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Abstract

Background: A complete assembled genome sequence of wheat is not yet available. Therefore, model plant
systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of
transcription factors is one of the most important families of plant transcriptional regulators with members
regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore
promise to lead to new strategies for wheat improvement.

Results: We have identified and manually curated the WRKY transcription factor family from Brachypodium using a
pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher
than all other current databases. We therefore propose that our numbering system (BAWRKY1-BdWRKY86) becomes
the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of
the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total,
twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our
data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY
transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved
protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search
function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs
can be searched. We also produced a phylogram containing the WRKY transcription factor families from
Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription
factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of
Brachypodium WRKY transcription factors.

Conclusions: The description of the WRKY transcription factor family in Brachypodium that we report here provides
a framework for functional genomics studies in an important model system. Our database is a resource for both
Brachypodium and wheat studies and ultimately projects aimed at improving wheat through manipulation of WRKY
transcription factors.
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Background

Grasses (the Poaceae) are one of the most important
plant families, because from the very beginning of
human civilization they have been one of the major
sources of nutrition and sustainable energy and are of
huge economic and ecological importance [1]. Wheat is
the most widely grown cereal in Europe and the second
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overall in the world after another grass, rice. Genomic
analyses have divided the grasses into several economic-
ally important subfamilies; such as the Ehrhartoideae
(rice), the Panicoideae (maize, sorghum, sugarcane and
millets), and the Pooideae [1,2]. The first available plant
genome sequence, from the dicot model plant Arabidop-
sis, was not particularly useful for studying the grass
family [3,4]. The low level of synteny between dicot and
monocot plants makes Arabidopsis a poor model system
for exploring cereals [5]. Even the advent of the first
grass genome sequence, that of rice [2], was of limited
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use for studying the traits of temperate crops because
rice doesn’t exhibit all agronomically important traits
that these temperate grasses exhibit [6]. Clearly, dynamic
changes in genome sequences have occurred over the
40-54 Ma (Myr) of evolution that separates rice from
wheat [7,8].

Common or bread wheat (Triticum aestivum L.) has
the largest genome of the three major agricultural cereal
crops [9]. The hexaploid nature of the bread wheat gen-
ome, consisting of the A, B and D genomes, creates
technical problems with the sequencing and assembly of
the genome. The three homeologous genomes share
~95% sequence similarity. This not only causes problems
in assembling wheat genomic sequences but also means
that functional redundancy is very likely for any given
gene [10]. It is clear, therefore, that a suitable model sys-
tem would be a major tool for both pure and applied
projects in wheat. Brachypodium distachyon (Brachypo-
dium) promises to be just such a system. It is a small
temperate grass that is phylogentically closer to “core
Pooideae” species than rice [6] exhibiting higher co-
linearity and synteny [7]. Brachypodium has many fea-
tures that make it an excellent model species for temper-
ate grass crops. It is a diploid species with a small
number of chromosomes (n=5), has a small genome
size of about 272 Mb, and has useful biological and
physiological features such as short height, a short life
cycle, favorable inbreeding traits, has a low amount of
repetitive DNA, uses self-pollination, and is easy to grow
and maintain, [6,7,11-14]. It is estimated that the last
common ancestor between Brachypodium and wheat
was about 32-39 Myr ago, whereas rice and wheat
diverged 40-54 Myr ago and 45-60 Myr separates sor-
ghum and wheat [1]. This is supported by both chloro-
plast based phylogenetic analysis [15] and nuclear gene
based approaches [11]. This lends support to the use of
Brachypodium as a model for wheat as it has a more re-
cent common ancestor than rice or sorghum. Anatomic-
ally, based on cell wall type, vegetative branching
pattern, root development, and inflorescence branching
Brachypodium is a typical grass [12,16]. The advantages
of Brachypodium as a grass model system have already
been utilized in deciphering processes such as
vernalization and flowering time, seed storage proteins,
fatty acid turnover and plant-pathogen interactions
[12,17]. Taken together, these features make Brachypo-
dium potentially a monocot equivalent of Arabidopsis as
a model system.

