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Abstract

Background: Next-generation sequencing methods have contributed to rapid progress in the fields of genomics
and population genetics. Using this high-throughput and cost-effective technology, a number of studies have
estimated single nucleotide polymorphism (SNP) frequency by calculating the mean number of SNPs per unit
sequence length (e.g., mean SNPs/kb). However, both read length and contig depth are highly variable and thus
raise doubt about simple methods of SNP frequency estimation.

Results: We used 454 pyrosequencing to identify 2,980 putative SNPs in the eastern tiger salamander (Ambystoma
tigrinum tigrinum) transcriptome, then constructed analytical models to estimate SNP frequency. The model which
considered only contig length (ie, the method employed in most published papers) was evaluated with very poor
likelihood. Our most robust model considered read depth as well as contig length, and was 7.5 x 10> times more

conserved than long protein-coding transcripts.

and distribution of polymorphisms.

likely than the length-only model. Using this novel modeling approach, we estimated SNP frequency in protein-
coding (MRNA) and non-coding transcripts (e.g., small RNAs). We found little difference in SNP frequency in the
contigs, but we found a trend of a higher frequency of SNPs in long contigs representing non-coding transcripts
relative to protein-coding transcripts. These results support the hypothesis that long non-coding transcripts are less

Conclusions: A modeling approach (i.e., using multiple model construction and model selection approaches) can
be a powerful tool for identifying selection on specific functional sequence groups by comparing the frequency

Keywords: Contig depth, Contig length, Model selection, SNP frequency, Transcriptome, 454 sequencing

Background

Mutations and subsequent polymorphisms are important
not only for identifying influences on genetic disease
[1,2], but also for understanding selection, adaptation,
and other evolutionary processes [3,4]. While some new
mutants have higher fitness than others and therefore are
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retained by positive selection, most mutations are quickly
removed by purifying selection because they are deleteri-
ous [5,6]. The intensity of selection may differ across
genomic locations (e.g,, genic and intergenic regions) and
thus nucleotide polymorphisms have different evolution-
ary impacts depending on their genomic locations. Single
nucleotide polymorphism (SNP) profiles can be used to
infer the intensity of selection by comparing the fre-
quency and distribution of SNPs of two or more se-
quence regions, such as genic vs. intergenic regions,
exonic vs. intronic vs. untranslated regions, autosomes
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vs. sex chromosomes, and particular gene groups with
specific functions [7-9].

To properly compare SNP frequency among groups
(e.g., among functional gene groups, among chromo-
somes, among populations), large samples of similar
size are desirable. For example, the International Hap-
Map Consortium [10,11] estimated the frequency and
distribution of human SNPs at the genome-wide level;
they compared these among three geographically di-
verse populations by genotyping 90 individuals from
each population. To date, such large-scale, systematic
evaluations have been limited to human or a few model
species e.g., [12].

The advent of high-throughput sequencing technolo-
gies (e.g., 454, SOLID, and Illumina) has contributed to
the rapid development of SNPs in non-model but im-
portant wild species [7,9,13,14]. In the context of next-
generation sequencing, SNP discovery in non-model
species is usually achieved by comparing the consensus
sequence of a contig with the individual sequences that
comprise the contig. However, it is not easy to estimate
the frequency of such SNPs because of extreme variation
in contig read length and depth; we are more likely to
observe SNPs in a 10 kb-long-sequence than in a 1 kb-
long-sequence. Furthermore, we have a higher probabil-
ity of identifying SNPs when we compare contigs com-
prised of 100 reads than with those comprised of 2
sequence reads. Despite these multiple factors, most
next-gen analyses estimate SNP frequency simply by de-
termining the average number of SNPs per unit se-
quence length (e.g, mean SNP/kb), thus ignoring bias
due to contig depth. One of our goals was to determine
if such length-only-methods can effectively estimate
SNP frequency from next-gen datasets or if more
sophisticated approaches are needed.

