seen in Eumetazoa, Coelomata, Euteleos-
tomi and Eutheria. The reasons for this wavelike origin
need to be further analysed. On the other hand, the
apparent origin of complex structures, that characterize
all descendents from a certain moment of evolution,
might have occurred simultaneously to the specialization
of gene groups. The coverage of genomic sequences in
the database is far from homogeneous and can influence
the shape of this graph [79]. In any case, the pattern
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observed agrees with the expansion of protein families
related to stem cell markers observed in the ray-finned
fish, that is, after divergence of the Euteleostomi [80].
Furthermore, we searched for functional information

related to the D. melanogaster orthologues in order to
determine if these functions are somehow similar or
related to the functions of the corresponding pathway
genes. This was done through a second text mining
approach similar to the first and from the information
recovered a secondary pathway was generated simply to
illustrate the ortholog genes and their relative functional
roles (Additional file 2). The regulatory pathways in
which these genes are involved show us that these genes
are all related to some part of Drosophila embryo devel-
opment, some of them with highly conserved functions
still observed in the preimplantation pathway described.
An example is the Hippo signalling pathway, which is
extremely conserved, showing Wts (Lats ortholog) phos-
phorylating Yki (Yap ortholog); this modification pre-
vents Yki interaction with Sd (Tead4 ortholog). The
correlation between the human gene names and corre-
sponding D. melanogaster ortholog names can be found
in Additional file 3 and also the PMID reference for the
gene function in Drosophila development.

Discussion
The use of text-mining tools for the generation of reg-
ulatory pathways is an effective approach and it is
important for the current interest of gathering data
related to an organism or biological process. The
search for information related to a specific concept
such as “preimplantation development” resulted in the
selection of data related to this process only. When
other tools such as iHOP [1] and STRING [2] are used

for the search of biointeractions, it is necessary to
know the names for the genes you are interested on
and the information is then retrieved. Moreover in the
case of iHOP, the information retrieved consists of a
large list of papers related to the gene of interest,
which need to be manually analysed to extract the
information related to the specific process. In the case
of STRING, the result of a query is a network of direct
associations to other genes, which can be activations,
repressions, or unknown, but for which it is not possi-
ble to perform a search restricting the query to a spe-
cific process for which you seek to determine the
involvement of a given gene.
The approach described in this work (using PubMed,

MedlineRanker, PESCADOR) summarized in Figure 4,
allows the researcher to initiate the study of a pathway
without knowing exactly the genes involved, simply by
selecting the published information related to the pro-
cess of interest. The manual curation required to create
a pathway through this approach is significantly smaller.
However, the verification of all the interactions high-
lighted by the tool is essential. Text-mining is not able
to eliminate the selection of false interaction pairs; in
the case of LAITOR (contained in the PESCADOR plat-
form), the type 3 and 4 interactions can present genes
with no association specified in the text [20].
The text-mining data contribute the complete descrip-

tion of the pathway in the form of a literature review, a
necessary step for the validation of the regulations
represented, and for the inclusion of the pathway in a
specific database, such as KEGG Pathway. The establish-
ment of this procedure for pathway generation allows
future work to enlarge the knowledge on subjects still
not approached, such as regulatory pathways for several
types of cancer, mechanisms of pathogen resistance in
plants and response to abiotic stresses in plants, among
other themes of interest.
The inclusion of the preimplantation pathway in data-

bases such as the KEGG database will allow automatic
annotation for several other organisms, as it is usually
done in this database. Concurrently, a laboratory with a
specific interest can promptly build a similar Pathway
for its local use. From the 86 genes present in the path-
way, 20 do not possess entries in KEGG Orthology and
would constitute important additions. Considering that
the contribution of KEGG for the sequence recruitment
in the SeedServer clusters is only 25% of the total num-
ber of sequences, some organisms evolutionarily diver-
gent from the ones represented in KEGG begin to play
a more relevant role for a more efficient annotation of
new sequences. It is relevant to stress that only the See-
dLinkage and UEKO components of SeedServer are cap-
able of clustering sequences proceeding from organisms
without a complete genome project. Moreover, linkage

Figure 3 Gene origin in human evolution. Distribution of the
genes in the preimplantation pathway according to their origin in
clades of the human lineage, based on the determination of the
Last Common Ancestor for the ortholog clusters generated by
SeedServer. The y-axis represents the number of genes and the x-
axis represents the taxonomical groups in which the genes
originated.
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Figure 4 Pathway construction flowchart. The initial step consists of a PubMed search with the subject of interest (e.g. preimplantation
development). The list of PubMed identifiers (PMIDs) obtained in the search is then used in the web tool Medline Ranker as the background set
along with a list of PMIDs of manually selected abstracts considered informative which form the test set. The tool generates a list of abstracts
classified by order of relevance. Best 1000 abstracts are recovered and their corresponding PMID is then introduced in the PESCADOR platform.
Abstracts are tagged by PESCADOR and provide a source of biointeractions for manual curation and pathway construction. UniProt IDs for
products of the genes present in the final pathway are obtained and used as seed in SeedServer. The software recruits homologues for each
gene and creates the final clusters. Taxonomy IDs from each cluster can be used for Last Common Ancestor (LCA) determination.
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of recruited to seed sequences are verified with PSI-
BLAST.
Another important contribution from the ortholog

clustering by SeedServer is the identification of candi-
dates for Swiss-Prot Annotation. Swiss-Prot annotation
depends on the correct association of sequences to gene
families and proteins with known function, using the
available literature as a reference. The annotation is
facilitated since each of the genes is associated with
PubMed Identifiers (PMIDs) stored in the PESCADOR
tool, which are important references for the related
orthologs.
The search for functional information for the D. mela-