Recently, the genome sequence of Brachypodium has
become available [1] and T-DNA mutant populations
have also now been generated that will provide new hor-
izons in gene discovery and gene functionality [18-20].
Not surprisingly, wheat lags behind in comparison, al-
though a draft genome sequence of Chinese spring
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wheat at 5x genome coverage has recently been
announced [21]. However, at 5 x genome coverage we can
only expect to have at least one read for about 95% of the
genome [21]. This is inadequate to cover the complete
genome and the depth of coverage is also inadequate to
provide an accurate assembly of the complete set of
sequences [21]. We have therefore used published wheat
WRKY transcription factors in our analyses until such
time as a good assembly of the wheat genome is available.
WRKY transcription factors are one of the ten largest
transcription factor families across the green lineage and
are involved in signaling webs that regulate important
plant processes [22]. This includes the responses to bi-
otic stress, abiotic stress, senescence, and seed develop-
ment [22-29]. Reports from wheat have already shown
the importance of the WRKY family [30-33] and our
database will be a useful tool for further studies. Just
over ten years ago, the first detailed analysis of the
WRKY transcription factor family in Arabidopsis was
performed. This study not only named the members of
the Arabidposis WRKY family but also subdivided them
into Groups I, IIa, IIb, Ilc, IId, Ile and III based on their
phylogenetic positions and the structures of their WRKY
domains [23]. With the advent of a model system for the
grasses, we have likewise performed a detailed analysis
of the complete WRKY transcription factor family in
Brachypodium. We have also produced a database to fa-
cilitate further research and to enable comparisons of
the Brachypodium WRKY gene family with both the
known gene family members in wheat and also other
WRKY transcription factors across the green tree of life.

Results

Identification and manual curation of the WRKY
transcription factor family from Brachypodium

To produce a robust dataset of WRKY transcription fac-
tors from the Brachypodium genome, a modification of
the pipeline that was developed to identify transcription
factor genes in tobacco gene space sequences was used
[34,35]. The TOBFAC pipeline is a general pipeline that
can be used for the identification of all WRKY sequences
in a dataset. It was first used with the gene space se-
quence from tobacco, but is equally good at identifying
the WRKY family in any genome sequence. The logic be-
hind this strategy was to develop a method to identify
every sequence in the genome that codes for at least part
of a WRKY domain (this could be a functional gene or
even gene fragments caused by transposon insertion or
genome rearrangements). Unlike other methods that
typically strive to avoid false positives, this approach
seeks to avoid any false negatives and filters out false
positives at a later manual curation step. Using this ap-
proach, in most genomes a larger number of WRKY
sequences are identified than there are current gene
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models that contain WRKY domains (data not shown).
Some of these additional sequences represent what ap-
pear to be fully functional WRKY transcription factors,
whereas other sequences show the hallmarks of pseudo-
genes either because they contain in frame stops or
frame shifts or because they only encode part of a
WRKY domain.

This pipeline produces results that show greater accur-
acy than the gene models in the current version of the
Brachypodium genome sequence (JGI v1.0 8x assembly
of Brachypodium distachyon Bd21 and the MIPS/JGI
v1.0 annotation) [36], largely because the intron/exon
boundaries in the WRKY domain-encoding regions of
the genes are often mis-predicted. Typically, all WRKY
domain encoding genomic sequences except those en-
coding the N-terminal domains of Group I proteins,
contain an intron and the position of this intron is ex-
tremely well conserved (Figure 1). In Group I (the C-
terminal WRKY domain), Group Ilc, IId, Ile, and III
genes, this intron comes after the codons for the invari-
ant amino acid sequence PR and separates the WRKY
sequence from the zinc finger motif. In Group Ila and
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IIb genes the intron occurs at a nucleotide position that
corresponds to five amino acids after the C-X5-C and
separates this from the rest of the zinc finger structure
(Figure 1) [22,23]. This highly conserved intron/exon
structure makes the identification of gene models that
mis-predict the WRKY domain simple in most cases.

