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Abstract

mitochondrial function.

Wolbachia dependence.

Background: Many species of filarial nematodes depend on Wolbachia endobacteria to carry out their life cycle. Other
species are naturally Wolbachia-free. The biological mechanisms underpinning Wolbachia-dependence and
independence in filarial nematodes are not known. Previous studies have indicated that Wolbachia have an impact on
mitochondrial gene expression, which may suggest a role in energy metabolism. If Wolbachia can supplement host
energy metabolism, reduced mitochondrial function in infected filarial species may account for Wolbachia-dependence.
Wolbachia also have a strong influence on mitochondrial evolution due to vertical co-transmission. This could drive
alterations in mitochondrial genome sequence in infected species. Comparisons between the mitochondrial genome
sequences of Wolbachia-dependent and independent filarial worms may reveal differences indicative of altered

Results: The mitochondrial genomes of 5 species of filarial nematodes, Acanthocheilonema viteae, Chandlerella quiscali,
Loa loa, Onchocerca flexuosa, and Wuchereria bancrofti, were sequenced, annotated and compared with available
mitochondrial genome sequences from Brugia malayi, Dirofilaria immitis, Onchocerca volvulus and Setaria digitata. B.
malayi, D. immitis, O. volvulus and W. bancrofti are Wolbachia-dependent while A. viteae, C. quiscali, L. loa, O. flexuosa and
S. digitata are Wolbachia-free. The 9 mitochondrial genomes were similar in size and AT content and encoded the
same 12 protein-coding genes, 22 tRNAs and 2 rRNAs. Synteny was perfectly preserved in all species except C. quiscali,
which had a different order for 5 tRNA genes. Protein-coding genes were expressed at the RNA level in all examined
species. In phylogenetic trees based on mitochondrial protein-coding sequences, species did not cluster according to

Conclusions: Thus far, no discernable differences were detected between the mitochondrial genome sequences of
Wolbachia-dependent and independent species. Additional research will be needed to determine whether
mitochondria from Wolbachia-dependent filarial species show reduced function in comparison to the mitochondria of
Wolbachia-independent species despite their sequence-level similarities.

Background

Filarial nematodes are arthropod borne parasitic worms
that infect hundreds of millions of people throughout
the tropics and sub-tropics and are responsible for a
great deal of morbidity in humans and domestic animals.
Many filarial pathogens, such as the agents of lymphatic
filariasis and river blindness, require a bacterial
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endosymbiont, Wolbachia pipientis, to carry out their life
cycle [1-4]. In these species, depletion of the endosymbiont
causes defects in growth, molting and fertility, leading to
the death of the worm [5-7]. Other filarial species, some of
which are very closely related to Wolbachia-dependent sis-
ter taxa, are naturally Wolbachia-free [1,2,8-10]. Thus far,
there are no discernable patterns in Wolbachia distribution
(e.g., based on host species, vector species, tissue tropism,
geographic distribution, etc.), and the reasons for this
disparity are poorly understood. Presumably, some
genetic function(s) must be missing or reduced in
Wolbachia-dependent worms in comparison to their
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Wolbachia-free counterparts, forcing them to rely on
the bacteria as an alternative source of vital gene pro-
ducts. The processes underpinning Wolbachia-depend-
ence are of biological and medical interest, as the
Wolbachia products required by the dependent worm
may represent useful targets for novel anti-filarial
chemotherapies.

Wolbachia endobacteria and the eukaryotic mitochon-
dria share many common features, including the intracel-
lular lifestyle, obligatory mutualism, reduced genome size,
vertical transmission, etc. These shared features, as well as
their shared ancestry in the order Rickettsiales [11-13],
lead us to hypothesize that Wolbachia may contribute to
energy metabolism in the filarial host. Previous studies
have shown that antibiotic-mediated Wolbachia depletion
leads to upregulation in genes related to energy metabol-
ism, including mitochondrially encoded subunits of the re-
spiratory chain [14]. This impact on host mitochondrial
gene expression, and presumably energy production, sug-
gests that Wolbachia may serve as an alternative energy
source or mitochondrial “supplement,” necessitating
increased activity when the endosymbiont is removed. If
so, differences in mitochondrial function may account for
discrepancies in Wolbachia status in the filarial lineage.