A second goal was to compare SNP frequencies in
protein-coding transcripts vs. non-coding transcripts. A
“transcriptome” consists of transcripts not only from
protein-coding mRNA but also from non-coding RNAs
such as ribosomal RNA (rRNA) and transfer RNA
(tRNA). In general, non-coding transcripts are expected
to be less conserved (ie., more polymorphic) than
protein-coding regions because selection may eliminate
deleterious mutations from functional sequences [15,16].
However, recent transcriptome studies have shown that
there are many types of non-protein-coding RNAs with
functions of biological significance such as chromatin
modification and transcriptional regulation [17]. This
may imply that at least some non-coding transcripts are
as well conserved as protein-coding transcripts. How-
ever, (to our knowledge) no study has systematically
evaluated SNP frequencies in coding and non-coding
transcripts at the transcriptome level. Although there
are some reports that long non-protein-coding RNAs in
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humans and mice have evolved rapidly [18-20], the data
are still lacking—especially in non-mammalian species.

One of our ongoing research programs is focused on
evolutionary and ecological genomics of tiger salaman-
ders [21-24]. For this research, we sequenced the tran-
scriptome of the eastern tiger salamander (A. t. tigrinum)
using 454 pyrosequencing and then analyzed the distri-
bution and frequency of SNPs. We studied the influence
of contig depth on the estimation of SNP frequencies,
and we tested the hypothesis that non-coding transcripts
are less conserved than protein-coding transcripts by
comparing their SNP frequencies.

Methods

Sample preparation and 454 transcriptome sequencing
We captured and sampled seven tiger salamanders at the
Purdue Wildlife Area (Indiana, USA) consistent with
IACUC 1203000614 and in accordance with guidelines
by the American Society of Ichthyologists and Herpetolo-
gists and by the American Veterinary Medical Associ-
ation (June 2007). RNA was extracted from gill, lung,
skin and spleen using TRIzol® reagent (Invitrogen). We
constructed a total of 19 tissue-specific cDNA libraries
from these RNA samples using the ClonTech SMART
c¢DNA synthesis kit, utilizing a modified poly-T primer
[25]. Each double-stranded cDNA library was digested
with Sfil to remove excess primers and subsequently
purified with the QIAquick PCR purification kit (Qia-
gen). Approximately 5 pg of each c¢cDNA library was
sequenced using a 454 Genome Sequencer with FLX Ti-
tanium chemistry (454 Life Sciences). Briefly, the cDNA
fragments were sheared via nebulization, hybridized to
DNA capture beads, and amplified by emulsion-based
PCR. Molecular barcodes with multiplex identifiers
(MIDs, unique 10 bp sequences) were applied to specific-
ally tag each ¢cDNA library in our pooled sequencing run.

Contig assembly and SNP detection

We pooled all sequences from seven individuals in
PCAP [26] and assembled contigs from the entire data
set using default settings with the overlap cutoff of 92%
identity. The consensus sequence from each of these
contigs was used as a reference sequence to which indi-
vidual sequence reads were aligned using PCAP. First,
we identified SNPs only from contigs at least 100 bp in
length and with a depth of 10 or more reads. We limited
SNP scoring to contigs which have minor allele fre-
quency of 0.01 or at least two minor allele reads. Fur-
thermore, we limited SNPs to regions where 20 bp of
high-quality sequence data was present both upstream
and downstream of the variable site. We discounted
SNPs in homopolymer repeats of >4 nucleotides, and
defined high-quality sites as those with a PCAP base
quality score >20. We considered only biallelic SNP
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substitutions, excluding all indels and triallelic sites. Sec-
ond (in a separate analysis), we identified SNPs in long
contigs (at least 501 bp) [27] using otherwise identical
methods. These long contigs are thus a subset of all con-
tigs. Our use of these two datasets (“all” contigs of
>100 bp and “long” contigs of >500 bp) allowed us to
evaluate SNP frequencies in long transcripts.