To identify the WRKY family in Brachypodium we
used v7.0 of Phytozome. tblastn searches were per-
formed against the JGI 8x assembly release v1.0 of strain
Bd21 using a representative WRKY domain from each of
the subfamilies of WRKY transcription factors (I, IIa, IIb,
Ilc, 11d, Ile, and III) [34,35]. This multiple search strategy
was combined with a cut off e-value of 10 in order to
rigorously ensure that all possible WRKY domain-
encoding sequences, however fragmentary, were found.
All positive sequences were combined into a single data-
set and redundant sequences were removed. Each se-
quence was then manually curated. For each positive,
about 20 kb of genomic sequence around the WRKY
domain-encoding region was used in gene prediction
programs to validate the gene as a bona fide WRKY
gene. We used FGENESH with the monocot plant
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from the Arabidopsis WRKY gene family [22] using MEGA4 [37].

DILDDGYRWRKYGQKVV‘KGNPNPJSYYKETNAG . . .EPVRKHVERASHDPKAVITTYEGKENG
DHLDDGYRWRKYGQKPIKGSPYPRGYYRETTXG. . . ENVKKRVERSSDDPSIVITTYEGOENT
DIPPDEYSWRKYGQKPIKGSPHPRGYYKESSVRG. . SPARKHVERALDDPAMLIVTYEGELNG
NLPSDLWAWRKYGQKPIKGSPYPRGYYRESSSKG. . SPARKQVERSRTDPNMLIVTYTSERNG

xPLDDGYSWRKYGQKDILGAKFPI‘SYYRETHKKDQGE::ATKQVQRSDEDPPLYEVTYRGxﬁTE

*IVKDGYQWRKYGQKVTRDNPSPRAYFRESFAPS . . EPVKKKVQRSVEDPSVLVATYEGERLNE

PTMNDGCQWRKYGQKAVKNSPFPRSYYRETMAPG . . §PVRKQVQRCAEDMSILITTYEGTENG

XxPSDDGYNWRKYGQKQVKGSENPRSYYK[ETHPN. . .[E@PVKKKVER . SLDGQITEIIYKGTENG

Figure 1 The WRKY domain intron consensus for each WRKY subfamily in higher plants. The consensus amino acid sequence for the
WRKY domain and the position of the intron in the genome (red line) is shown for each WRKY subfamily. The consensus sequences were derived
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setting for all potential genes [38] and additionally GEN-
SCAN [39] with the maize setting for any genes where
FGENESH failed to predict a protein with a complete
WRKY domain. Each WRKY transcription factor was
given a name and the predicted amino acid and cDNA
sequences were incorporated into the data set. We also
recorded the genomic coordinates, any gene model asso-
ciated with the gene, and also whether the gene model
appeared to be correctly predicted. Gene models were
only scored as incorrect if the genome contains nucleo-
tide sequences that code for a complete WRKY domain
but this was not part of the gene model or if the gene
model was drastically different from the predictions
from both FGENESH and GENSCAN. Only gross differ-
ences in exon prediction (in most cases these gene mod-
els predicted short proteins that are unlikely to represent
full length WRKY transcription factors) were regarded as
a mis-prediction. Differences in the predictions of the pos-
ition of the first ATG codon were common and were not
scored as a mis-prediction.

The WRKY transcription factor family from Brachypodium
Using this pipeline, a total of 86 WRKY transcription fac-
tors were found in the Brachypodium genome (Table 1).
This number of transcription factors is in the same range
found in many other diploid flowering plant species [22].
Of these 86 transcription factors, a total of eleven (12.8%)
have gene models that appear to be mis-predicted
(Figure 2, Table 1). Nine of the transcription factors that
we identified have no corresponding gene model at all
(10.4%). In total, twenty WRKY transcription factors
(23.25%) appear to be either mis-predicted or missing
from the gene models. At least two gene models that en-
code a full WRKY domain (BAWRKY51 and BAWRKY59)
may predict proteins that are erroneously short, but they
have not been scored as incorrect in the absence of EST
data that confirms the gene models to be inaccurate.
Three potential pseudogenes were also found among the
86 genes (BAWRKY18, BAWRKY6S5 and BAWRKY7S5). All
three predicted proteins lack a complete WRKY domain
and two (BAWRKY6S5 and BAWRKY75) contain adjacent
retrotransposon sequences suggesting that these genes
have become non functional due to retrotransposon inser-
tion and associated genome rearrangements. This percent-
age of pseudogenes in the complete WRKY family (3.5%)
is low compared to species such as soybean and is com-
parable to that found in the WRKY family in Arabidopsis
(data not shown).

