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Abstract

Background: The human genome contains a large amount of cis-regulatory DNA elements responsible for
directing both spatial and temporal gene-expression patterns. Previous studies have shown that based on their
mRNA expression breast tumors could be divided into five subgroups (Luminal A, Luminal B, Basal, ErbB2+ and
Normal-like), each with a distinct molecular portrait. Whole genome gene expression analysis of independent sets of
breast tumors reveals repeatedly the robustness of this classification. Furthermore, breast tumors carrying a TP53
mutation show a distinct gene expression profile, which is in strong association to the distinct molecular portraits.
The mRNA expression of 552 genes, which varied considerably among the different tumors, but little between two
samples of the same tumor, has been shown to be sufficient to separate these tumor subgroups.

Results: We analyzed in silico the transcriptional regulation of genes defining the subgroups at 3 different levels: 1.
We studied the pathways in which the genes distinguishing the subgroups of breast cancer may be jointly
involved including upstream regulators (1st and 2nd level of regulation) as well as downstream targets of these
genes. 2. Then we analyzed the promoter areas of these genes (−500 bp to +100 bp relative to the transcription
start site) for canonical transcription binding sites using Genomatix. 3. We looked for the actual expression levels of
the identified TF and how they correlate with the overrepresentation of their TF binding sites in the separate
groups. We report that promoter composition of the genes that most strongly predict the patient subgroups is
distinct. The class-predictive genes showed a clearly different degree of overrepresentation of transcription factor
families in their promoter sequences.

Conclusion: The study suggests that transcription factors responsible for the observed expression pattern in breast
cancers may lead us to important biological pathways.
Background
Previous studies have shown that breast tumors can be
divided into five subgroups (Luminal A, Luminal B,
Normal-like, ErbB2 over-expressing, and Basal-like)
based on their mRNA expression patterns [1]. These
patterns have been validated in independent datasets
representing different laboratories, platforms and differ-
ent patient cohorts [2]. Survival analyses on a sub-cohort
of patients with locally advanced breast cancer showed a
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reproduction in any medium, provided the or
significant difference in outcome of the patients in the
various expression subgroups, with poor prognosis for
the ErbB2+ and basal-like subtypes [2]. The expression
of 552 genes, the intrinsic gene list, has been suggested
to be sufficient to separate breast carcinomas into the
five distinct subgroups. What mechanisms of common
regulation make these genes cluster together? We
have previously shown that we can separate the pa-
tient clusters based only on the promoter composition
of single binding sites in the promoters of the genes
from the intrinsic gene list [3]. However, regulation of
gene expression in eukaryotes is highly complex and
depends on sets of TFs rather than individual TFs [4]
and in this study we attempt to characterize the over-
representation of entire TF families. The promoter
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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composition of the genes is one of the major determi-
nants of gene regulation including multiple transcrip-
tion binding sites that interact with a specific
combination of transcription factors (TF). Eukaryotes
achieve this diversity by combining a small number of
transcription factors whose activities are modulated by
diverse sets of conditions [5]. Different functionalities
can be conferred on one TF by its association with dif-
ferent co-factors. These factors may act as global TFs
that assist their gene-specific partners in their function,
and may thus activate or repress transcription depend-
ing on the partner motif and the condition [5]. Analyz-
ing transcription network dynamics in yeast, Luscombe
et al. showed that, in response to diverse stimuli, tran-
scription factors may alter their interaction patterns to
varying degree, thereby rewiring the network [6]. While
few transcription factors serve as permanent hubs, most
of them act transiently during certain conditions. Ex-
ogenous processes like environmental responses facili-
tated fast signal transductions to multiple genes with
short regulatory cascades, whereas endogenous pro-
cesses needed to progress through multiple stages with
a complex combination of TFs to fewer target genes [6].
The same TFs may act both in endogenous and exogen-
ous processes. Regulatory hubs targeting disproportion-
ately large numbers of genes and thereby representing
the most influential components of a network- have
been described. Both Pilpel [5] and Luscombe [6] con-
cluded that precise regulation of a condition cannot
arise from the specificity of individual TFs, therefore
combinatorial TF usage seems to be the key. The NF-
κB family of TFs is an example of transcription regula-
tors that are activated by both intra- and extra-cellular
stimuli such as cytokines, oxidant-free radicals, ultravio-
let irradiation, and bacterial or viral products [7]. Aber-
rant NF-κB activity has been implicated in
carcinogenesis and in the control of cellular response to
anti-cancer agents. Activated NF-κB was detected pre-
dominantly in ER-negative breast tumors, and mostly in
the ErbB2 over-expressing tumor subgroup [8].

