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Abstract

fine organizational features.

GeSICA/

Background: Various aspects of genome organization have been explored based on data from distinct
technologies, including histone modification ChIP-Seq, 3C, and its derivatives. Recently developed Hi-C techniques
enable the genome wide mapping of DNA interactomes, thereby providing the opportunity to study genome
organization in detail, but these methods also pose challenges in methodology development.

Results: We developed Genome Segmentation from Intra Chromosomal Associations, or GeSICA, to explore
genome organization and applied the method to Hi-C data in human GM06990 and K562 cells. GeSICA calculates a
simple logged ratio to efficiently segment the human genome into regions with two distinct states that correspond
to rich and poor functional element states. Inside the rich regions, Markov Clustering was subsequently applied to
segregate the regions into more detailed clusters. The binding sites of the insulator, cohesion, and transcription
complexes are enriched in the boundaries between neighboring clusters, indicating that inferred clusters may have

Conclusions: Our study presents a novel analysis method, known as GeSICA, which gives insight into genome
organization based on Hi-C data. GeSICA is open source and freely available at: http://web.tongji.edu.cn/~zhanglab/

Background

Upon studying the function of the eukaryotic nucleus, gen-
ome organization can be used to modulate the interpret-
ation of functional information encoded by the primary
DNA sequence [1,2]. It has been suggested that different
organizational units reside in distinct chromatin environ-
ments and thereby contribute to genomic functional diver-
sity [3-5]. Over the past several years, genome
organization has been explored based on data using a var-
iety of technologies. One type of approaches is based on
genomic data, such as histone modification (ChIP-Seq) or
chromatin components (DamID), to segment the whole
genome into elaborate organizational units (called as states
or domains) with the computational frameworks such as
Hidden Markov Models or Bayesian networks [6-8]. These
inferred organizational units were found to be associated
with different regulatory elements, and therefore, distinct
biological functions [9]. Another type of approaches,
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however, provided a probably more straightforward per-
spective. Dekker et al. pioneered a method called
Chromosome Conformation Capture (3C) [10] to examine
the physical and spatial interactions between specific loci.
With 3C, researchers can directly detect the higher-order
DNA loops, which at least partially elucidate the structural
basis of certain organizational units with specific functions
[11-14]. Nonetheless, the applications of 3C and its deriva-
tives require pre-selected loci, which limit more global
insights into genome organization [15].

Recently, a technology called Hi-C, a novel derivative of
3C coupled with massively parallel pair-ended sequencing,
has been used to generate an unbiased genome-wide map-
ping of the DNA interactome [16]. From the analysis of
Hi-C data, Botta et al. discovered that strong long-range
genomic interactions could be maintained through the ac-
tivity of the CCCTC-binding factor (CTCF) [17]. Another
group demonstrated that distal genomic rearrangements
in early replication domains are enriched with DNA inter-
actions[18]. As Hi-C technology monitors higher-order
DNA looping at the genome scale, this technology pro-
vides the opportunity to study the genome organization
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and also poses the challenges in the development of ana-
lytical methods. Although Lieberman-Aiden et al
employed Principal Component Analysis to segregate the
whole genome into two compartments based on Hi-C data
[16], attempts to explore the more detailed organization
from Hi-C data are still lacking.

In this study, we thus propose a two-step strategy, titled
Genome Segmentation from Intra-Chromosomal Associa-
tions (GeSICA), to investigate genome organization based
on Hi-C data. We applied the method to Hi-C data in both
the GMO06990 and K562 cell lines. In the first step,
GeSICA calculates a simple logged ratio to categorize the
entire human genome into two different states. Regions in
one of the states are significantly enriched with active
genes and transcription factor binding sites (indicated as
"plus states"), whereas regions in the other state are rela-
tively less active (indicated as "minus states"). In the sec-
ond step, we further segregated the plus-state regions into
more detailed clusters by employing a Markov Clustering
algorithm. These clusters are characterized by a relatively
higher probability of DNA interactions inside rather than
across clusters [19]. The insulator CTCF and one subunit
of cohesin, namely, Rad21, were observed to be preferen-
tially located in the boundaries between neighboring clus-
ters, as were the proteins and histone marks related to
transcription activities, including RNA polymerase II (Pol
II), transcription initiation factor TFIID subunit 1 (Tafl)
and H3K79me2. Taken together, these clues imply that the
inferred clusters may achieve a finer and more detailed
level in describing the features of genome organization.