A combined phylogram of the WRKY transcription fac-
tor family from Brachypodium, Arabidopsis, rice, and
Physcomitrella patens, together with the published WRKY
transcription factors from wheat is presented in Figure 3.
The WRKY family divides into the typical subfamilies
found in flowering plants, namely Groups I, Ila + IIb, Ilc,
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I1d + Ile, and III. The basal WRKY domains from Physco-
mitrella patens are included to set an evolutionary root at
the bases of each major clade. This restricts errors when
computing branch lengths over large evolutionary time.
The WRKY domain from a WRKY transcription factor
found in a fungus belonging to the Zygomycete class,
Mucor circinelloides (scaffold_3:4086226-4087418 fge-
neshMC_pg.3_# 1249), was included as a distant root.
The phylogram with all protein names included is pre-
sented as Additional file 1: Figure S1, whereas a radiation
version with the subfamilies and bootstrap values for some
of the significant branches is presented in Figure 3. The
similarity of the IIc WRKY domains to the C-terminal
domains from Group I proteins suggests that the Ilc tran-
scription factors probably evolved from Group I transcrip-
tion factors that had lost their N-terminal WRKY domain.
Figure 3 shows that the Brachypodium WRKY family has
undergone a lineage-specific radiation in the Group III
subfamily compared to Arabidopsis [22]. This leads to
clusters of paralogous genes. Rice shows a similar lineage-
specific expansion. Our analysis of the Brachypodium
Group III genes suggests that at least part of this lineage-
specific radiation is a result of tandem duplications of
Group III genes. The Brachypodium genome contains two
tandem repeats of four Group III genes, one on chromo-
some four and the other on chromosome two (Figure 4A
and B). The chromosome four tandem repeat contains the
BAWRKY10, BAWRKY15, BAWRKY29, and BdWRKY86
genes. They are found clustered together in the same
orientation on a 30 kb fragment of chromosome 4
(47,780,000-47,810,000) (Figure 4A). BAWRKY86 is not
represented by a gene model in the MIPS/JGI v1.0 annota-
tion. This tandem repeat appears to be the result of dupli-
cations of a single ancestral gene on chromosome four
because all four proteins show greater similarity to each
other than to any other proteins in Brachypodium
(Figures 4A and 5). These four Group III proteins are also
unusual because their WRKY domains are longer than
normal. This is due to a 9-10 amino acid extended region
in the zinc finger part of the WRKY domain (Figure 6).
This feature is not found in other Brachypodium WRKY
transcription factors. There is no obvious conservation of
amino acid sequence in this extended region between
BAWRKY10, BAWRKY15, BAWRKY29, and BAWRKY86
and it is unknown whether this region has functional sig-
nificance. A small number of WRKY transcription factors
with similar extended WRKY domains are also found in
rice and sorghum, suggesting that this is a feature of some
monocot species (data not shown). The second tandem
repeat of four Group III genes is found on chromosome
two. In this case, protein sequences differ in their WRKY
domains when compared with BAWRKY10, BAWRKY15,
BAWRKY29, and BAWRKY86, because they do not have
a 9-10 amino acid extended region The last gene