Discriminating among protein-coding and non-protein-
coding transcripts

We divided all contigs into categories of protein-coding
and non-coding transcripts using the program CPC [28].
CPC employs supervised learning algorithms known as
support vector machines to discriminate between protein-
coding and non-protein-coding transcripts [28,29]. The
program assessed the protein-coding potential scores of
each contig based on the quality of the predicted open
reading frame (ORF) and on the quality of the BLAST hit
against UniProt Reference Clusters. CPC was used to de-
termine ORF quality by log-odds score, coverage, and in-
tegrity of the ORF whereas BLAST hit quality was
determined by BLAST hit number, feature of high-scoring
segment pairs (HSP), and HSP frame score among three
reading frames. Positive coding potential values reflect
protein-coding transcripts whereas negative coding poten-
tial values designate non-protein-coding transcripts. Thus,
we distinguished protein-coding from non-coding tran-
scripts by considering coding potential scores of a contig
(and by checking the score of its reverse complement
strand).

Modeling SNP frequencies and comparisons between
protein-coding and non-coding transcripts
Our first goal was to evaluate the effects of contig length
and depth on the estimated frequency of SNPs. A priori,
we predicted that SNP frequency would positively asso-
ciate with both factors. We employed the information-
theoretic approach suggested by Akaike [30] and
extended by Burnham and Anderson [31] to evaluate the
relative plausibility of models relating contig length and
depth to the number of SNPs in contigs. Our second
goal was to test the hypothesis that SNP frequency in
non-coding transcripts is higher than in protein-coding
transcripts. To test this, we included transcript type
(protein-coding or non-coding) as a variable in all mod-
els. Therefore, the global model consisted of length
(LENGTH, the number of bp), depth (DEPTH, the num-
ber of aligned sequence reads), and the variable of tran-
script type (C/NC, coded with 1 for protein-coding
transcript and O for non-coding transcript) of each con-
tig. We used SAS 9.2 to estimate parameter values.

Four candidate models were fitted using regression
models based on a negative binomial distribution. To as-
sess the relative fit of each model, we compared the
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Akaike’s Information Criteria (AIC), with better fitting
models having lower AIC [31]. The relative plausibility or
weight of each model was evaluated by measuring Akaike
weight (w;). We repeated construction of candidate mod-
els and model selection for the number of transitions (7})
and transversions (7;) as the response variables, as well
as for the number of SNPs in a contig. For ease of inter-
pretation of the relative effect of each variable, we plotted
estimates of the relationships between length or depth of
contigs and the number of SNPs found in protein-coding
and non-coding transcripts.

Results

Our 454 pyrosequencing run on the ¢cDNA from seven
tiger salamanders yielded a total of 670,408 sequence
reads spanning 190.4 Mb. After quality control and
other filtering (e.g., repetitive elements, short reads, etc.)
we assembled the remaining 273,501 high-quality
sequences into 51,391 contigs. Among contigs with at
least 10 sequence reads, 4,552 and 3,181 contigs were
>100 and =501 bp in length, respectively (Table 1; Add-
itional file 1). In the “all” contig dataset of >100-bp con-
tigs, protein-coding transcripts were slightly more rare
than non-coding transcripts (2,146 vs. 2,406); the pattern
was reversed in the “long” dataset of >501-bp contigs
where protein-coding transcripts were more common
(1,762 vs. 1,419). A total of 2,980 SNPs that passed our
stringent scoring criteria were detected in the “all” con-
tig dataset; of these, 2,515 (84%) were found in the
“long” dataset (Additional file 1). The ratio 7;/T, was 1.8
in both datasets. An overview of the assembled contigs
and SNPs is presented in Table 1 and our short read

Table 1 Summary statistics of assembled contigs (with
depth of >10 reads) and SNPs

Total Protein-coding Non-coding
transcript transcript
Contigs (with length of 100 bp or longer)
Number of cocntigs 4552 2146 2406
Mean length (bp) 811 977 664
Mean depth 28 36 21
Number of SNPs 2980 1744 1236
Number of transitions 1917 1139 778
Number of transversions 1063 605 458
Contigs (with length of 501 bp or longer)
Number of contigs 3181 1762 1419
Mean length (bp) 1003 1095 889
Mean depth 32 39 23
Number of SNPs 2515 1555 960
Number of transitions 1603 1009 594
Number of transversions 912 546 366




Eo and DeWoody BMC Genomics 2012, 13:259
http://www.biomedcentral.com/1471-2164/13/259

sequence data will be deposited at Dryad (http://dx.doi.
org/10.5061/dryad.5pd17).