The mitochondrial genome (mtDNA) is particularly sen-
sitive to evolutionary pressure exerted by the Wolbachia
infection. Vertically-transmitted Wolbachia are able to ex-
pand rapidly through insect populations due to the
mechanisms of reproductive parasitism [15]. Wolbachia
and mitochondria are co-transmitted. Thus, the
mtDNAC(s) of the first infected individual(s) presumably
expand concurrently with the Wolbachia infection.
Such Wolbachia-mitochondria “sweeps,” characterized
by unusually low degrees of variation in the mtDNA of
infected populations, have been noted in many insect
species [16-20]. A similar lack of mtDNA diversity is seen
in populations of Dirofilaria immitis (canine heartworm) in
comparison to Wolbachia-free, non-filarial nematodes [21].
A Wolbachia-induced genetic bottleneck may have led to
the fixation of different mtDNA types among infected filar-
ial species as compared to uninfected species.

The mtDNA sequences of 4 species of filarial nematodes,
Onchocerca volvulus [22), D. immitis [23], Brugia malayi
[24], and Setaria digitata [25], have been published. This
report details the sequencing and analysis of the mtDNA
sequences of 5 more species: Acanthocheilonema viteae,
Chandlerella quiscali, Loa loa, Onchocerca flexuosa
and Wuchereria bancrofti. Studies of the distribution of
Wolbachia within filarial nematodes have shown that the
infection is prevalent among 2 of the 8 filarial subfamiles,
the Onchocercinae and the Dirofilariinae [1,2]. Agreement
between the phylogenies of Wolbachia and their filarial
hosts suggests that Wolbachia entered the filarial lineage
prior to the diversification of these 2 subfamilies [1,26]. 7 of
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the 9 species included in this study are members of the the
Onchocercinae and Dirofilariinae. Four of these, B. malayi,
D. immitis, O. volvulus and W. bancrofti, are Wolbachia-
dependent [1,3,4,27]. The other 3, A. viteae, L. loa and
O. flexuosa, are Wolbachia-free [1,8,10,28], presumably
due to secondary loss of the endosymbiont [1,29]. Con-
versely, C. quiscali and S. digitata are Wolbachia-free
and belong to subfamilies (Splendidofilariinae and
Setariinae, respectively) that have not been shown to
contain Wolbachia-infected species, suggesting that
these subfamilies split from the lineage prior to the
introduction of Wolbachia endobacteria [2,9].

In light of the presumed impact of Wolbachia on the
host mitochondria, we hypothesized that the mtDNAs of
Wolbachia-dependent filaria may differ in gene content,
arrangement or sequence as compared to those found in
Wolbachia-free species whose ancestor(s) may not have
undergone a Wolbachia-induced genetic bottleneck or
evolved in the presence of an endobacterial partner capable
of affecting host energy metabolism. The purpose of the
reported study was to compare mtDNA from Wolbachia-
dependent and independent filarial species in search of se-
quence level differences indicative of altered mitochondrial
function. Our analyses revealed no differences that could be
attributed to Wolbachia status. Future studies will be
required to discover subtler affects of Wolbachia on the se-
quence or function of filarial nematode mitochondria.

Results
Gene content and organization
The mtDNAs of 5 species of filarial nematodes were
sequenced, annotated and deposited in Genbank (see
Table 1 for accession numbers). Genome length, AT-
richness and base composition of the 9 mtDNAs are
compared in Table 1. The newly sequenced mtDNAs are
similar in size and AT content to those of other filarial spe-
cies. So far, filarial mtDNAs range in size from 13,474 bp in
O. volvulus to 13,839 in S. digitata and range in AT content
from 73.7% in O. volvulus to 77.7% in C. quiscali [22,25].
All 9 filarial mtDNAs encode the same 12 proteins, 22
tRNAs and 2 rRNAs with very short intergenic
sequences (Figure 1). These genes are encoded in the
same direction, a characteristic shared by most nematode
mtDNAs. Synteny is perfectly preserved in all examined
species with the exception of C. quiscali (Figure 1). In 8
of the 9 species, 5 tRNA genes (tRNA™? tRNA“**?
tRNA™", tRNAM®" and tRNA"") reside between the AT-
rich region and NDL4. In C. quiscali, the tRNAM®" gene
is positioned between Cox3 and the AT-rich region apart
from the main tRNA cluster, and the order of the other
4 tRNA genes is rearranged relative to other species. For
a comparisons between the mtDNA arrangement among
filarial and other nematodes, see [25].