Methods
The in silico analysis of the transcriptional regulation
of genes defining the subgroups was performed at
three different levels: (1) Study of the pathways in
which the genes distinguishing the subgroups of
breast cancer may be jointly involved including up-
stream regulators (1st and 2nd level of regulation) as
well as downstream targets of these genes. (2) Then
we analyzed the promoter areas of these genes (−500
bp to +100 bp relative to the transcription start site)
for canonical transcription binding sites using Geno-
matix. (3) We looked for the actual expression levels
of the identified TF and how they correlate with the
overrepresentation of their TF binding sites in the
separate groups.

Selection of genes
The expression of 552 genes, the intrinsic gene list,
which has been suggested to be sufficient to separate
breast carcinomas into the five distinct subgroups
defined in [1] and [2,9] was used for the pathway ana-
lysis in this study (referred to as full list). A subset con-
sisting of 197 genes [10] that best represented the
classification scheme in breast cancer (referred as top
list) were selected from the intrinsic list, and used in the
promoter analysis part (Additional file 1: Table S1).

Pathway analysis
Pathway analysis was performed using Pathway Studio
[11] from Ariadne Genetics. Two network prediction
algorithms were used that allow to discover the patterns
of gene expression inherent in the experimental data:
Pearson Correlation and Auto Net Finder network pre-
diction algorithm. Pathway Studio’s text mining tools
were applied to extract biological associations by mining
PubMed to build pathways from extracted facts using
data from recent publications and public and commer-
cial databases such as KEGG, BIND, GO, and the
PathArt database of curated signaling and disease path-
ways. The algorithm for building Correlation Network in
Pathway Studio is based on Pearson Correlation. Genes
with similar expression profiles are connected with edges
indicating the significance of the correlation. The group
of tightly correlated genes form cluster in the correlation
network. The algorithm can be used for clustering genes
according to their expression profiles across multiple
samples. The tool calculates correlation coefficients be-
tween all pairs of gene expression profiles measured in
the experiment and outputs clusters of highly correlated
genes. Identified gene clusters can be further validated
and analyzed using relations from the database that have
been extracted from the literature by Ariadne Genetics.
Auto Net Finder is a network estimation system that
combines hierarchical clustering and Graphical Gaussian
Modeling and is used for distinguishing direct and indir-
ect relationship among variables. Bibliosphere pathways
(release 7.1) [12] (http://www.genomatix.de, Genomatix
Software GmbH) was used for extracting the associa-
tions between gene, transcription factor and proteins
corresponding with the genesets defining each molecular
subtype of breast cancer. Genomatix Bibliosphere is a
knowledge database consisting of manually curated co-
cited genes in PubMed, which additionally provides in-
formation about the presence of TFBS in their promo-
ters, using in silico tool- MatInspector, interactions and
associated pathways from Molecular Interactions data-
base-NetPro and BioCyc, respectively.