Results

Dichotomization of human genome into two genomic
states

GeSICA was applied to Hi-C data to dichotomize the
human genome by introducing a simple parameter, the
interaction ratio, to capture the structural characteristics of
two different states. It is based on the following assump-
tion: short-range random DNA interactions would be eas-
ier to detect in open chromatin environments than in more
close ones (Figure 1A). The whole genome was first divided
into bins with 100Kb as bin-size, and the interaction ratio
was calculated for each bin as a log-transformed normal-
ized ratio of short-range to long-range DNA interaction
counts (see Materials and Methods for details). As the pro-
file of the calculated interaction ratios displayed apparent
boundaries between neighboring "plus signals" and "minus
signals" (Figure 1B), we divided the genome into regions
with two distinct states according to the sign of the inter-
action ratio: i.e. plus and minus state separately. After re-
moving gaps in the assembled genome, approximately 40%
of the genomic regions in human GM06990 cell line were
assigned as plus state and 60% were assigned a minus state
(Additional file 1: Figure S1A, Additional file 1: S1C).
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As the interaction ratio was designed to capture chroma-
tin environment, we subsequently evaluated this parameter
by comparing it to the degree of chromatin openness. In
this evaluation, we used the number of DNase I hypersensi-
tive (HS) sites within each genomic bin as a benchmark of
the degree of chromatin openness. As shown in Figure 2A,
the genomic bins were grouped based on the percentile
ranges of the ranked interaction ratios, as calculated from
Hi-C data in GM06990 cell line. There was a clear trend
that the number of DNase I HS sites increased with the
interaction ratios. Therefore, the interaction ratio calcu-
lated from Hi-C data can be regarded as an index that
quantifies the degree of chromatin openness.

To extend our exploration of the properties of inferred
plus and minus states, we employed dozens of transcription
factor binding profiles and histone modification profiles to
examine their distributions in genomic regions with differ-
ent states (we define a region as a series of continuous bins
with the same state). Compared with regions with the
minus state, those regions with the plus state were domin-
antly enriched with a plethora of important transcription
factors and histone modifications (all available through the
ENCODE Project from UCSC Genome Browser [20]) in
the GM06990 cell line. For 27 of the 35 transcription fac-
tors and histone marks, including P300, Spl and
H3K4me3, over 60% of their ChIP-Seq peaks were located
in regions with the plus state (Figure 2B). For each tran-
scription factor, we also calculated the fold-enrichments of
peak numbers in regions with the plus state to those with
the minus state. Most were larger than 1.5, except for Zzz3
and H3K27me3. H3K27me3 is a typical repressive histone
mark [21] and Zzz3 is the subunit of the Ada-Two-A-con-
taining complex, which has been shown to be responsible
for regulating the activity of non-histone targets and con-
trolling mitotic progression, while accompanied by high
levels of chromatin compaction [22]. In contrast to the plus
state, regions with the minus state appeared to behave as
functional deserts with a small fraction of transcription fac-
tor bindings or histone marks present. Altogether this evi-
dence is consistent with the degree of chromatin openness
between regions with plus and minus states. Similar results
were obtained in the human K562 cell line (Additional file
1: Figure S2, Additional file 1: Figure S1B, Additional file 1:
S1D). These observations indicate that the regions with the
plus state dominantly contain more interested information
due to the fecundity of transcription factor binding and his-
tone marks in the relatively open chromatin. Thus, the
detailed organization of regions with the plus state became
the focus of our subsequent analysis.

In a previous study, Lieberman-Aiden et al. employed
principal component analysis (PCA) on the correlation
matrix of DNA interactions to segregate the human
genome into two compartments [16]. The value of the
first principal component (PC) from their approach
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Figure 1 Explanation and illustration of the "Interaction Ratio". (A) An illustration of the theoretical assumption of interaction ratios is shown
here. The first part is a description of the nucleus. Strings with different colors are chromosomes. The genome has open and compact chromatin,
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as shown in the middle section; in the open chromatin, more random short-range interactions are easier to detect by Hi-C experiment. And the
spectrum-like interaction ratio profile is displayed in the last section. (B) In part of Chromosome X, visualization of the interaction ratios and first
principal component signals is displayed using the UCSC Genome Browser for Hi-C data in the GM06990 cell line. The yellow portion of the
signals represents the bins with plus (+) signals; the gray portions are bins with minus (-) signals for both interaction ratios and first principal
components. The two signals are quite similar. The DNase | Hypersensitive Sites Peaks were acquired here as a reference of the open chromatin.
The RefSeq genes are also included in this figure. (C) A close look of a region in Chromosome X, from position 101,000,000 - 104,000,000. The first
track is a snapshot of the clusters and boundaries after Markov Clustering. Boundaries between neighboring clusters are highlighted as "red
blocks". The binding sites of CTCF and Pol Il and the locations of transcriptional start sites are displayed to show their levels of enrichments in

