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Abstract

wheat breeding.

molecular mechanisms related to CCN resistance.

Background: Aegilops variabilis No.1 is highly resistant to cereal cyst nematode (CCN). However, a lack of genomic
information has restricted studies on CCN resistance genes in Ae. variabilis and has limited genetic applications in

Results: Using RNA-Seq technology, we generated a root transcriptome at a sequencing depth of 4.69 gigabases of
Ae. variabilis No. 1 from a pooled RNA sample. The sample contained equal amounts of RNA extracted from
CCN-infected and untreated control plants at three time-points. Using the Trinity method, nearly 52,081,238
high-quality trimmed reads were assembled into a non-redundant set of 118,064 unigenes with an average length
of 500 bp and an N50 of 599 bp. The total assembly was 59.09 Mb of unique transcriptome sequences with average
read-depth coverage of 33.25x. In BLAST searches of our database against public databases, 66.46% (78,467) of the
unigenes were annotated with gene descriptions, conserved protein domains, or gene ontology terms. Functional
categorization further revealed 7,408 individual unigenes and three pathways related to plant stress resistance.

Conclusions: We conducted high-resolution transcriptome profiling related to root development and the response
to CCN infection in Ae. variabilis No.1. This research facilitates further studies on gene discovery and on the

Background
Cereal cyst nematode (causal agent Heterodeta avenae)
causes cereal disease in many regions of the world [1-5],
and results in economic losses of billions of dollars annu-
ally [6]. Although CCNs have caused serious economic
losses over the last 40 years [1], only a few CCN resistance
genes have been genetically mapped on the genomes of
wheat (Crel and Cre8) and its relatives, such as those in
the genus Aegilops (Cre2-7), Secale cereale (CreR) (reviewed
in Smiley and Nicol (2009) [7]) and Hordeum vulgare
(Hal-4) (reviewed in Bakker et al. (2006) [8]). The molecu-
lar mechanism of CCN resistance remains unknown.
Members of the genus Aegilops readily hybridize with
bread wheat as the male parent [9]. Aegilops species are
valuable genetic resources for breeding for disease
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resistance in wheat; for example, for resistance to Cochlio-
bolus sativus (spot blotch), Tilletia indica (Karnal bunt),
and powdery mildew [10,11]. Ae. variabilis accession No.1
(2n=4x =28, UUS'S") (syn. Triticum peregrinum (Hack In
J. Fraser) Marie & Hackel) was reported to harbor resistance
genes to both CCN and root knot nematode (Meloidogyne
naasi) [12,13]. A greater understanding of the mechanism
of CCN resistance in Ae. variabilis is necessary for wheat
breeding. However, the major barrier against using genomic
approaches to improve Ae. variabilis is that the genome
sequence, cDNA libraries, EST databases, and microarray
platform information are not available [14].

Recent developments in RNA-Seq technology have
enabled very efficient probing of transcriptomic data
[15-19]. This method not only detects transcripts that
correspond to existing genomic sequences, but it can also
be used for de novo assembly of short reads for gene discov-
ery and expression profiling in organisms for which there is
no reference genome [17,20-26].
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In the present study, we analyzed the root transcriptome
of Ae. variabilis using RNA-Seq technology. We used
two methods, SOAPdenovo and Trinity, for de novo assem-
bly of the transcriptome, and compared their results.
Characterization of the transcriptome data assembled by
Trinity give a high-resolution insight into the genes
involved in several major metabolic pathways associated
with root development and plant defense. This research will
serve as a public information platform for further studies
on the evolution and function of genes in Ae. variabilis, and
provides a thorough insight into the gene expression
profiles associated with the response to CCN infection in
Ae. variabilis.

Methods

Plant material and pathogen infection

Ae. variabilis accession No.l was used for transcrip-
tomic profiling of genes expressed in roots. Grains of
Ae. variabilis No.1 were surface-sterilized in a solution
containing 3% (v/v) hypochlorite and 0.01% (v/v) Tween
20 for 5 min and rinsed three times with sterile water
[27]. The seeds were germinated in Petri dishes (5-cm
diameter) on wet paper at 20 C under a 16-h light/8-h
dark photoperiod. After 10 days, seedlings were divided
into two groups. One group was inoculated with 1,000
second-stage juveniles (J2) of CCN per plant, and the
other group (negative control) was not inoculated with
CCN [28,29]. Thirty hours after inoculation, the roots
were thoroughly washed three times with sterile water
(each 10 min) to remove CCNs adhering to roots. Then,
plants were transplanted into 500-ml glass containers
filled with sterilized perlite, and were grown at 20 C
under a 16-h light/8-h dark photoperiod. These condi-
tions prevented further CCN penetration and ensured
synchronized development of syncytia [27,30].