http://www.genomatix.de
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Analysis of overrepresentation of TFBS families in the
promoter sequences
We extracted the putative regulatory promoter regions
from 500 bp upstream to 100 bp downstream of RefSeq
promoters of the subtype-associated genes. Further ana-
lysis was based on the hypothesis that overrepresenta-
tion of potential transcription factor binding site (TFBS)
motifs in a set of co-expressed gene promoters may indi-
cate regulatory relationship. In order to emphasize the
functional representation of TFBS motifs overrepre-
sented in a set of promoters, we used the TFBS matrix
family concept. TFBS matrix families are defined as
groups of TFBS weight matrices corresponding to the
same or functionally similar transcription factors. For
any given TF, there could be multiple matrices described
by different independent sources, leading to multiple
matches for similar position or shifting of matches by a
few base pairs. By using the functional domain clustering
based on di/tri/tetra-nucleotide occurrence and add-
itionally function-based subgrouping, TFBS matrices can
be grouped according to their functional similarity,
known as TFBS families [13]. Thus members sharing
same TFBS family are expected to have functional simi-
larity in addition to binding domain similarity. For esti-
mation of over-representation of each TFBS family, first
occurrences of its corresponding TFBS motifs within
a set of subtype-specific promoter sequences was
obtained. Then relative occurrence of each TFBS family
was estimated by comparing this observed occurrence
to the rate of occurrence of the same TFBS matrix fam-
ily in an equal base-pair long reference background
sequences from human promoter. Overrepresentations
of a motif is measured by two different methods:

1. In terms of fold factor of overrepresentation
compared to the background
Fold factor of TFBS overrepresentation was
calculated by a formula as mentioned below:

r Xð Þ ¼ nobs Xð Þ
nexp Xð Þ

Where, r(X) = fold factor of overrepresentation of a
TFBS family, X
nobs (X) = observed number of hits of X in a given
set of promoter sequences
nexp (X) = expected number of hits of X in an equally
sized sample from genomic promoter background
sequences

2. As z-scores that provide a measure of the distance
of sample from the reference population mean. Here
sample refers to the number of observed hits of any
particular TFBS in a given input set of sequences
and reference refers to the number of hits of the
same TFBS in equally sized human genomic
promoter sequence population.

z Xð Þ ¼ nobs Xð Þ � nexp Xð Þ � 0:5
S Xð Þ

z(X) is a z-score of overrepresentation of a
transcription factor binding site family (X);
nobs (X) is a number of observed hits of X in an
input promoter sequences;
nexp (X) is expected number of hits of X in an
equally sized sample sequences in human genomic
promoter background;
S(X) is a population standard deviation of number of
hits of X

We used Genomatix RegionMiner tool (Genomatix
Software GmbH, http://www.genomatix.de) in order
to evaluate the degree of TFBS family overrepresen-
tation. The histogram of z-scores of each TFBS motif
families in each subtype-specific promoter sequences
is shown in the Additional file 2: Figure S1. Histo-
grams like this indicate that choosing the cut-off
level of 2.0 allows identifying TFBS families that are
overrepresented. However, z-score cut-off level of 2.0
does not provide a precise measure of significance,
because of the disparity of sample size between sam-
ple and reference. Due to the copyright and tech-
nical limitations in accessing the Transfac database,
further statistical testing of over-representation could
not be performed within that tool.
Under-representations or absence of TFBS family

motifs in sub-type specific genes may occur due to a
fewer number of subtype-representative genes and
subsequently a smaller number of promoter
sequences used for any particular subtype. This can
be a source of false positivity. Therefore we have not
taken into account the under-representations of
TFBS family motifs in this analysis.
Principal component analysis to identify TFBS with
maximum variance between subtypes
Principal component analysis (PCA) [14] was per-
formed for ranking the TFBS families with respect to
the variance of fold-factor overrepresentation con-
tributed by them between five subtypes. We pre-
pared a matrix of TFBS fold-factors for subtypes,
with subtypes as columns and TFBS families as rows.
We performed PCA on this matrix using the
princomp function of Matlab. Subtracting each data
point from the column mean represents a center of
this matrix. Hotelling’sT2 statistic was used as a

http://www.genomatix.de
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measure of multivariate distance of each TFBS family
from the center of the TFBS fold-factor matrix as
described in [http://www.mathworks.com/help/tool-
box/stats/princomp.html].

Gene expression data
We used a subset of the samples (n= 114) from previ-
ously published [15] mRNA expression data [GEO data-
set #GSE19783]. Subtypes were predicted by using the
PAM50 [16].

mRNA expression of the studied TF
Transcription factor families with overrepresentation z-
score >2.0 were mapped to their corresponding probes
in the mRNA expressions dataset. By applying multiclass
SAM, we extracted 120 TF genes with significantly dif-
ferent (at the FDR <0.1) expression between the five
subtypes. Pearson’s correlation between the subtype-
specific geometric mean expression of this subset of
transcription factor genes and fold overrepresentation
was computed. The justification of using geometric
mean instead of arithmetic mean is that typically mRNA
expression values are log-normally distributed.