boundaries.
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Figure 2 Functional validation and exploration of regions with different interaction ratios and two genomic states in GM06990 cell
line. (A) Shown is the distribution of DNase | HS site numbers in bins grouped by different percentile ranges of ranked interaction ratios (0 ~50%,
50% ~ 60%, 60% ~ 70%, 70% ~ 80%, 80% ~ 90% and 90% ~ 100% are listed here). The numbers of the DNase | HS sites increased with the
interaction ratio. (B) Displayed are percentages of different transcription factor binding sites and histone modification peaks located in plus-state
region. Different colors indicated different scales of fold-enrichment of the binding sites in plus-state regions to the minus-state regions in
GM06990 cell line. P300 had the highest proportion of binding sites in plus states, while Zzz3 and H3K27me3 had the lowest.

could also be taken to reflect the degree of chromatin  was then applied to intra-chromosomal DNA interactions
openness (Additional file 1: Figure S3). Thus, the gen- to group the genomic bins into clusters such that DNA
ome can be segmented into regions characterized as one  interaction counts within clusters were greater than those
of the two states according to the sign of first PC: which  across clusters [23]. The clustering results were influenced
could also be called plus and minus state separately. In by parameter inflation; the number of clusters increased
the GM06990 cell line, the segmentation results of the steadily as inflation became larger (Additional file 1: Table
two approaches were largely similar, and 75.2% of gen-  S1). Varying this parameter from 2.4 to 6 (with 0.1 as step),
omic bins were inferred to have the same state the clustering results from two consecutive inflations
(Figure 1B). Although both approaches achieved similar  shared a large percentage of cluster boundaries, and the
results, their basic assumptions are quite different. The  percentage reached a plateau at an inflation value of ap-
approach of Lieberman-Aiden et al. was based on the proximately 3.0 (Figure 3A). This finding indicated that
assumption that the interaction vectors of genomic bins  the increase in cluster number with larger inflation values
(with 100Kb or 1 Mb as bin-size) are more similar ~was mainly due to the splitting of existing clusters into
within one compartment than across two different com-  smaller ones. In this study, we adopted 3.0 as the default
partments. As mentioned previously, however, our ap- inflation value for MCL. In the human GM06990 cell line,
proach was based on the assumption that short-range a total of 1,495 clusters were inferred, with an average
random DNA interactions would be easier to detect in  cluster size of approximately seven genomic bins; only 129
relatively open chromatin environments (Figure 1A). contained distal bins (Additional file 1: Figure S4A-E). A
Overall, our approach provided a new perspective by detailed illustration of the clusters is shown in Figure 1C
which to interpret different states in the human genome by focusing on the region around 2 Mb. The binding sites
from Hi-C data, which exhibits a performance similar to ~ of CTCF and Pol II and locations of Transcription Starts

that of PCA. Sites were also visible (another example is shown in
Additional file 1: Figure S5). The DNA interaction counts
Detailed segmentation in regions with plus states within inferred clusters were significantly larger than those

To further segment the plus-state regions into more deli-  across clusters (142 fold, p- value < 2.2x10™'%), suggesting
cate clusters, we first excluded DNA interactions with  that inferred clusters are relatively structurally independ-
physical distances below an empirical threshold 20Kb, in  ent. Besides, we randomly sampled 1,000 interaction data-
order to diminish the potential influence from random  sets by generating the same amount interactions for any
DNA interactions [16]. Markov Cluster algorithm (MCL)  given genomic physical distance as in the actual Hi-C
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Figure 3 Markov Clustering validation and features of the boundaries of the detailed segmentation. (A) Displayed is stability of Markov
Clustering result in two cell lines: the percentage of shared boundaries between two consecutive inflation parameters reached a plateau at
inflation around 3.0. (B) Transcription factors and histone modifications most and least enriched in the boundaries between neighboring clusters
are shown for the GM06990 cell line. Only clusters with at least one bin not in the cluster boundary were considered. The most enriched are the
binding sites of Polll, CTCF, Taf1 and the co- binding sites of CTCF and Rad21. ***: adjusted p-value < 10*°, **: adjusted p-value < 107°, *

107° < adjusted p-value < 107, (C) Shown are the comparisons of the enrichment of 25% high--expressed genes, 25% low-expressed genes and

the rest of the genes in the boundaries of GM06990. The higher the gene expressions, the more enrichment there is in boundaries.

dataset. The average fold of DNA interaction counts
within clusters against those across clusters is 1.18 in the
simulated datasets, which is lower than the observed value
in the real data (1.42) (Additional file 1: Figure S6). This
result to some extent reflected the reliability of our cluster-
ing result and the appropriateness of using Markov Clus-
tering on Hi-C data.