The correlation results were qualitatively similar be-
tween the “all” (Additional file 2: Figure S1) and “long”
datasets (Figure 1). Here we focus on the long dataset,
where the number of SNPs observed in a contig aver-
aged 0.79 and ranged from 0 to 26. Mean contig
length in the long dataset was 1,003 bp (range 501 —
5,354 bp) and mean contig depth was 32 reads (range
10-315). We found positive associations between the
number of SNPs and contig length (r=0.32; P <0.001;
Figure 1A), and between the number of SNPs and
contig depth (r=0.46; P<0.001; Figure 1B). These
same trends were apparent in both protein-coding
(r=036 for length vs. SNP frequency; r=0.47 for
depth vs. SNP frequency) and non-coding transcripts
(r=022 for length vs. SNP frequency; r=0.44 for
depth vs. SNP frequency); all of these associations
were significant (P < 0.001).

To estimate SNP frequency in the ‘long’ (> 501 bp and
>10 reads) contig dataset, we used the negative binomial
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Figure 1 Correlations between the number of SNPs and both
length and depth of contigs. Positive correlations between the
number of SNPs and both (A) length and (B) depth of contigs with
depth of 210 reads and length of 2501 bp. In both cases, P < 0.001.
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distribution to construct four regression models that
considered contig length, contig depth, and the category
of transcript (protein-coding and non-coding transcript).
The most robust model of SNP frequency was the global
model that used all of these variables; similarly, the glo-
bal models were most robust for estimating the fre-
quency of transitions (7;) and transversions (T;)
(Table 2). The w; (relative plausability or weight of each
model) of the global models for estimating the frequency
of SNPs, T}, and T,, ranged from 0.68 to 0.99. In sharp
contrast, those of the commonly-employed “length-but-
no-depth” models ranged from 6.7 x 102* to 1.2 x 10",
Our best-fit model predicting SNP frequency was
75%x10° (= 0.904/(1.2x 10™°)) times more likely than
the length-but-no-depth model (Table 2). Note the
depth-but-no-length was also a much better model than
the commonly employed length-but-no-depth model
(Table 2). The “all” contig dataset yielded qualitatively
similar results (Additional file 2: Table S1).

Estimation based on the best-fit model (Table 3) indi-
cated that SNP frequency increased with contig length

Table 2 Model selection among candidate models
predicting frequencies of SNPs, transition and
transversion in contigs

Model Parameters® AIC  AAIC® wf
for estimating the number of SNPs
M1 (best, Intercept**, 72834 0.0 0904
full model) LENGTH*, DEPTH**, C/NCt
M2 Intercept®™, DEPTH**, C/NC 72879 45 0.09%
M3 Intercept®, LENGTH**, C/NC 75407 2573 12x10°°
M4 Intercept®, C/NC** 77483 4649 1.0x10"

for estimating the number of transitions (T))

M1 (best, Intercept**, 5682.4 00 0681

full model) LENGTHt, DEPTH**, C/NC

M2 Intercept®™, DEPTH**, C/NC 56839 15 0319

M3 Intercept*, LENGTH**, C/NCt 5896.1 2137 27x10%
M4 Intercept**, C/NC** 60610 3785 63x10%

for estimating the number of transversions (T,)

M1 (best, Intercept*, LENGTH*¥, 40771 0.0 0.991

full model) DEPTH**, C/NC*

M2 Intercept®, DEPTH**, C/NCt 40866 9.5 0.009

M3 Intercept*, LENGTH**, C/NC  4183.8 106.7 6.7x 102

M4 Intercept*, C/NC* 43104 2333 22x10™

Model selection among candidate regression models using negative binomial
distribution predicting the frequency of SNPs, transitions, and transversions in
contigs (depth of 10 reads or more; length of 501 bp or longer), using Akaike's
Information Criteria (AIC).