RNA isolation

Successful CCN inoculation was confirmed by observing
roots under a microscope (Additional file 1). Roots of
CCNr-infected and non-infected plants were sampled at
30 hpi (hours post inoculation), 3 dpi (days post inocu-
lation) and 9 dpi for RNA extraction [27,31,32]. Each
sample consisted of 15 individuals. Total RNA was
extracted with a Biomiga RNA kit according to the man-
ufacturer’s protocol (Biomiga, San Diego, CA, USA).
The concentration and quality of each RNA sample was
determined using a NanoDrop 2000™ micro-volume
spectrophotometer (Thermo Scientific, Waltham, MA,
USA). Equal amounts of total RNA from each sample
were pooled to construct the cDNA library. Pooling is a
cost-effective strategy when the primary research goal
is to identify gene expression profiles. This strategy
was well-justified based on statistical and practical
considerations [33-35].
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Construction of cDNA library and lllumina deep-sequencing
The cDNA library was constructed using an mRNA-Seq
assay for paired-end transcriptome sequencing. The
library construction and sequencing were performed by
the Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen,
China. Briefly, mRNA was enriched from 20 pg total RNA
using oligo dT magnetic beads, and was then cleaved into
200-700 nt fragments by incubation with RNA Fragmen-
tation Reagent. The fragmented mRNA was converted into
double-stranded cDNA by priming with random hexamer-
primers, purified with a QiaQuick PCR extraction kit
(QIAGEN Inc., Valencia, CA, USA), and then washed with
EB buffer for end repairing and single nucleotide adenine
addition. Finally, sequencing adaptors were ligated onto
the fragments, and the required fragments were purified
by agarose gel electrophoresis and enriched by PCR ampli-
fication to construct the cDNA library. The library was
loaded onto the channels of an Illumina HiSeq™ 2000
instrument for 4 gigabase in-depth sequencing, which was
used to obtain more detailed information about gene
expression. Each paired-end library had an insert size of
200-700 bp. The average read length of 90 bp was gener-
ated as raw data. The data sets are available at the NCBI
SRA database with the accession number of SRA050454.

De novo assembly and sequence clustering

The clean reads were obtained from raw data by filtering
out adaptor-only reads, reads containing more than 5%
unknown nucleotides, and low-quality reads (reads con-
taining more than 50% bases with Q-value <20). Then de
novo assembly of the clean reads was performed to gen-
erate non-redundant unigenes. We used two methods
for de novo assembly; SOAPdenovo 63mer-V1.05 [36]
with optimized k-mer length of 41, and the Trinity
method [19] with optimized k-mer length of 25.

Sequence directions of the resulting unigenes were
determined by performing BLASTX searches against
protein databases, with the priority order of NR (non-
redundant protein sequences in NCBI), Swiss-Prot, Kyoto
Encyclopedia of Genes and Genomes database (KEGQ),
and COG (E-value<le-5) if conflicting results were
obtained. ESTScan software [37] was also used to determine
the directions of sequences that were not aligned to those
in any of the databases mentioned above.

The expression levels of unigenes were measured as the
number of clean reads mapped to its sequence. The num-
ber of clean reads mapped to each annotated unigene was
calculated and then normalized to RPKM (reads per Kb
per million reads) with ERANGE3.1 software [18] and
adjusted by a normalized factor [38].

Functional categorization of unigenes
The unigenes assembled by the Trinity method that were
longer than 200 bp were annotated according to their
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sequence similarity to previously annotated genes. We
used sequence-based and domain alignments to compare
sequences. Sequence-based alignments were performed
against three public databases (NR, Swiss-Prot, and
KEGG; significant thresholds of E-value < 1e-5). Domain-
based alignments were carried out against the COG
database at NCBI with a cut-off E-value of <le-5.

The resulting BLAST hits were processed by Blast2GO
software [39] to retrieve associated Gene Ontology (GO)
terms describing biological processes, molecular functions,
and cellular components [40]. By using specific gene iden-
tifiers and accession numbers, Blast2GO produces GO
annotations as well as corresponding enzyme commission
numbers (EC) for sequences with an E-value <le-5.