To explore the organizational features of the inferred
clusters, we next assessed the distribution of transcription
factors binding and histone marks in the boundaries be-
tween adjacent clusters. The genomic bins inside clusters
were adopted as the control group. To ensure that each

cluster had at least one bin not in the cluster boundary, we
excluded all the clusters failing to meet the criteria in the
following analysis. Among all of the transcription factor
binding and histone marks available in the GM06990 cell
line (through the ENCODE Project using the UCSC
Genome Browser) [20], the binding sites of insulator
CTCEF were significantly enriched in the boundaries (fold
around 1.38; adjusted p-value < 10*"). As CTCF has been
shown to isolate long-range enhancers by looping DNA
into higher-order structures that consequently maintain
genomic structure [24-26], the results suggest that inferred
clusters might be potential organizational units with
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independent structure and function, as demarcated by the
insulator CTCF (Figure 3B). Similar results were obtained
in human K562 cell line (Additional file 1: Figure S7A).
Previous studies proposed that CTCE, together with cohe-
sin, serves as an insulator in certain genomic regions [27-
31]. The binding sites of Rad21, a subunit of cohesin, were
only enriched in the cluster boundaries in K562 cell line.
As Rad21 has twice as many binding sites in the GM06990
cell line as in the K562 cell line, we further examined the
enrichment of the co—binding sites of CTCF and Rad21 in
cluster boundaries. We found that CTCF-Rad21 co-bind-
ing sites were significantly enriched in the cluster boundar-
ies of both cell lines (Figure 3B, Additional file 1: Figure
S7A).

In the GMO06990 cell line, the transcriptional start sites
(TSS) of genes were significantly enriched in the boundar-
ies of inferred clusters (fold 1.48, binomial test p-value
< 2.2)(10’16). In addition, the level of gene expression in
the cluster boundaries was also higher than those within
clusters. The top 25% of highly expressed genes had the
highest fold-enrichment of gene number on boundaries in-
side clusters (1.74) compared with the middle 50% of
genes (1.44) and the bottom 25% of genes (1.35)
(Figure 3C, Additional file 1: Figure S7B). This result
agrees with the one suggested in [32], which suggested the
boundary functions of active TSSs. Consistent with the
above results, several transcription process-related profiles
were also enriched in the boundaries, including the ChIP-
seq peaks of Pol I, Tafl, and H3K79me2 [33] (Figure 3B,
Additional file 1: Figure S7A). Similar results were also
observed in the K562 cell line (Additional file 1: Figure
S7A-B). These observations indicated that the inferred
cluster boundaries might be the potential spots that harbor
hypothesized transcription factory compounded with tran-
scription-related factors, and also suggested the potential
insulator-like role of transcription factory or Pol II in
humans, which may be similar to those reported in Dros-
ophila [34,35].

Dynamics of segmentation in GM06990 and K562 cell
lines

We further examined the dynamics of genome
organization between the GMO06990 and K562 cell lines.
Genomic bins were grouped based on the percentile
ranges (10% as interval) of the ranked interaction ratios
calculated from Hi-C data in each cell line separately. For
each percentile range (e.g. 90-100%), genomic bins with
interaction ratios in this range from both cell lines were
regarded as cell-type-common bins, while those with ratios
in this range in only one cell line were cell-type-specific
bins. As shown in Figure 4A, cell-type-common bins were
highly enriched with housekeeping genes across different
percentile ranges. The cell-type-specific bins, however, had
much less significant enrichment or even non-significant
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enrichment of those genes. We also checked the enrich-
ment of gene ontology (GO) categories or genes in cell-
type-common and cell-type-specific bins separately. Genes
were assigned to bins according to their transcriptional
start sites. Those genes in the K562-specific bins of the
highest two percentile ranges (90-100% and 80-90%) were
enriched with "chemokine activity" (adjusted p-value:
1.2x10* and 1.4x10°) and "chemokine receptor binding"
(adjust p-value: 1.7x10* and 2.6x10°°), whereas no GO cat-
egories were found to enrich for other cell-type-common
or cell-type-specific bins. This result indicates that there
might be a direct relationship between chemokine recep-
tors and leukemia, as suggested by several other recent
studies [36-38].