Results and discussion
Pathway analysis of the genes that define the five breast
cancer subgroups
Using Pathway Studio from Ariadne Genetics, we studied
the direct interactions between the genes with distin-
guished gene expression pattern in the breast cancer sub-
groups as described in Materials and Methods, selection of
genes. Most profound direct interactions were observed
for the genes defining the luminal A group with protein-
protein interactions between XBP1 and ESR1 and CCND1
(Additional file 3: Figure S2). Trefoil (TFF3) has been
functionally coupled to CCND1 through angiotensin re-
ceptor 1 (AGTR1). Angiotensin II is converted from its
precursor by angiotensin I-converting enzyme (ACE) and
has been shown to mediate growth in breast cancer cell
lines via ligand-induced activity through the angiotensin II
type 1 receptor (AGTR1). We also searched for upstream
regulators as well as downstream targets of these genes.
Downstream targets could be observed centered at the
ESR1, MYC, NFKB1, GATA3, CCND1, TP53 and MSX2/
FOXC1 (Additional file 4: Figure S3).
A somewhat less organized pathway structure is

observed in the luminal B subclass. The ESR1 node was
not observable and the TP53 network was more sparse
with fewer partner genes. Novel nodes were centered at
NRG1, GSTP1 and CUL1 (Additional file 5: Figure S4),
CUL1 has homology to yeast Cdc53, which is part of a
complex known as SCF that mediates the ubiquitin-
dependent degradation of G1 cycles and cyclin-dependent
kinase inhibitors, while NRG1 contains a domain related
to the epidermal growth factor family of ligands and can
act as receptor agonists. The direct interactions between
genes highly expressed in Luminal B subtype were
observed between GSTP1 and CDK2AP1, S100A10 and
S100A11 and PPP1R13B and TP53BP2. The latter protein
interacts with TP53 to specifically enhance p53-induced
apoptosis but not cell cycle arrest.
Four distinct regulatory nodes were observed in the

ERBB2 group: around the ERBB2 itself, TP53, NFKB1
and CTNNB1 (cadherin-associated protein, beta 1)
(Additional file 6: Figure S5). NFkB-p65 was shown to
repress β-catenin-activated transcription of cyclin D1
[17]. Moreover, a direct interaction is established be-
tween ERBB2 and GRB7 (Additional file 3: Figure S2).
The solution structure of the Grb7-SH2/erbB2 peptide
complex was described and suggested to be involved in
cell signaling pathways that promote the formation of
metastases and inflammatory responses. PPARBP, which
is co-amplified with ERBB2, has in early studies been
suggested to play a role in mammary epithelial differen-
tiation and in breast carcinogenesis by its ability to func-
tion as ESR1 coactivator. It was shown to contain a
typical CCAT box and multiple cis-elements such as C/
EBPbeta, YY1, c-ETS-1, AP1, AP2, and NFkappaB bind-
ing sites. The 4 different regulatory nodes are connected
by FLOT2, the human epidermal surface antigen
involved in epidermal cell adhesion. NFKB1 was present
in the network for the Basal group, where also the FOX
family, a whole family of cyclins and CDK2, and CDK6
and isoforms of protein kinase (RPS6K) were present
(Additional file 7: Figure S6). Interestingly, a large num-
ber of connections lead to GJA1 (Cap junction protein,
alpha, also known as connexin 43). Other distinct nodes
around TP53 are those connecting to KRT5, MAPK sig-
nalling, E2F1 and NCL. NCL, Nucleolin, one of the most
abundant nucleolar proteins, has been recently shown to
be involved in the reprogramming of somatic cells for
derivation of either embryonic stem (ES) cells, by som-
atic cell nuclear transfer (SCNT), or ES-like cells, by
induced pluripotent stem (iPS) cell procedure. Nucleolar
proteins are proposed to be the markers of activation of
embryonic genes [18] and provide mechanism for nucle-
olar control of progression of cell cycle in stem cells and
cancer cells [19]. TP53 was a central node in the regula-
tory network of the normal-like subgroup, surrounded
by JUN, ACSS2, ACSL1, KRT13, PIK3R1 and other
nodes some representing glycolysis, energy metabolism,
pyruvate metabolism and metabolism of carbohydrate
(Additional file 8: Figure S7).
Noteworthy, a TP53 network node was observed in