2 LENGTH and DEPTH are the length and the depth of contigs, respectively,
and C/NC is a dummy variable for the type of transcript (protein-coding
(coded with 1) vs non-coding transcript (coded with 0). **, P < 0.01; ¥, P < 0.05;
1, P<0.1) variable in each model.

b AAIC is the difference between the AIC of the best fitting model and that of
each model.

€ w; is Akaike weight of each model.
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Table 3 Parameter estimates from best fitting model
predicting frequencies of SNPs, transition and
transversions in contigs

Parameter® Estimate 95% confidence limits P

for estimating the number of SNPs

Intercept -0.9828 -1.1137 -0.8520 < 0.0001
LENGTH 0.0002 0.0000 0.0003 0.0106
DEPTH 0.0146 0.0127 0.0165 < 0.0001
C/NC -0.0999 -0.2136 0.0139 0.0854
for estimating the number of transitions (T))
Intercept —14039 —1.5489 —1.2588 < 0.0001
LENGTH 0.0001 0.0000 0.0003 0.0594
DEPTH 0.0139 00119 0.0158 < 0.0001
C/NC —0.0398 —-0.1683 0.0886 05435
for estimating the number of transversions (T,)
Intercept —2.0007 —2.1868 -18147 < 0.0001
LENGTH 0.0003 0.0001 0.0005 0.0006
DEPTH 00123 0.0099 0.0147 < 0.0001
C/NC -0.1883 -0.3539 -0.0226 0.0259

Estimates of variables from best fitting candidate model predicting the
frequency of SNPs, transitions, and transversions in contigs (depth of 10 reads
or more; length of 501 bp or longer).

@ LENGTH and DEPTH are the length and the depth of contigs, respectively,
and C/NC is a dummy variable for the type of transcript (protein-coding
(coded as 1) vs non-coding transcript (coded as 0)).

and depth in both protein-coding and non-coding tran-
scripts. Using the long dataset, we estimated a margin-
ally higher frequency of SNPs in non-coding transcripts
than in protein-coding transcripts (C/NC coefficient of
-0.09; P=0.08) but this trend was not apparent in the
“all” contig dataset (C/NC coefficient of 0.04; P=0.43;
Additional file 2: Table S2; Additional file 2: Figure S2).
From this model, we estimated the number of SNPs in
the long dataset as 0.48 (protein-coding) and 0.52 (non-
coding) in 1 kb-long contigs with a coverage depth of 10
reads, respectively (Figure 2). Similarly, we predicted
1.78 (protein-coding) and 1.97 (non-coding) SNPs in
1-kb long contigs with a depth of 100 reads, respectively.

Discussion

We used 454 pyrosequencing to generate 190 Mbp of
tiger salamander transcriptome sequences that contained
2,980 putative SNPs. These high quality candidate SNPs,
identified using strict criteria, can be converted into gen-
etic markers for studies of natural selection, genomic
organization, and allele-specific expression [14,32-34].
We used these data to develop new models for the esti-
mation of SNP, T}, and 7, frequency; we then compared
these estimates in coding and non-coding transcripts as
discussed below.
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Figure 2 Estimates of the number of SNPs in transcripts based

on length and depth of contigs. Estimates and comparison of the
number of SNPs in protein-coding and non-coding transcripts based
on various length and depth of contigs (depth of 210 reads; length

of 2501 bp), using best fitting models (Table 3).