KEGG mapping was used to determine the metabolic
pathways [41,42]. The sequences with corresponding ECs
obtained from Blast2GO were mapped to the KEGG meta-
bolic pathway database. To further enrich the pathway an-
notation and to identify the BRITE functional hierarchies,
sequences were also submitted to the KEGG Automatic
Annotation Server (KAAS) [43], and the single-directional
best hit information method was selected. KAAS annotates
every submitted sequence with KEGG orthology (KO) iden-
tifiers, which represents an orthologous group of genes dir-
ectly linked to an object in the KEGG pathways and BRITE
functional hierarchy [43,44]. Therefore, these methods in-
corporate different types of relationships that exist in bio-
logical systems (i.e. genetic and environmental information
processing, cellular processes, and organism systems).

Results
Transcriptome sequencing, de novo assembly, and
sequence analysis
We constructed a cDNA library of pooled RNA samples
to generate a transcriptomic view of genes expressed in
the root of uninfected and CCN-infected Ae. variabilis.
Approximately 4,687,311,420 base pairs of raw data were
generated, yielding a total of 54,267,786 clean reads that
were 90 bp in length (Table 1). Of the clean reads,
91.63% had a Phred quality score of<Q20 level (error
probability of 0.01).

All trimmed reads were de novo assembled by SOAP
denovo and Trinity programs (Table 1). SOAPdenovo

Table 1 Summary of de novo sequence assembly

Sequences Base pairs Length Mean N50

(n) (Mbp)  range (bp) length (bp) (bp)

Cleanreads 52,081,238  4,687.31 90-90 90 90
SOAP contigs 336,641 60.21 60-3911 200 229
Trinity contigs 481,672 92.50 75-3696 192 250
SOAP unigenes 130,487 45.86 150-4113 351 392
Trinity unigenes 118,064 59.09 200-4214 500 599
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produced 336,641 contigs of 60 to 3,911 bp with an aver-
age length of 200 bp and an N50 of 229 bp (ie., 50% of
the assembled bases were incorporated into contigs of
229 bp or longer). The majority of the contigs were
shorter than 200 bp (71.97%), and 2,722 contigs (0.81%)
were longer than 1,000 bp. Trinity generated 481,672
contigs ranging from 75 to 3696 bp with an average
length of 192 bp and an N50 of 250 bp. Similar to the
SOAPdenovo assembly, most contigs were shorter than
200 bp (79.65%) but there was a greater number of
longer contigs—11,394 contigs (2.37%) were longer than
1000 bp. The size distribution of these contigs is shown
in Table 2. A total of 130,487 unigenes were further gen-
erated by SOAPdenovo. The unigenes had an average
length of 351 bp and an N50 of 392 bp. Among the uni-
genes, 37,828 (28.99%) were shorter than 200 bp and
4,702 (3.60%) were longer than 1,000 bp. The Trinity
method generated fewer unigenes (118,064). These uni-
genes had an average length of 500 bp and an N50 of
599 bp. Among the unigenes, 64,330 unigenes (54.49%)
were 200 to 400 bp in length. There were no unigenes
shorter than 200 bp and 9.00% (10,622) of all generated
unigenes were longer than 1,000 bp (Table 2).

To assess the quality of the data set, we evaluated the
assembled unigenes to determine the presence and length
of gaps in the sequences. The analysis showed that 1.56%
of the unigenes assembled by SOAPdenovo contained
gaps, whereas those assembled by Trinity contained no
gaps (Figure 1a).

Because there is no transcriptome profile of Ae. varia-
bilis available for comparison, we used a web-based tool,
ESTcal [45], to evaluate the depth and breadth of our
data set. The read-depth coverage for 35.29% of SOAP-
denovo-generated unigenes and for 22.79% of Trinity-
generated unigenes was greater than 20 fold (Figure 1b),
with an average read-depth coverage of 33.54-fold and
33.25-fold, respectively.