Table 1 Comparison of filarial nematode mtDNAs

Wolbachia-dependent species

Wolbachia-independent species

Species
Subfamily
Accession Number
Length (bp)

Length of AT-rich
region (bp)

A%

T%

G%

C%
AT%

B. malayi
Onchocercinae
NC_004298

13,657
283

21.60%
53.90%
16.80%
7.70%
75.50%

D. immitis O. vovlulus
Dirofilariinae Onchocercinae
NC_005305 NC_001861
13,814 13,474
362 312
19.30% 19.30%
54.90% 54.00%
19.30% 19.80%
6.50% 6.90%
74.20% 73.30%

W. bancrofti
Onchocercinae
HQ184469
13,636
256

20.50%
54.10%
18.00%
7.40%
74.60%

A. viteae
Onchocercinae
HQ186249
13,724
421

19.60%
54.00%
19.30%
7.20%
73.50%

L. loa O. flexuosa C. quiscali
Dirofilariinae Onchocercinae Splendidofilariinae
HQ186250 HQ214004 HM773029
13,590 13,672 13,757
288 284 308
20.80% 20.30% 23.00%
54.80% 53.90% 54.70%
17.70% 18.60% 15.90%
6.70% 7.20% 6.40%
75.60% 74.20% 77.70%

S. digitata
Setariinae
NC_014282
13,839
506

19.40%
55.70%
18.20%
6.70%

75.10%

Information was taken from previous studies for B. malayi [24], D. immitis [23], O. volvulus [22], and S. digitata [25]

. Information regarding the Wolbachia status of species from various subfamilies is reported in [2].
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Figure 1 Comparative diagrams of the mitochondrial genomes of W. bancrofti and C. quiscali. Protein-coding genes are shown in red with
arrowheads indicating directionality. rRNA and tRNA genes are shown in blue and green, respectively, and the AT-rich region is shown in purple.
The diagram of the W. bancrofti mitochondrial genome is representative of most filarial mitochondria, as synteny is preserved in all species except
C. quiscali. The 5 tRNA genes rearranged in C. quiscali are highlighted in orange.
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Protein-coding genes

Twelve protein-coding genes were identified in each of the
examined mtDNAs. None of these contain premature stop
codons or frameshift mutations. Reverse transcription
PCR reactions indicate that the predicted protein-coding
genes were expressed at the RNA level in all examined
species (Figure 2).

Filarial mtDNAs are extremely thymine (T)-rich (Table 1);
therefore, it is not surprising that filarial mitochondria show
a bias towards T-rich codons (Additional file 1: Table S1).
The most frequently used codon in all species is TTT,
which encodes phenylalanine and serves as an alternative
start codon in certain instances (Additional file 1: Table S1,
Table 2). The start and stop codons used by each species

are listed in Table 2. Novel start codons include TGT for
ND6 in W. bancrofti, TCT for CytB in A. viteae, and CCT
for ND3 in O. flexuosa. Termination codons include TAG,
TAA, and the incomplete stop codon T, which is converted
to TAA upon addition 3’ poly(A) tail.

Ribosomal and transfer RNA genes
All species encode 2 rRNA genes. In all species examined,
the 12s rRNA gene is positioned between NDL4 and ND1
while the 16s rRNA gene is positioned between Cox2 and
ND3 (Figure 1). The exact boundaries of these genes have
yet to be mapped in any filarial species.

All species also contain the same 22 tRNA genes. In the
previously sequenced species, 20 of the 22 mitochondrial
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Figure 2 Expression of mitochondrial protein-coding genes in six filarial nematode species. Expression of mitochondrial protein-coding
genes was assessed by reverse transcription PCR in B. malayi, D. immitis, O. volvulus, A. viteae, C. quiscali and O. flexuosa. The following templates
were used for each reaction: genomic DNA (G), cDNA (C), total RNA (R) and water (W).