each of the studied expression subclasses shown here
(Additional file 4: Figure S3, Additional file 8: Figures
S7). It is of interest to note that in every case TP53 was
a hub in a somewhat different neighborhood. While in

http://www.mathworks.com/help/toolbox/stats/princomp.html
http://www.mathworks.com/help/toolbox/stats/princomp.html
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the basal subtype TP53 was connected to CDK6, a cyc-
lin-dependent protein kinase (CDKs) that regulate major
cell cycle transitions and CDH3, cadherin 3, as well as
FZD7 and KRT5, in the luminal A tumors one could ob-
serve detoxifying enzymes such as NAT1, CYP2A6 as
well as the retinoic acid receptor RARRES3 in the TP53
hub (Figure 1).

Over-representation of specific transcription factor
binding sites in the promoter of the genes that
distinguish the subtypes
The correlation matrix of TFBS fold-overrepresentation
vectors for the five subtypes shows positive correlation
in terms of potential TFBS family overrepresentation be-
tween 1. ERBB2+ and basal subtypes (0.27); 2. Luminal
B and ERBB2+ (0.16); 3. Luminal A and luminal B
(0.11). In order to visualize the differential TFBS overre-
presentation, we performed the principal component
analysis (PCA). PCA plot (Figure 2) displays the signifi-
cant differences between the subtypes in terms of fold-
factor of motif frequencies observed in promoter
sequences of subtype-associated gene promoters
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are the major contributors of variance, where as V$PAX4,
V$GUCE, V$ARID are the major contributors of variance
in the second principal component.
Several of the gene clusters shared cis-elements that

were present in more than 90% of the promoters.
For the top six genes that classify the ErbB2+ over-
expressing cluster, four TFBSs were found to be present
in 100% of the promoters. These were NOLF (Neuron-
specific-olfactory), ETSF (E26 Transformation-Specific
factor 1), STAT (the Signal Transducers and Activator of
Transcription protein) and NF-κB (Nuclear Factor κappa
Beta) (Additional file 9: Table S2). NF-κB is the family of
nuclear factor kappa beta of transcription factors. NF-κB
has been shown to promote cell proliferation, to sup-
press apoptosis, to promote cell migration, and suppress
Figure 3 Subtypes with relevance to NF-κB binding sites and TP53 m
the “intrinsic” gene set. Dendrogram shows the clustering of the tumors in
binding sites in the 5 subgroups; and C. Frequency of TP53 mutations.
differentiation [7]. NF-κB binding sites were found sig-
nificantly over-represented in the promoters that best
classify the ErbB2+ subgroup compared to the other 4
subgroups (Additional file 9: Table S2; Figure 3B) and
78% of the 27 genes expressed in the basal-like subgroup
had also NF-κB binding site in the promoter. This was
in marked contrast compared to the promoter compos-
ition of the normal-like and luminal subgroups
(Figure 3B). The presence of NF-κB binding sites in the
genes from the ERBB2 and basal groups is in concord-
ance with the pathway analysis performed on the down-
stream genes (see above). The cis-elements PAX1, PAX9
(The paired box gene 5), MAZF (myc-associated zinc
finger) and EGRF (epidermal growth factor receptor)
were overrepresented in the genes that are over-
utations. A. The five subtypes shown by hierarchical clustering using
to five subgroups. Branches are color-coded. B. Frequency of NF-κB
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expressed in the Luminal B subgroup (Additional file 9:
Table S2). While the PAX superfamily is involved in a
multitude of developmental processes and is required
for initiating B cell lineage and maintaining neural devel-
opment and spermatogenesis, the MAZF is a common
transcription factor and might play a more general role.
The major distinction between the luminal A and B,
both consisting of ER positive tumors, is the presence of
a strong proliferations cluster in the luminal B subtype.
Noteworthy, binding sites for growth factors and their
receptors like EGRF are over-represented in the promo-
ters of the genes that define the luminal B subgroup and
were overrepresented in the pathway analysis as well (see
above). EGRF is not only a receptor for EGF (Epidermal
growth-factor), but also for other members of the EGF
family and it is involved in the control of cell growth
and differentiation. For the geneset of the normal-like
subgroup, we observed overrepresentation of NRF1 fam-
ily of TFBS (Additional file 9: Table S2).