Table 2 Length and number distribution of the unigenes
and contigs

Length SOAPdenovo Trinity
range (bp) Contig No. Unigene No. Contig No. Unigene No.
<200 242,275 37,828 383,651 0
200-299 51,635 42,043 41,094 41,031
300-399 19,366 19,062 18,886 23,299
400-499 9,163 10457 9454 13917
500-999 11,480 16,395 17,193 29,195
1000-1999 2,497 4,120 8913 10,027
2000-3000 208 505 1969 572
>3000 17 77 512 23
Total 336,641 130,487 481,672 118,064
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Annotation and classification of the root transcriptome in

ae. Variabilis

To validate and annotate the assembled unigenes, the
118,064 unigenes generated by Trinity were subjected to
BLASTX searches (E-value <1le-5) against public protein
databases. As a result, 72,170 (61.13%), 52,630 (44.58%),
and 37,993 (32.18%) unigenes had homologous sequences
in NR, Swiss-Prot, and KEGG databases, respectively
(Figure 2). Among the unigenes, 50,336 (42.63%) were syn-
chronously annotated by NR and Swiss-Prot, 37,630
(31.87%) by NR and KEGG, and 35,379 (29.97%) by Swiss-
Prot and KEGG, and 35,259 (29.86%) unigenes were simul-
taneously annotated by all three databases. Also, 43,357
(36.72%) unigenes showed no homology to known
sequences deposited in these databases (Figure 2).

GO classifications

The unigenes homologous to known sequences in NR,
Swiss Prot, and KEGG were further annotated with GO
terms using Blast2GO [39]. A total of 31,789 (26.93%)

unigenes were assigned 141,172 GO term annotations,
which could be classified into three categories; biological
process, molecular function, and cellular component. The
biological process category consisted of 42,509 GO terms,
which were assigned to 17,953 (15.21%) unigenes. The mo-
lecular function category consisted of 70,401 GO terms,
which were assigned to 23,381 (19.80%) unigenes, and the
cellular component category consisted of 28,262 GO terms,
which were assigned to 23,798 (20.16%) unigenes. In
addition, 12,340 (10.45%) unigenes were simultaneously
annotated in all three categories (Figure 3). Within the bio-
logical process category, unigenes were assigned to “meta-
bolic process” (11,659 terms), “cellular process” (10,593
terms), “response to stimulus” (3,121 terms), “localization”
(2,716 terms), and “establishment of localization” (2,487
terms). In the cellular component category, most unigenes
were assigned to “cell” (23,598 terms), “cell part” (21,720
terms), and “organelle” (18,647 terms). In the molecular
function category, the major GO terms were “catalytic ac-
tivity” (13,251 terms) and “binding” (12,728 terms).
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KEGG pathway mapping

To identify biological pathways activated in the root of Ae.
variabilis, the assembled unigenes were annotated with
Enzyme Commission (EC) numbers from BLASTX align-
ments against the KEGG database (E-value<1le-5). The
assigned EC numbers were subsequently mapped to the
reference canonical pathways. As a result, 37,993 unigenes
(32.18% of 118,064) matched 57,975 members involved in
119 KEGG pathways (Additional file 3). Of the 37,993
unigenes, 9,596 were related to metabolic pathways, 4,815
to biosynthesis of secondary metabolites, 3,355 to spliceo-
some, 3,216 to plant-pathogen interaction, and 2,275 to
ribosome.

Furthermore, 3,798 (including 3,712 individual unigenes)
of the 57,975 members were sorted into the plant immune
response pathways category, which includes plant-pathogen
interaction, phosphatidylinositol signaling system, and ABC
transporters (Additional file 3). These pathways are closely
Total unigenes: 118,064 related to plant defense against biotic/abiotic stress.

NR (72,170) Swiss Prot (52,630)

19,463 2,174

243
KEGG (37,993)

Unmapped: 43,357

Figure 2 Detection of Homologous genes in public databases.
The numbers of annotated and unmapped unigenes were indicated

: . } COG classification
in the ellipses, respectively.

All assembled unigenes were further annotated based on
COG category [46]. A total of 28,126 unigenes were

The five subcategories, “response to stimulus”, “death”,  assigned 64,441 functional annotations, which could be
“immune system process”, “cell killing” and “antioxidant ac-  grouped into 25 functional categories (Figure 4). The lar-
tivity”, are all involved in resistance-related biological pro-  gest category was “General function prediction only”

cesses in the responses to abiotic and biotic stimulus/stress, (7,888 COG annotations, 12.24% of 64,441). Approxi-
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root development, including “Translation, ribosomal struc-
ture and biogenesis” (6,540, 10.15%), “Transcription”
(5,482, 8.51%), “Posttranslational modification, protein
turnover, chaperones” (4,366, 6.78%), “Cell wall/mem-
brane/envelope biogenesis” (3,688, 5.72%) and “Cell cycle
control, cell division, chromosome partitioning” (3,415,
5.30%), etc. In addition, 5,361 (8.32%) unigenes belonged
to the “Function unknown” category.