A. viteae C. quiscali Q. flexuosa

tRNAs share a common secondary structure in which
the TYC arm and variable loop are exchanged for a TV-
replacement loop [22,23] (Figure 3b). Conversely, the
two tRNAS genes contain a DHU replacement loop in
exchange for the typical D arm (Figure 3c) [22,23]. The
predicted mitochondrial tRNA structures of A. viteae
followed this trend exactly, as did most of the tRNAs
from the other examined species. However, our predic-
tions indicate that tRNAS®™" and tRNA*" in C, quiscali,
tRNA™* and tRNA®™ in L. loa, tRNA™™ in O. flexuosa
and tRNA™ in W. bancrofti may contain both the T¥C

and D loops (Figure 3d-i). The same anticodons are
used in all species with two exceptions. tRNA"™ uses
the anticodon AGG in O. volvulus, D. immitis, S. digitata
and O. flexuosa, while the anticodon TGG is used in other
species, and tRNA™"! uses the anticodon TAA in A. viteae
while the anticodon TAG is used in other species.

AT rich region

The control, or AT rich, region represents the largest non-
coding region in filarial mtDNAs, which are otherwise
densely packed with tightly spaced or slightly overlapping

Table 2 Start and stop codons used in mitochondrial protein-coding genes

Wolbachia-dependent species

Wolbachia-independent species

B. malayi D. immitis O. volvulus W. bancrofti A. viteae L. loa O. flexuosa C. quiscali S. digitata
ND2 TTA/T ATT/TAG ATT/TAG TTA/T TTT/TAG ATT/TAA ATT/TAG ATT/TAG TTT/TAG
ND4 TTG/TAA TTG/TAG TTG/TAA TTG/TAA ATG/TAA TTG/TAG TTG/TAG TTG/TAA ATG/TAA
COX1 ATT/TAG ATT/TAG ATT/TAG ATT/TAA GTT/T GTT/T ATT/TAA TTG/TAA ATT/TAG
NDé TAT/TAA TAT/TAG ATT/TAG TGT/TAA TAT/TAG TAT/TAG ATT/TAA TTG/TAG TTG/TAA
CYTB ATT/T GTI/T ATT/TAA ATT/T TCT/T ATT/T ATT/TAA ATT/T GTT/T
COX3 ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAG ATT/TAA ATA/T
NDL4 GTA/TAA GTA/TAA TTG/TAA GTA/TAA GTA/T GTA/T TTA/T GTT/TAA TTIG/T
ND1 TTIG/T TTIG/T TTIG/T TTG/TAA TTIG/T TTG/T TTG/T TTG/T TTG/TAA
ATP6 ATT/TAG TTG/TAA ATT/TAG ATT/TAG ATT/TAA ATT/TAA ATT/TAA ATT/TAG TTT/TAG
COX2 ATT/TAA ATT/T ATT/TA ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAG
ND3 CTT/TAG cTT/T CTT/TAG CTT/T CTT/T CTT/T ccrr CTT/TAG /T
ND5 TTT/TAG TTG/TAG TTG/TAG TTT/TAG TTT/TAG TTT/TAG TTA/TAA TT1/T TTT/TAG

Information was taken from previous studies for B. malayi [24], D. immitis [23], O. volvulus [22], and S. digitata [25]. Information regarding the Wolbachia status of

species from various subfamilies is reported in [2].
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Figure 3 Mitochondrial tRNA structures. The features of a typical tRNA include the acceptor stem, D arm, TWYC arm, variable loop and
anticodon arm (A). In most species, tRNA*"" and tRNA*®" contain a DHU replacement loop and TWC arm, as in tRNA®® from A. viteae (B), while
all other tRNAs contain a D arm and TV replacement loop, as in tRNA™™ of A. viteae (C). Exceptions may include tRNA™" (D) and tRNA*®"" (E) from
C. quiscali, tRNA™® (F) and tRNA™ (G) from L. loa, tRNAT™ (H) from O. flexuosa, and tRNA™™ () from W. bancrofti, as these structures are predicted
to include both the D and TWC arms.
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protein-coding, tRNA and rRNA genes. The AT rich
regions of the 9 sequenced filarial mtDNAs range in size
from 256 bp in W. bancrofti to 506 bp in S. digitata
(Table 1). In most species, this region is located between
Cox3 and tRNA*?, The unusual arrangement of tRNA
genes in C. quiscali places its proposed 308 bp AT rich
region between the tRNAM®" and tRNA""* genes, leav-
ing an additional 109 bp non-coding region between
the Cox3 and tRNAM®* genes. The function of this sec-
ondary non-coding region is unknown.