Modeling frequency estimates of SNP, T;, and T,

A number of recent studies have estimated SNP fre-
quency using high-throughput sequencing technology by
calculating the mean number of SNPs per unit sequence
length. For example, Vera et al [14] estimated a fre-
quency of 6.7 SNPs/kb in butterflies, Kiilheim et al. [9]
estimated 27.1 and 38.3 SNPs/kb in exons and introns,
respectively, in eucalyptus, and Renaut et al. [7] found
SNP densities of >20 SNPs/kb in genes for DNA trans-
position, mitotic spindle organization, and biogenesis.
Such findings have provided broad perspective on SNP
distribution across diverse species, but all of these stud-
ies considered only the effect of sequence length vari-
ation; ie., they estimated SNP frequencies per unit
length without regard to the effect of variation in contig
depth. Not unexpectedly, our data show that SNP fre-
quency estimates are strongly and positively associated
with contig length and with contig depth. Furthermore,
our analyses suggest that polymorphism frequency esti-
mates based on contig length-but-not-depth produce
biased results; SNPs, T, and T, were more abundant in
longer contigs assembled with more sequence reads.
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This finding suggests that both length and depth need to
be considered for estimating the frequency of poly-
morphisms from next-generation sequence data.

A multi-model inference framework is informative for
comparing the relative importance of the variables in
our models. Our most robust model of frequency esti-
mation was the global model that included contig length,
depth, and transcript type. Importantly, contig depth is a
more important variable than contig length when esti-
mating SNP frequencies. This is clear from the Akaike
weight (w;) of the models, because w; is best interpreted
as the relative likelihood or probability of the model
[31]. Consider that our global model of SNP frequency
estimation was only 9.4 times more likely than the next
best model (contig depth and transcript type, but no
length). In stark contrast, the global model was
7.5x10°° times more likely than the model of length
and transcript type (i.e., no depth; Table 2). In the con-
text of massively parallel sequencing, this suggests that
SNP frequency estimation by simply correcting for con-
tig length is inadequate. Our results support the idea
that SNP frequency increases with contig length and
depth, but that contig depth is a much more meaningful
factor in SNP discovery.

Comparison of SNP frequency between protein-coding
and non-coding transcripts

Our modeling approach can be used as a tool for inferring
the intensity of selection on different categories of genes
or genomic regions by comparing the SNP frequency
among categories. Similar approaches have been devel-
oped for nucleotide diversity parameters such as beta (f3)
[35]. We studied the distribution of SNPs with regard to
the protein-coding status of an expressed transcript, but
our approach should prove informative in other compari-
sons across genomic categories (e.g., exons versus introns,
class I versus class II transposable elements, etc.).

In the current analyses, we included the dummy variable
C/NC in all candidate models to test for differences in
SNP frequencies between protein-coding and non-coding
transcripts. In the long dataset with 10 or more reads we
found a negative coefficient of C/NC, implying SNP fre-
quency in non-coding transcripts is higher than that in
protein-coding transcripts. Our use of a poly-dT primer
for cDNA synthesis may have biased our representation of
the transcriptome, but a similar pattern has been reported
in human genomic DNA. Zhao et al. [8] investigated the
distribution of human SNPs and found that SNP fre-
quency was higher in intronic or intergenic than in exonic
regions. Our results support the hypothesis that reduced
SNP frequency in protein-coding regions relative to non-
protein-coding transcripts can be attributed to the selec-
tion pressure on functionally important protein-coding
regions [15,16]. However, absolute SNP frequency values
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we report here should be viewed with some caution be-
cause our transcripts were sequenced from a pool of seven
tiger salamanders and pooled contig depth does not dir-
ectly correspond to the actual number of haplotypes [35].
Although we cannot estimate standard nucleotide diver-
sity parameters such as theta (6) [36] from pooled tran-
scripts from multiple individuals, SNP frequency by our
modeling approach is still useful as a relative estimate to
compare the selection pressure on different transcripts
[35,37].