The category of “Defense mechanisms” (629, 0.98%) is
closely related to plant defense. The most abundant type
of sequence in this category was ABC-type multidrug
transport system [47]. A total of 486 unigenes belonged
to ATPase and permease (Additional file).

In summary, 78,467 (66.46% of 118,064) unigenes were
annotated in the four public databases. Among them,
74,707 unique unigenes were annotated in NR, Swiss-Prot,
and KEGG databases through sequence-based alignments
(Figure 2). Further, 22,522 unigenes were annotated in the
COG database via domain-based alignments (Figure 3),
which provided a further 3,760 annotated unigenes.
Approximately one-quarter (18,762) of the annotated
unigenes were simultaneously annotated with defined
functional annotations in the four public databases.

Their functional assignments are summarized in Additional
file 5.

Among the annotated unigenes, 839 (0.17% of 118,064)
showed high homology to sequences of nematode species,
e.g. Caenorhabditis elegans, Brugia malayi, and Globodera
rostochiensis, etc. (Additional file 6).

Expression level

Gene expression levels were estimated by RPKM values.
The distribution of RPKM values indicated that most
genes were expressed at low levels. Among 118,064 uni-
genes, 31,484 (26.67%) had RPKM values of less than 1,
and 96,687 (81.89%) had RPKM values of less than 10.
The RPKM values of 2152 unigenes (1.82%) were greater
than 100 (Additional file 5).

Discussion

Ae. variabilis accession No.l is a valuable resource for de-
velopment of CCN-resistance in wheat breeding [12,13].
However, it is difficult to screen for genes associated with
CCN resistance when genomic information is not avail-
able. Transcriptomic profiling provides abundant informa-
tion for a wide range of biological studies. Transcriptomic
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data gives fundamental insights into biological processes.
It can reveal gene expression profiles after experimental
treatments or infection, and analyses of conserved ortholo-
gous genes can be used for phylogenomic purposes, etc.
[48]. Here, we used high-throughput deep sequencing
technology to profile the root transcriptome of Ae. variabi-
lis using the Illumina HiSeq™ 2000 platform. To the best
of our knowledge, this is the first report on this subject for
Ae. variabilis. The cDNA library was constructed using
pooled RNA samples from CCN-infected and non-infected
plants at three time points. This maximized the number of
expressed transcripts included in the analysis, especially
those related to CCN resistance.

Accurate sequencing and reliable read assembly are
essential for downstream applications of transcriptome
data [49]. In this study, we used two popular assemblers,
SOAPdenovo and Trinity, for de novo assembly of the
transcriptomic data of Ae. variabilis. The SOAPdenovo
program has been widely used in many studies [25,50],
while the Trinity method is a newly developed tool. Trin-
ity was reported to recover more full-length transcripts
across a broad range of expression levels, and to provide
a unified, sensitive solution for transcriptome recon-
struction in species without a reference genome, similar
to methods that rely on genome alignments [19]. The two
methods showed similar average read-depth coverage
values. SOAPdenovo produced more unigenes than Trin-
ity; however, many of the sequences assembled by SOAP-
denovo were shorter than 200 bp (37,828 out of 130,487).
On the other hand, Trinity generated 118,064 unigenes,
the unigenes did not contain gaps, and the average unigene
length was nearly twice that of those produced by SOAP-
denovo (mean length of 599 bp using Trinity, 351 bp using
SOAPdenovo). Therefore, Trinity was a better approach
than SOAPdenovo for assembly in this research.

The Roche 454 GS FLX platform produces long reads
(>400 bp), whereas the Illumina sequencer generates more
reads with a shorter length (90 bp). In this study, however,
most of the assembled unigenes (130,487 from SOAP
denovo (=150 bp) or 118,064 from Trinity (=200 bp))
achieved a higher coverage of ~33x. This indicates that
short-read sequencing combined with an in-depth sequen-
cing strategy and an effective assembly tool is an appropri-
ate strategy to analyze transcriptome profiles.