Phylogenetic analysis

A phylogenetic analysis was carried out using the nucleo-
tide sequences of the 12 protein coding genes from the
fully-sequenced filarial mtDNAs (Figure 4). Trees were
left unrooted since the closest relatives of filarial nema-
todes with complete mtDNA sequences (i.e. Ascaris and
Toxocara species) are still too divergent to allow for ac-
curate alignment. Overall, topology is similar to that of
trees based on single mitochondrial genes (i.e. 12s rRNA
gene, Cox I) with improved statistical support [2,26,30].
As in the previous studies, our molecular phylogeny does
not agree with the classical taxonomy of the filariae, as
the Dirofilariinae and Onchocercinae appear as polyphyletic
groups. In our tree, the lymphatic filariae cluster together,
as do the genera Onchocerca and Dirofilaria. C. quiscali,
which has not been included in previous analyses, is most
closely related to the lymphatic filariae and L. loa. A. viteae
and S. digitata are basal to the other species in our study.

o A. viteae

o S. digitata

100 @ B. malayi
e W. bancrofti
100 o C. quiscali
o L. loa
e D. immitis
100] ——o O. flexuosa
100L____o@ O. volvulus
0.05'

Figure 4 Phylogeny of filarial nematodes based on mtDNA
sequences. Phylogenetic analysis was based on the concatenated
nucleotide sequences of the twelve protein coding genes.
Percentages of Bayesian posterior probabilities are displayed at
nodes. Black circles indicate Wolbachia-dependence while white
circles indicate Wolbachia-independence.
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Simpler neighbor joining trees were constructed for each
individual gene (data not shown). As in the tree based on
concatenated protein coding sequences, clustering is never
reflective of Wolbachia status.

Discussion

Filarial nematodes are widespread parasites that infect all
classes of vertebrates except fish [31]. Many of these are of
socioeconomic and medical importance. However, the
mtDNAs had only been sequenced from 4 filarial species
[22-25]. In our study we characterized the mtDNAs of 5
additional species and used the newly available sequences to
compare the mtDNA of Wolbachia-dependent and inde-
pendent filarial nematodes. Initially, we hypothesized that
there might be obvious differences in the mitochondrial
genome sequences of Wolbachia-dependent and independ-
ent species due to the evolutionary pressure exerted by a
co-transmitted endosymbiont that may impact the energy
balance of its host [14,16-21]. However, our data indicate
that the mtDNAs of filarial nematodes are, thus far, remark-
ably similar. No major differences in genome length, AT
content or codon usage were detected. All 9 species contain
the standard 12 protein-coding genes, 22 tRNAs and 2
rRNAs. Differences in tRNA structure or anticodon usage
are also minor and do not correlate to Wolbachia status. In
light of these findings, it seems that Wolbachia has had little
effect on the content of filarial mtDNA.

In most filarial species, synteny was perfectly pre-
served. The rearrangement of 5 tRNA’s in C. quiscali
probably reflects its evolutionary distance from the other
species included in this study rather than its Wolbachia-
free status (see Figure 4), as such rearrangements were
not detected in other Wolbachia-free species. It will be
necessary to sequence the mtDNAs of other members of
the Splendidofilariinae in order to determine whether
this rearrangement is species-specific or typical of the
entire subfamily. However, this minor alteration in gene
order is unlikely to impact overall mitochondrial
function.