Our data indicate there is considerable variation in
SNP frequency across transcribed sequences in A. £
tigrinum. These results are consistent with the observa-
tion that different classes of functional, non-coding
RNAs (e.g, microRNAs) evolve at different rates in
humans and mice, with faster evolution in longer func-
tional non-coding RNAs [18]. That said, our observed
SNP frequency differences between coding and non-
coding transcripts were subtle. There are several possible
explanations for this. First, we relied on the CPC pro-
gram [28] to parse protein-coding and non-protein-
coding transcripts. CPC does so for each contig by
evaluating the predicted ORF quality and the quality of
the BLAST hit. This program generally performs well
(accuracy of 92 ~96%; [28,29], but some transcripts re-
main ambiguous or are falsely allocated to the wrong
category. In particular, categorical assignment (coding
vs. non-coding) can be limited by the number of refer-
ence genomes available for comparison [29]. The tiger
salamander is not a genomic model species (e.g., no
complete genome sequence is available) and as of yet
has no close relatives with sequenced genomes, so this
complicates the identification of orthologous sequences
and protein homologs used in categorical (coding/
non-coding) transcript assignments.

A second source of bias may be the short read
sequences generated by next generation sequencing. For
example, some of our sequences may be derived from
short sections of an untranslated region (e.g, 5 or 3’
UTR) that occurs in a true protein-coding transcript.
Such sequences will be erroneously categorized as non-
coding transcripts due to poor ORF-related score, obfus-
cating SNP frequency differences between protein-
coding and non-coding transcripts.

Finally, there may be true biological differences in SNP
frequency between protein-coding and non-coding tran-
scripts or within a transcript category—particularly when
considering “long” transcripts. Recent analyses have
revealed that even transcripts which do not encode pro-
teins may have important functions and some of them
are conserved to maintain functional domains and struc-
tures [17,38-40]. Many short non-coding transcripts such
as microRNAs and small nucleolar RNAs are known to
be highly conserved, functional non-coding RNAs across
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a diverse range of species [18]. In contrast, some long
non-coding RNAs with a known function, such as Xist
and Air, are poorly conserved across taxa [18,41]. This
suggests rapid evolution of long non-coding RNAs des-
pite their known functions (eg, involved in X-
chromosome dosage compensation for Xist and silencing
an imprinted gene at the Igf2r locus for Air) [42,43]. Such
biological differences between long and short non-coding
RNAs might be reflected in our “all” contig and “long”
contig datasets. We found no difference in SNP fre-
quency between coding vs. non-coding transcripts when
all contigs were considered, but we did observe a trend
of greater SNP density in non-coding transcripts com-
pared to coding transcripts when only long contigs were
considered. This observation provides indirect evidence
that “long” non-coding transcripts have relatively fast
rates of molecular evolution.

Conclusions

Our transcriptome results revealed that estimates of
polymorphism frequency are affected by both length
and depth of contigs, such that simply dividing the total
number of SNPs by the sequence length produces
biased frequency estimates. In next-generation sequen-
cing studies where reads vary dramatically among con-
tigs, we propose that estimates of SNP frequency
should be presented as the standardized number of
SNPs for a given contig length and depth instead of the
current “standard” of SNPs per unit length (i.e., SNPs/
kb). For example, polymorphism frequency might be
reported as the number of SNPs in a 1 kb-long tran-
script with coverage depth of 10 reads. Even longer and
deeper contigs will become more common as sequen-
cing technology continues to advance (so it is currently
fruitless to recommend a particular read depth), but
authors should at least provide readers with information
about contig depth as well as length when reporting
SNP frequencies.

Our modeling approach revealed that long non-coding
transcripts have marginally higher SNP frequencies than
protein-coding transcripts. Future models that consider
more variables may further refine our ability to estimate
SNP frequency, so the absolute frequency values we re-
port herein should be viewed with some caution. Never-
theless, the relative polymorphism frequency values
reported herein support the hypothesis that long non-
coding transcripts are less conserved than long protein-
coding transcripts, perhaps as a function of selective
constraints. We think that our modeling approach
(i.e., using multiple model construction and model selec-
tion approaches) can be a powerful tool for identifying
selection on specific functional sequence groups by com-
paring the frequency and distribution of polymorphisms.
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