Compared with other transcriptome studies, the length
distribution of the 130,487 and 118,064 unigenes gener-
ated in this work tended towards shorter-length reads.
There are several possible explanations for this. First, Ae.
variabilis (2n =4x =28, UUS'S") is an allotetraploid spe-
cies of the tribe Titiceae and it has an enormously
expanded repeated genome. This may present a substan-
tial barrier to assembling short unigenes into long ones
using current and upcoming sequencing technology
[51,52]. Second, the total RNA for sequencing in our
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work was pooled from six samples, which may negatively
affect read assembly [53]. The high dynamic range of
mRNA expression is a problem for comprehensive de
novo mRNA sequencing and assembly [50]. Third, high
frequencies of alternative splicing and fusion events may
have restricted the assembly of short sequences into
longer ones [54,55]. Another important reason is that
more than 80% of unigenes in this study were expressed
at low levels. Therefore, there would be fewer reads cor-
responding to these unigenes for sequencing and for use
in sequence assembly. Even so, the de novo transcrip-
tome of Ae. variabilis provided abundant unigene infor-
mation without gaps in sequences. This genetic data
enriches the genomic resources for the tribe Titiceae.

A total of 7,408 individual unigenes (6.27% of 118,064)
were associated with plant defense and resistance
(Additional file 7). These unigenes could be classified
into five GO sub-categories, three pathways, and a COG
function group. More attention should be paid to the
three pathways related to plant defense, which included
3712 unigenes. In the “plant-pathogen interaction” path-
way, unigenes were mainly involved with the hypersensi-
tive response, cell wall reinforcement, stomatal closure,
and defense-related gene induction (Additional file 8).
In the “phosphatidylinositol signaling system” pathway,
unigenes were mainly related to reactions involving phos-
phatidylinositol and its derivatives (Additional file 9). In
the “ABC transporters” pathway, unigenes were related to
eukaryotic-type transporters only, such as the ABCA sub-
family, ABCB subfamily, ABCC subfamily, ABCG subfam-
ily, and other putative ABC transporters (Additional file 10).
These pathways provide a starting point to explore the
genes related to CCN resistance and to understand its mo-
lecular mechanism.

Interestingly, 839 unigenes showed high homology to
genes from nematode species (Additional file 6), probably
because the root had been invaded by CCNs. As there is no
genomic information available for CCN, we cannot thor-
oughly filter sequences of H. avenae genes from the tran-
scriptome database. However, the detection of CCN
unigenes confirmed that the method used for CCN inocula-
tion was successful. More importantly, these unigenes rep-
resent those expressed during the interaction with a
resistant host. Therefore, this experimental system and the
unigene dataset obtained from it build a platform for com-
bining genetic, genomic, and expression information on the
interaction between CCN and its host in future studies [56].

Conclusions

This is the first report of transcriptome profiling of Ae. var-
iabilis using high-throughput deep sequencing technology.
The sequencing was at a depth of 4.69 gigabase pairs. A
total of 118,064 unigenes were assembled and 78,467 uni-
genes were functionally annotated. By including RNA
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samples from CCN-infected plants, the dataset shown here
may reveal important information about gene expression
related to the plant response to, and defense against, CCN
invasion. Consequently, the large number of transcriptomic
sequences and their functional annotations will provide suf-
ficient information to discover novel genes and to explore
the molecular mechanism of CCN resistance in Ae. varia-
bilis. Therefore, the results of this study will be useful for
improving CCN resistance in wheat breeding programs.

Additional files

Additional file 1: Roots invaded by CCN. A prep-experiment
confirmed the CCN J2 could parasitize plant root effectively before RNA
extraction. Few hours later after the CCN inoculation, one nematode was
detected being piercing root epidermis (Figure S1a). Utilizing the
microscope, one CCN J2 was found invading into a root tip of plant,
already (Figure S1b; part of the CCN cover was removed).

Additional file 2: Resistance related unigenes from GO classification
CCN.

Additional file 3: KEGG pathway mapping.
Additional file 4: Defending unigenes from COG alignment.
Additional file 5: Unigene annotations in public databases.

Additional file 6: Nematode-like unigenes list in the transcriptome
database.
Additional file 7: Resistance candidate unigenes in this study.

Additional file 8: Unigenes involved in plant-pathogen interaction
pathway.

Additional file 9: Unigenes involved in phosphatidy linositol
signaling system pathway.

Additional file 10: Unigenes involved in ABC transporters pathway.
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