Table 1 The WRKY transcription factor family in Brachypodium

Gene name Location Gene model Comments
BdWRKY1 Bd2:14220256.14222873 Bradi2g16150.1 Group llb
BdWRKY2 Bd2:3983627.3984262 Bradi2g05510.1 Group llc
BdWRKY3 Bd2:58924622.58926999 Bradi2g62130.1 Group lic. Gene model incorrect.
BdWRKY4 Bd2:9403194..9408009 Bradi2g11170.1 Group lIb
BdWRKY5 Bd2:6965062.6969356 Bradi2g08620.1 Group llb
BdWRKY6 Bd3:17079694..17080883 Bradi3g18580.1 Group lid
BdWRKY7 Bd4:1276705.1278741 Bradi4g01950.1 Group |
BdWRKY8 Bd2:52655598.52657803 Bradi2g53510.1 Group Il
BdWRKY9 Bd2:52646076.52649410 Bradi2g53500.1 Group Il
BdWRKY10 Bd4:47804750.47805919 Bradi4g44370.1 Group Il
BAWRKY11 Bd2:30385271..30389483 Bradi2g30790.1 Group Il
BdWRKY12 Bd3:57392174.57394564 Bradi3g57710.1 Group llb
BdWRKY13 Bd3:36924901..36926175 Bradi3g34570.1 Group lle, Gene Model incorrect.
BdWRKY14 Bd4:36119270.36124180 Bradi4g30370.1 Group lla. Prediction using 40kb sequence for
Bradi4g30360.1 Bradi4g30360 and Bradi4g30370 together.
BdWRKY15 Bd4:47786980.47788750 Bradi4g44350.1 Group Il
BdWRKY16 Bd2:46341174.46344106 Bradi2g45900.1 Group llc
BdWRKY17 Bd2:30398035..30400975 Bradi2g30800.1 Group Il
BdWRKY18 Bd1:1580683..1586394 Bradi1g02340.1 Group I. Second domain is truncated.
Possible pseudogene.
BAWRKY19 Bd4:33637416.33639506 Bradi4g28280.1 Group Il
BdWRKY20 Bd1:62421625.62422845 Bradi1g63220.1 Group Il
BdWRKY21 Bd3:8007304.8009052 Bradi3g09810.1 Group lle
BdWRKY22 Bd1:47430434.47433797 Bradi1g48770.1 Group Il
BdWRKY23 Bd1:5717967.5719246 Bradi1g08100.1 Group llc. Gene model incorrect.
BdWRKY24 Bd2:49173622.49177995 Bradi2g49020.1 Group llc
BdWRKY25 Bd2: 52664751 - 52666466 Bradi2g53520.1 Group Il
BdWRKY26 Bd4:21655844.21659743 Bradi4g19060.1 Group llc
BdWRKY27 Bd1:5619653.5623406 Bradi1g07970.1 Group |
BdWRKY28 Bd1:14207355.14209349 Bradi1g17660.1 Group Il
BdWRKY29 Bd4:47797837.47799556 Bradi4g44360.1 Group Il
BdWRKY30 Bd2:13707176.13708809 Bradi2g15360.1 Group llc

BdWRKY31 Bd1:11188915.11191904 Bradi1g14300.1 Group Ild
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Table 1 The WRKY transcription factor family in Brachypodium (Continued)

BdWRKY32
BdWRKY33
BdWRKY34
BdWRKY35
BdWRKY36
BdWRKY37
BdWRKY38
BdWRKY39
BdWRKY40
BdWRKY41
BdWRKY42
BdWRKY43
BdWRKY44
BdWRKY45
BdWRKY46
BdWRKY47
BdWRKY48
BdWRKY49
BdWRKY50
BdWRKY51
BdWRKY52
BdWRKY53
BdWRKY54
BdWRKY55
BdWRKY56
BdWRKY57
BdWRKY58
BdWRKY59
BdWRKY60
BdWRKY61
BdWRKY62
BdWRKY63
BdWRKY64

Bd5:16639846..16643118
Bd5:20666685..20686684
Bd5:6201425.6206424
Bd5:23482100.23483388
Bd5:23193818.23196993
Bd3:41662537.41665191
Bd3:18514515..18520937
Bd3:4354442.4356174
Bd3:37214494.37216071
Bd3:51584113.51587575
Bd3:53316886.53321459
Bd4:31071952.31076951
Bd2:19779563..19782548
Bd2:52860060.52862718
Bd2:19960366..19962573
Bd2:37371.39452
Bd2:3979821.3981719
Bd2:3815724.3825723
Bd2:33674703.33675549
Bd2:14038105..14040104
Bd2:42525077.42527076
Bd2:44578672.44580858
Bd2:16801079..16803652
Bd2:45857664.45858974
Bd2:16474142..16475652
Bd2:53553539.53556063
Bd2:48426948.48428121
Bd4:48418469.4842114
Bd4:39074575.39078767
Bd4:5576052.5581378
Bd4:9350003..9357060
Bd4:1992609..1995531
Bd1:18715369.18721632