nogaster orthologues revealed the involvement of the
genes in processes related to the embryonic develop-
ment and was also a good validation for the clustering
by SeedServer, since all sequences from D. melanogaster
that clustered to the initial human and mouse genes
present an embryo development related function.
Generation of correct clusters is essential for the cor-

rect determination of gene ancestry, but it is not the
sole limiting factor. Sequencing of key organisms from
taxonomic outgroups relative to the ones with complete
genome sequences available will be a crucial source of
sequences that will allow a revaluation of gene ancestry.
Meanwhile, additional sequences clustered by software
(SeedLinkage) and database enrichment (UEKO)
improve the inspection of ancestry.
Determination of the ancestry for the genes in the

preimplantation pathway was nonetheless a central
analysis, given the expectancy that this pathway would
be mainly formed by more contemporary components.
Our data suggest that an ancient fraction of the path-
way including Nanog and Sox2 originated before Chor-
data, whereas a modern fraction including Oct4 and
LIF has appeared near the origin of Eutheria, the pla-
centary organisms. Thus, an important transcriptional
pathway comprising ancient and modern members has
been characterized with text mining, and homologues
search with SeedServer promptly allowed LCA
determination.

Conclusions
Generation of regulatory pathways through text-mining
tools allows integration of data generated by previous
studies for a more complete view of a biological process.
If the genes present in this pathway are associated with
clusters of orthologues this information is added to the
pathway making the visualization of the same process
available for different organisms. The analysis of orthol-
ogy also permits determination of the ancestry of the
genes involved in the process leading to a better under-
standing of the evolution of such process.

Methods
Text-mining and pathway construction
NCBI’s PubMed database was used as a source of avail-
able literature (http://www.ncbi.nlm.nih.gov/pubmed)
for the text-mining approach. The search query used
was “preimplantation development” and the PubMed
identification numbers of the selected papers (PMIDs)
were saved as a text file. Ten papers were selected
manually by us to be used in the Medline Ranker soft-
ware ([19]; http://cbdm.mdc-berlin.de/tools/medlineran-
ker/). These papers, (references [23,26,28,29,31,50,
59,81,82]), were considered by us as highly informative
because they described numerous gene regulations con-
cerning preimplantation development. We used the
PMIDs retrieved by the PubMed search as the back-
ground set and the 10 manually selected PMIDs as the
training set. After classification by order of relevance we
selected the 1000 better-classified abstracts for further
analysis presenting a p-value < 0.01. These abstracts
were then submitted through PESCADOR (manuscript
under preparation, Barbosa-Silva et al.), an online plat-
form for the software LAITOR [20]. After PESCADOR,
results were manually curated and the gene biointerac-
tions recovered were used to build a regulatory pathway
in Keynote MacOS according to the markup language
used by KEGG for pathway construction (KGML can be
found at http://www.genome.jp/kegg/xml/docs/). This
process consisted mainly of finding the highlighted
interaction in the abstract tagged by PESCADOR, con-
firming its involvement in the preimplantation develop-
ment by checking the corresponding paper and drawing
this interaction in the pathway picture.

SeedServer search for homologues
UniProt IDs for human and mouse gene products corre-
sponding to each of the genes represented in the preim-
plantation pathway were used as seed in the SeedServer
software (not published, Guedes et al.). SeedServer is a
web application (http://biodados.icb.ufmg.br/seedserver/)
which searches for homologous sequences through two
components: the program SeedLinkage [78] and the
databases KEGG Orthology (KO) [5] and its enriched
version UEKO (unpublished, developed by Fernandes et
al. by application of the procedure described to enrich
COG [10] to the KEGG Orthology database). Clustering
was verified by PSI-BLAST searches using seed
sequences as query and the recruited proteins as data-
base, and eventual false positives were discarded (1.5%
of the recruited sequences).

LCA determination
Clusters generated for each of the pathway genes were
used to determine the Last Common Ancestor (LCA) of
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each gene. Each cluster provided a list of Taxonomy IDs
corresponding to the organisms in which orthologs of
the pathway genes were found. The clade in the human
lineage that comprised these Taxonomy IDs as leaves in
the Taxonomy Tree was considered to bear the LCA.

Note added in proof
PESCADOR, referred in the text as in preparation, is
now published: PESCADOR, a web-based tool to assist
text-mining of biointeractions extracted from PubMed
queries. Barbosa-Silva A, Fontaine JF, Donnard ER,
Stussi F, Ortega JM, Andrade-Navarro MA. BMC Bioin-
formatics. 2011 Nov 9;12(1):435. [Epub ahead of print]
PMID: 22070195[83].

Additional material

Additional file 1: Homolog clusters. Clusters of homologous
sequences found by SeedServer for each of the genes in the
preimplantation pathway. For each gene, the left column shows the
clustered sequence Uniprot ID and the right column shows the
Taxonomy ID for this sequence.

Additional file 2: Ortholog functions in Drosophila melanogaster.
This figure represents the corresponding D. melanogaster orthologs
found by SeedServer and their respective interactions and functions in
fruit fly development. Note that these orthologs are involved in
processes related to D. melanogaster embryo development. See
Additional file 3 for a table with gene name correspondence between
the genes in this figure and the ones on Figure 3.

Additional file 3: Gene correspondence table. Human and Drosophila
melanogaster gene name correspondence for the orthologs grouped by
SeedServer. Column 3 lists the PubMed identifiers (PMIDs) from the
papers where functions described in Additional file 2 were found.
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