To capture the characteristics of dynamics of detailed
organization, we compared the inferred clusters in the
plus-state regions of the GM06990 and K562 cell lines.
For each cell line, every pair of adjacent bins in the in-
ferred clusters was assigned a category to indicate one of
the following two types of relationships: two bins belong-
ing to the same clusters (Same) and to different clusters
(Diff). In the GM06990 cell line, only 20% of the pairs in
the Diff category remained Diff in K562, while approxi-
mately 50% in the Diff category became pairs in the
Same category. The remaining pairs contained at least
one bin with the minus state in K562 (indicated as the
Minus category). In contrast, more than half of the pairs
of adjacent bins in the Same category stayed Same in
K562 (Figure 4B). These observations imply that the
boundaries between inferred clusters are notably
dynamic.

To investigate whether some important functional ele-
ments were enriched in the boundaries between adjacent
clusters in a cell-type-specific manner, we classified the
boundaries in the GM06990 cell line into two types: com-
mon boundaries (those that were also cluster boundaries
in K562 cell line) and GM-specific boundaries (those
within clusters or with the minus state in K562). In total,
204 bins were identified as common boundaries, and 938
bins were determined to be GM-specific boundaries. We
found that the binding sites of CTCF and Pol II in the
GMO06990 cell line were more enriched in the common
boundaries than in the GM-specific ones (Figure 4C). A
similar trend was observed for the top 25% highly
expressed genes in contrast to the bottom 25% genes
(Figure 4C). The above phenomenon was observed regard-
less of the cell line (Additional file 1: Figure S8).

Next, we examined the relationship between the differ-
ential expression of genes and the dynamics of detailed
organizations. Genomic bins with plus states in both cell
lines were ranked by the proportion of differentially
expressed genes between the GM06990 and K562 cell
lines, while the list of differentially expressed genes was
calculated using Limma software package [39]. Each
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GMO06990-specific boundaries. A similar trend can be observed in high-expressed genes, whereas an opposite trend is shown in low-expressed

genes.

genomic bin with the plus state in both cell lines belongs
to two inferred clusters in the two studied cell lines, and
a Jaccard index was introduced to evaluate the similarity
between the two clusters. Here we selected the top 10%
and bottom 10% ranked bins. As shown in Additional file
1: Figure S9, there was a trend that the higher the

proportion of differentially expressed genes, the smaller
the Jaccard Index, ie., the less similarity between the
clusters to which bins in the two cell lines belonged. The
results suggested that the differentially expressed genes
were potentially associated with the dynamics of genome
organization around them.
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Discussions

Despite some interesting insights into the inferred
genome organization that were raised during this investi-
gation, our approach still faces analytical challenges and
limitations. First, due to the current sequencing depth of
Hi-C experiments, it is difficult to further narrow bin
size (i.e. organizational resolution). Therefore we cannot
observe more detailed organization (e.g. at several or
dozens of Kbs in length) that might be more relevant to
specific functions.Secondly, the use of different restric-
tion enzymes in Hi-C experiments may have caused
systematic biases. To evaluate the potential bias from
enzymes on inferred genome organization, GeSICA was
applied to Hi-C data in the GM06990 cell line using ei-
ther HindIIl or Ncol as restriction enzymes separately.
The calculated interaction ratios from each dataset were
notably similar to those from the combined datasets
(Additional file 1: Figure S10A, Additional file 1; S10B).
From each dataset, we also observed the enrichment of
the binding sites of CTCEF, Pol II and Tafl in the inferred
cluster boundaries (Additional file 1: Figure S11A,
Additional file 1: S11B). From our analysis, the inferred
genome organization from Hi-C datasets, as determined
using different enzymes, was generally consistent to each
other. Last, GeSICA is a general method of genome seg-
mentation from Hi-C data that does not consider the re-
arrangement of the cancer genome, although genome
rearrangement might affect inferred organization.

Conclusions

We introduced a two-step strategy, GeSICA, which can
be used to investigate the genome organization based on
Hi-C data. The first step was based on the assumption
that random short-range DNA interactions would be
easier to detect in open chromatin environments, and
that the calculated interaction ratio could be regarded as
an index that quantifies the degree of chromatin open-
ness. The second step was designed on structural fea-
tures of chromatin organization: the levels of DNA
interactions within clusters are greater than those across
clusters, and the inferred clusters may be potential
organizational units with independent structures and
functions. In the foreseeable future, we expect numerous
studies to generate unbiased DNA interactome data with
improved resolution that will enhance the credibility and
efficacy of genome organization characterizations.