Presence of promoter modules in genes that define the
ErbB2+ subgroup
The specificity of promoter-controlled gene regulation
may depend on the relative organization of the elements
within the promoter rather than solely on individual ele-
ments [20–22]. Genes expressed in the same functional
context do often share promoter modules [20,21]. The
Figure 4 Common Framework in the ErbB2+ subgroup. The common
genes of the ErbB2+ over-expressing subgroup. Distance to next element i
indicate presence of hits on sense or antisense strands respectively.
binding elements are often occupied differently in differ-
ent tissues, and these differences can be used to derive
all type-specific sub-modules in silico. A promoter mod-
ule may be defined as an organized group of regulatory
elements where both order and distance should be con-
sidered. Genes expressed in the same functional context
do often share promoter modules [20,21]. For the six
best genes of the ErbB2+ over-expressing cluster, a com-
mon framework consisting of NF-κB and ETS1 tran-
scription factor binding sites was found (Figure 4). The
ETS are fundamentally important TFs with roles in cell
development, cell differentiation, cell proliferation, apop-
tosis and tissue remodeling (reviewed [23]). The family
is characterized by an evolutionarily conserved DNA-
binding domain that regulates expression by binding to
a purine-rich core sequence in cooperation with other
TFs. Most of the proteins in the ETS family are down-
stream nuclear targets of ras-MAP kinase signaling, and
the deregulation of ETS genes results in the malignant
transformation of cells [24] It has previously been
reported that mutant TP53 required ETS1 to synergistic-
ally activate the expression of ABCB1. ETS1 was shown
to interact exclusively with mutant TP53 in vivo, but not
with wild-type TP53 [25]. High levels of ETS1 expression
were associated with poorer prognosis [26]. The pres-
ence of a promoter module constituting of NF-κB and
ETS has been reported previously in genes co-regulated
framework consisting of NF-κB and Ets found in the 6 cluster defining
s between 29 and 79 bp (ETSF). Directions (up/down) of the elements
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in mitogen-stimulated T-cells [27]. Interactions between
members of the ETS family and NF-κB have been
described previously. ETS1 induces IKKα expression.
IKKα is a kinase that marks the NF-κB inhibitor IκB for
degradation, and active NF-κB is translocated to the nu-
cleus. ETS1-mediated activation of IKKα is negatively
regulated by TP53 binding to ETS1. TP53 physically
interacts with ETS1 and specifically inhibits ETS1
induced IKKα promoter activity. Loss of TP53-mediated
control over ETS1 dependent transactivation of IKKα
may represent a novel pathway for the constitutive acti-
vation of NF-κB mediated gene expression and therapy
resistance in cancer cells [28] TP53 is therefore an ETS1
and ETS2 target gene [29]. NF-κB controls a broad
spectrum of genes by a variety of mechanisms in re-
sponse to diverse environmental changes. NF-κB may be
a universal regulator, while ETS could reflect cell-type or
stimulation specific differences since ETS binding sites
were detected in a fraction of the NF-κB controlled
genes.