If Wolbachia infection had led to the fixation of certain
mitochondrial types in an ancestral population, one
might expect to see higher degrees of sequence identity
between species that have come into contact with the
endosymbiont (i.e. species from the Onchocercinae and
Dirofilariinae) as compared to species that have not [2].
However, our phylogenetic analysis indicated that the level
of sequence identity shared between mitochondrial pro-
tein-coding genes is independent of Wolbachia status. If it
is true that filarial species considered primitive based on
classical taxonomy (i.e. C. quiscali and S. digitata) were
never associated with Wolbachia, the similarity of their
mtDNAs to the others in this study makes it seem unlikely
that Wolbachia have had a significant impact on mtDNA
sequence. The lack of diversity in mtDNA sequences could
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be taken as an indication that the initial infection and the-
oretical Wolbachia-induced genetic bottleneck occurred in
an ancestor of all filarial nematodes, but this is unlikely
given the phylogenetic age of the filariae. Of course, one
must consider that this study was performed on the level
of complete genes. In the future, it may be informative to
compare smaller loci in Wolbachia-dependent and inde-
pendent species, as even single base changes are known to
have profound effects on mitochondrial function [32].

The fact that no sequence-level differences were
observed between mitochondria from Wolbachia-
dependent and independent filarial species does not exclude
the possibility that differences may exist in mitochondrial
function or efficiency between these groups. Of course,
many of the genes related to oxidative phosphorylation and
energy metabolism are encoded in the nuclear genome ra-
ther than the mitochondrial genome. Because only one filar-
ial genome has been published (see [24] for the genome of
B. malayi), we do not know if certain nuclear genes are
missing or altered in Wolbachia-dependent species relative
to their Wolbachia-independent counterparts.

Even if there are no differences in the genes encoded by
Wolbachia-dependent and independent filarial worms, it
is possible that variation in expression levels could lead to
differences in mitochondrial output. Expression levels may
be partially dictated by the number of mitochondrial gen-
omes present in each mitochondria or the density of mito-
chondria in a given organism. These factors are also
variable. Quantitative real-time PCR techniques could be
used to assess expression; however, careful normalization
would be necessary to ensure accurate results when com-
paring expression levels across multiple species and life
cycle stages. This type of analysis will not be possible until
better nuclear genome data is produced to provide appro-
priate control sequences.

Mitochondria and Wolbachia appear to share a common
evolutionary story wherein bacteria of the Rickettsial family
were taken up and transformed over time into an obligate
mutualist that provides products essential to the life of the
host. Since Wolbachia and mitochondria are co-transmitted
and since Wolbachia may have an impact on host energy
metabolism [14], it is possible that Wolbachia have affected
the mitochondria of Wolbachia-dependent species in ways
that are not reflected in the mtDNA sequence. Additional
research will be required to test this hypothesis.

Conclusions

Here we report the mitochondrial genome sequences of 5
species of filarial nematodes: Acanthocheilonema viteae,
Chandlerella quiscali, Loa loa, Onchocerca flexuosa, and
Wiuchereria bancrofti. Although we had hypothesized that
the presence of Wolbachia endobacteria in some filarial
nematodes may have had an impact on the content,
organization or sequence of filarial mtDNA, we found no
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evidence that supports this hypothesis. The 9 available fil-
arial mitochondrial sequences are remarkably similar on
the sequence level. Future studies may determine whether
functional differences exist between the mitochondria of
Wolbachia-dependent and independent filarial nematodes.

Methods

Parasite materials

Adult B. malayi and A. viteae were obtained from ex-
perimentally infected Mongolian jirds as previously
described [33,34]. Adult D. immitis were obtained from
the Filariasis Research Reagent Resource Center (Athens,
GA). Adult O. flexuosa were isolated from subcutaneous
nodules dissected from red deer (Cervus elaphus) in
Schleswig-Holstein, Germany [10]. Adult O. volvulus,
and microfilariae of W. bancrofti and L. loa were avail-
able from prior studies in Uganda, Papua New Guinea
and Cameroon, respectively [8,35,36]. Adult Chandle-
rella quiscali were obtained from common grackles
Quiscalus quiscula trapped in North Dakota, USA.