Materials and methods

Interaction ratio

"Genomic bins" are defined as non-overlapping genomic
intervals of a certain length. Several continuous bins
comprise a genomic region. In this study, the default
bin-size was set as 100Kb. One end of each paired-end
read was considered to be in a bin if its starting position
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fell within the interval of that bin. For each pair of bins,
the number of paired-end tags was set as the absolute
interaction value (IV).

The absolute interaction value was then scaled by the
distance between two bins as demonstrated by the fol-
lowing formula: Ic is the total number of bins in the spe-
cific chromosome, m and n are the indices for any
possible pairwise bins on a certain chromosome and p
and q are any two bins with the same distance as that
between m and n:

NormlV,,, = IVW,,,/( Y IV /(le-p+ q)>
p-q=m-n

Next, the interaction ratio (R) was computed for each
bin using the following formula:

i+d
R = logc Y NormlV;/
j k

I
Y Norml V,»k)
—=i—d

—itd+1

In this formula, d was set as the parameter to determine
the distal interactions. For the sake of convenience in
discretizing the genomic state, we used the logged form
of this ratio to generate a spectrum like profile.

Markov Clustering

Markov Clustering [23,40] is a clustering algorithm
designed for the natural partitioning of weighted graphs.
An intuitive perspective of Markov Clustering is to de-
tect the clusters in which random walks would infre-
quently lead to another one. The whole process is
deterministic. Markov Clustering firstly transforms the
input adjacency list into a stochastic "Markov" matrix.
This matrix portrays the transition probabilities between
all pairs of bins. Markov Clustering then simulates ran-
dom walks in a graph by two major steps named expan-
sion and inflation. Expansion is calculated by taking the
stochastic matrix squaring (or n'™ powering) to calculate
the probability of a random walk of length n. The prob-
abilities between bins in the same cluster will be higher
than that across different clusters. Furthermore, to
aggrandize this effect, an inflation step is raised to take
the entry wise Hadamard power of a matrix and then fol-
lowed by a normalization step to turn the new matrix
back into a stochastic or Markov matrix again. Finally,
clusters are detected by repeating and alternating expan-
sion and inflation until convergence is obtained, i.e., the
probability between the final clusters is less than the
given tolerance.

Software implementation

GeSICA is implemented in Python and freely distributed
with an open source Artistic License at [41]. The follow-
ing parameters should be used: -f for the Hi-C raw file
format after reads mapping; -r for the desired resolution
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of the result; -d for the distance to distinguish short-
range and long-range interactions; -c for filtering the
interactions below a certain distance "c"; and all para-
meters necessary for Markov Clustering. The output files
of GeSICA include three different types of files: an inter-
action-ratio wiggle file (—wig), a bed file for each bin
with the corresponding state and cluster information
(=bed) and a cluster file of the bins that each cluster
contains (—cluster). GeSICA can be run from the com-
mand line and is available for Linux, UNIX and Mac OS.
Additional file 1: Figure S12 illustrates the workflow of
GeSICA.

Datasets used in this paper

The Hi-C experimental data and the result of PCA for the
GMO06990 and K562 cell lines from Lieberman-Aiden et al.
can be obtained from the GEO database with accession
No. GSE18199 [16] and from the Hi-C data browser [42].
The gene expression data of the GM06990 and K562 cell
line can be downloaded separately from the GEO database
with accession No. GSE14083 [43] and GSE12056 [44].
The list of differentially expressed genes were calculated
using the Limma software package [39]. All of the EN-
CODE transcription factors binding sites, histone modifi-
cations, and DNasel hypersensitive sites data can be
accessed through the UCSC Genome Browser [20,45,46].
The genome assembly used in this work is hgl8. If data
from the GM06990 cell line was found not to exist, related
data from the GM12878 cell line was employed instead,
due to the similarity between these two cell lines [16]. The
peak files of these data, which are available in both the
hg18 and hgl9 genome assemblies, were collected, and lift-
over was applied to transform the peak files that only
existed in hgl9 back to hgl8. The list of human
housekeeping genes was derived from [47], which reported
575 housekeeping genes in total.

Additional file

Additional File 1: Figures S1-S12 and Table S1. This file contains
supplementary figures S1-S12 and Table S1 corresponding to a summary
of the results of Markov Clustering.
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