Over-representation of TP53 mutations in the tumors that
belong to the ErbB2+ and basal-like subgroups
In human breast tumors, the two tumor subgroups exhi-
biting the most prominent activation of putative NF-κB
target genes (ErbB2+ and Basal-like) also harbored the
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highest frequency of p53 mutations. 86% of the patients
in the ErbB2+ subgroup had TP53 mutations in their
tumors and all the genes that are abnormally expressed
in this tumor type have NF-κB binding sites in their pro-
moter (Figure 3C). There is an evidence that NF-κB can
regulate TP53 expression and that NF-κB is required for
TP53-dependent cell death [30]. In turn, TP53 activates
NF-κB through the RAF/MEK1/p90 pathway [30]. The
TP53 protein interacts with NF-κB and enhances its
transcriptional activity and its anti-apoptotic efficacy.
Over-expression of ErbB2 is known to induce the clas-
sical NF-κB pathway [31,32]. The estrogen receptor (ER)
can bind physically to NF-κB to inhibit its DNA binding
functions, hitherto repressing gene expression [33].
Therefore the NF-κB pathway was shown to be a major
stroma-tumor signaling mediator in ER negative tumors
with over-expression of ErbB2 [8]. NF-κB signaling has
been associated with doxorubicin resistance, and agents
blocking NF-κB function have been proven beneficial in
the treatment of tumors in combination with standard
anti-cancer therapies [34].

Over-represented transcription factor families within the
promoter sequences
We observed the over-representation of V$BTBF (kaiso),
V$OAZF and V$PAX8 in basal and ERBB2+ tumor asso-
ciated gene promoters (Figure 5, Additional file 10: Table
S3). Kaiso group of transcription factors are known to
show nuclear accumulation during active mitosis [35]
and their over-representation indicates potential func-
tional role in these two subtypes showing aggressive
tumor progression and high cell proliferation. PAX8 ac-
tivity has also been observed in metastatic renal tumors
[36]. Precise role of PAX8 and OAZF groups of tran-
scription factors is yet unknown in breast cancers.
ERBB2+ gene promoters also show over-representation
of V$NFKB, Pleomorphic adenoma gene associated
V$PLAG and ras-responsive element binding protein
associated V$RREB families of TFBS. Activity of
NFKappa B is already discussed in the earlier section.
RREB1 activity plays a role in TP53 mediated apoptosis
[37] that gets perturbed in absence of functional TP53,
which is a common phenomenon in ERBB2+ tumors.
Both luminal groups involve over-representation of PAX
subgroup 1 member TFBS’s- V$PAX1, V$PAX9 and
V$ZF5F families. PAX9 activity is known to be a marker
of better prognosis. Overrepresentation of V$P53F,
V$HOXF, V$CLOX, V$PARF and V$GATA was
observed specifically in luminal A group in which estro-
gen receptor signaling is a predominant characteristic.
The transcription factors corresponding to V$PARF
group (PAR bZIP TFs) are mediators in oxidative stress-
induced apoptosis [38]. In the luminal B group of
promoters, we observed over-representation of V$EGRF,
V$CTCF and V$EKLF etc. Egr-1 which corresponds to
the V$EGRF family is known to be associated with cell
cycle entry in response to growth stimuli [39]. We also
observed significant over-representation of V$NRF1 in
both normal-like and luminal B group of promoters.
NRF-1 transcription factor is an oxidant-sensitive tran-
scription factor, usually found in ER positive breast can-
cers [40] and is shown to be associated with higher
tumor grade [41].
By using the Wilcoxon rank sum test, we observed sig-

nificantly elevated mRNA expressions of ESR1 and PGR
in Luminal A or Luminal samples compared to the basal
ones (p< 1.0e-6), with non-significant differences in
ERBB2 expressions. As expected ERBB2 was significantly
upregulated in ERBB2+ tumors along with downregu-
lated ESR1 and PGR, compared to the rest (p< 1.0e-4).
Regulation by many transcription factors shown overre-
presented here in ER+ ve or ER-ve subtypes is not well
characterized in context of estrogen and progesterone
receptor activity. However, overrepresentation of some
of the TFBS, such as GATA, BTBF, NF Kappa B –
appear to be consistent with prevailing knowledge about
the subtypes and their ER/PR or Her2 status.
Thus functions of the TF genes corresponding to the

over-represented TFBS families hint the predominant
characteristics of the subtypes. Findings from the above
in silico analysis will be further validated in reporter
studies and ChIP analyses. The approach of identifying
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overrepresented TFBS in a set of coordinately
expressed genes under a particular disease class or con-
dition can improve the specificity and noise tolerance
[42]. However, its main limitation is that it does not ac-
count for the role of local chromatin environment
constituted by structural properties, epigenetic modifi-
cation etc. The local chromatin environment can offer
condition-specific functionality to the existing TFBSs in
a set of promoters.
Promoter sequences extending from 500 bp upstream to