Nucleic acid isolation and cDNA synthesis

DNA for sequencing was isolated from adult worms and
microfilariae using the DNeasy Blood and Tissue Kit
(Qiagen, Valencia, CA), ethanol precipitated to concen-
trate and stored in 1x TE buffer. RNA was isolated as
previously described [29]. Briefly, worms were homogenized
by bead-beating in TRIzol (Invitrogen, Carlsbad, CA) and
RNA was isolated by organic extraction with 1-bromo-3-
chloropropane followed by column purification using the
RNeasy Mini Kit (Qiagen) including an on-column DNase
digest. A second DNase treatment was performed with the
TURBO DNA-free Kit (Applied Biosystems, Austin, TX).
cDNA was synthesized from total RNA using qScript
¢DNA SuperMix according to manufacturer’s suggested
protocol (Quant Biosciences, Gaithersburg, MD) and puri-
fied with the Qiaquick PCR Purification Kit (Qiagen).

PCR reactions and sequencing

Primers used to amplify mtDNA in 10 segments are
reported in Additional file 2: Table S2. “Filarial Mito” pri-
mer sets are designed to target conserved portions of fil-
arial mitochondria. In cases where the conserved primer
set failed, species-specific primer sets were implemented.
This was the case for segments 1-2, 7 and 9 in A. viteae,
segments 5 and 8 in C. quiscali, segments 1, 4, 8 and 10
in L. loa, and segments 7 and 9 in W. bancrofti. All PCR
reactions were performed using the Platinum Taq High
Fidelity DNA polymerase (Invitrogen) according to the
manufacturer’s suggested protocol with annealing tem-
peratures adjusted to accommodate the thermodynamic
properties of the primers. PCR products were cloned
using the TOPO-TA Cloning Kit for Sequencing or the



McNulty et al. BMC Genomics 2012, 13 :145
http://www.biomedcentral.com/1471-2164/13 /145

TOPO-XL PCR Cloning Kit (Invitrogen) depending on
size, and sequenced by primer walking.

Species-specific primers (given “RT” designation in the
primer name) were designed to detect protein-coding
sequences from cDNA. The sequences of these primers
are reported in Additional file 2: Table S2. To detect ex-
pression, each PCR reaction included a DNA positive
control, a cDNA test sample and total RNA and water-
only negative controls.

Assembly and annotation of the mitochondrial genomes
Contigs were assembled using Contig Express and ana-
lyzed using Vector NTI version 10.3.1 (Invitrogen).
Sequences were verified by comparison with publically
available sequence data from the Genbank sequence
read archive for L. loa (accession number SRP000756)
and W. bancrofti (accession number SRP000772).

Protein-coding genes (including initiation and termin-
ation codons) and rRNAs were determined based on
their homology to sequences reported from the mito-
chondrial genomes of B. malayi, D. immitis, O. volvulus
and S. digitata [22-25].

In most instances, tRNA sequences were predicted using
Arwen (available at http://130.235.46.10/ARWEN/) [37]
and verified by homology to known filarial tRNA
sequences. Any computationally predicted tRNAs that fell
within other documented structures (i.e. protein-coding
genes or rRNAs) were disregarded. tRNA*® and tRNA"*?
in A. viteae, tRNA*"? and tRNAY in O. flexuosa, and
tRNA*? in L. loa were identified solely based on hom-
ology to known orthologs and the presence of the
expected anticodon.

Base composition and codon usage were calculated using
the DNA Stats and codon usage features available from the
Sequence Manipulation Suite (http://www.bioinformatics.
org/sms2/dna_stats.html). Diagrams of complete mtDNAs
were constructed using DNA plotter (http://www.sanger.ac.
uk/resources/software/dnaplotter/) [38].

Phylogenetic analysis

The nucleotide sequences of the 12 protein coding
genes, excluding stop codons, were aligned using Clustal
W as implemented in MEGA4 using default parameters
[39]. Individual gene alignments were concatenated using
FASconCAT [40].

Model selection was performed using MrModeltest2.3
according to the Akaike information criterion [41]. Bayes-
ian Metropolis-coupled Markov chain Monte Carlo
(MCMC) analysis was performed on the dataset with the
GTR + I + G nucleotide substitution model by MrBayes
Version 3.1.2 [42,43]. Two simultaneous runs of 500,000
generations were performed with sampling every 100
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generations and a 25% burn-in. The resulting phylogenetic
tree was visualized in MEGA4: [39].

Additional files

Additional file 1: Table S1. Codon usage in the mitochondrial
genomes of filarial nematodes

Additional file 2: Table S2. Primer sequences
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