100 bp downstream relative to TSS typically contain core
promoter elements, CpG islands, downstream promoter
element and other components of transcriptional machin-
ery. Besides, this region has been demonstrated to have
high density of positional as well as comparative TFBS [43],
many of which are typically location sensitive. Thus limiting
the analysis to this proximal promoter region, rather than
analyzing the broader region (i.e. -1000 bp to +500 bp rela-
tive to the TSS) – could reduce false positives in TFBS
overrepresentation. However, by that very limitation we
may omit important information about second alternative
promoters and distant control loci, which are therefore out-
side the scope of this analysis.

Correlation between actual abundance of TFs and
frequency of their BS in the genes defining the clusters
Some of the TFBS family overrepresentations were posi-
tively correlated with the geometric means of subtype-
specific mRNA expressions of their corresponding TF
genes. (Shown in Figure 6, Additional file 11: Table S4). The
rationale underlying the use of geometric mean is that gene
expression intensity values follow lognormal distribution.
Biological uncertainty in a correlation between the

abundance of TFs and frequency of their BS might be
attributed to several factors. The most common and ob-
vious reason could be mutant or copy number altered
TF. Moreover, here we have not accounted for the
expressions of downstream targets of the TFs. It is note-
worthy that mutations (point mutation and copy number
alteration) in TFs can also have an impact on the level
of expression of the downstream genes. For instance, a
mutant TP53, which is still highly expressed, may not
recognize the original binding sites anymore, leading to
a drop in the expression of the target genes.

Conclusion
Here we report that the promoter composition of the
genes that strongly predict the patient subgroups is dis-
tinct. The gene classes showed a clear separation when
based solely on their promoter composition. This finding
suggests that studying those transcription factors asso-
ciated to the observed expression pattern in breast cancers
may lead us to important biological pathways responsible
for the regulation of gene expression in breast cancer.
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Additional file 1: Table S1. Subtype-specific gene list. Table shows the
197 subtype-specific best discriminatory genes, which is a subset of the
intrinsic gene-list.

Additional file 2: Figure S1. Histogram of z-scores of
overrepresentation. Histogram of TFBS matrix family overrepresentation
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Additional file 3: Figure S2. Direct interactions between genes
defining subtypes. Subtype-relevant key driver interactions for Luminal A,
B and ERBB2+ subtypes.

Additional file 4: Figure S3. Protein-protein interactions and TF
interactions associated with Luminal A subtype. Network shown here is
based on the luminal A specific genelist.

Additional file 5: Figure S4. Protein-protein interactions and TF
interactions associated with Luminal B subtype. Network shown here is
based on the luminal B specific genelist.

Additional file 6: Figure S5. Protein-protein interactions and TF
interactions associated with ERBB2+ subtype. Network shown here is
based on the ERBB2+ subtype-specific genelist.

Additional file 7: Figure S6. Protein-protein interactions and TF
interactions associated with basal subtype. Network shown here is based
on the basal subtype-specific genelist.

Additional file 8: Figure S7. Protein-protein interactions and TF
interactions associated with normal-like subtype. Network shown here is
based on the normal-like subtype-specific genelist.
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gene promoters. List of significantly over-represented transcription factor
binding site families in subtypes of breast cancers at the cut-off level of z-
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Additional file 10: Table S3. Over-representation of potential TFBS in
subtype-specific promoter sequences. Table shows the fold over-
representation of potential transcriptional factor hits (represented as TFBS
families) in subtype- specific gene promoter sequences.
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Pearson’s correlation between the geometric mean of expression values of
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