Bradi5g13090.1
Bradi5g04820.1
Bradi5g20700.1
Bradi5g20290.1
Bradi3g39340.1
Bradi3g19640.1
Bradi3g06070.1
Bradi3g34850.1
Bradi3g50360.1
Bradi3g52420.1
Bradi4g25720.1
Bradi2g22230.1
Bradi2g53760.1
Bradi2g22440.1
Bradi2g00280.1
Bradi2g05500.1
Bradi2g33540.1
Bradi2g15880.1
Bradi2g44090.1
Bradi2g19070.1
Bradi2g45480.1
Bradi2g18530.1
Bradi2g54720.1
Bradi2g48090.1
Bradi4g45290.1
Bradi4g33370.1
Bradi4g06690.1
Bradi4g09890.1
Bradi4g02680.1
Bradi1g23340.1

Group |
Group llc. No Gene Model

Group Ild Gene Model Incorrect.

Group Il d
Group lle
Group |
Group |
Group lla
Group Il
Group llc
Group lle

Group lll, Gene Model Incorrect.

Group Il
Group |
Group |
Group |
Group Ilb
Group llc. No Gene Model
Group llc
Group lll. Gene Model short.
Group llc. No gene Model.
Group llc
Group llc
Group Il
Group llc

Group llc, Gene Model Incorrect.

Group lic
Group I. Gene Model Short.
Group llc
Group |
Group |
Group Ild
Group |
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Table 1 The WRKY transcription factor family in Brachypodium (Continued)

BdWRKY65

BdWRKY66
BdWRKY67
BdWRKY68
BdWRKY69
BdWRKY70
BdAWRKY71
BdWRKY72
BdWRKY73
BdWRKY74
BdWRKY75
BdWRKY76
BdWRKY77
BdWRKY78
BdWRKY79
BdWRKY80
BdWRKY81
BdWRKY82
BdWRKY83
BdWRKY84
BdWRKY85
BdWRKY86

Bd1:46394072.46396455

Bd1:13042696..13049431
Bd1:18197079..18200281
Bd1:26329079.26330580
Bd1:36017779.36022778
Bd1:49453669.49457672
Bd1:58314278.58317315
Bd1:10018159..10019283
Bd1:724757.729756
Bd1:6545010.6548310
Bd1:70813782.70818781
Bd2:14428190..14433051
Bd2:49902436.49907435
Bd1:63118295.63119746
Bd2:44782012.44783510
Bd2:49068600.49073599
Bd2:13725107..13735106
Bd2:44526356.44531355
Bd2:19783798..19788797
Bd2:52617265.52627264

Bd2: 52628591 - 52629373

Bd4:47782844.47784664

Bradi1g47690.1

Bradi1g16120.1
Bradi1g22680.1
Bradi1g30870.1
Bradi1g51030.1
Bradi1g59180.1
Bradi1g13210.1
Bradi1g01060.1
Bradi1tg09170.1

Bradi2g16360.1
Bradi1g63910.1
Bradi2g44270.1
Bradi2g48910.1

Bradi2g22240.1
Bradi2g53480.1
Bradi2g53490

One and a half WRKY domains followed by
a FAR1-s domain and a MULE transposon.
Group |
Group |
Group lla
Group lle. No Gene Model
Group llb
Group llc
Group llc. WKKY group
Group lle. No Gene Model.

Group Ild

Retrotransposon with N-terminal part of WRKY domain.

Group llc. Gene Model Incorrect
Group lle. No Gene Model.
Group Il
Group Il
Group lle
Group lle. No Gene model.
Group lle. No Gene Model.
Group lll. Gene Model Incorrect.
Group lll. Gene Model Incorrect
Group lll. Gene Model Incorrect.

Group Il.No Gene Model

For each WRKY transcription factor, the chromosomal location and gene model (if present) are shown, together with any comments concerning the gene.
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Pseudogenes,
3.49%(3)
R

No GeneModel
10.4% (9)

Figure 2 Manual curation of the 86 WRKY transcription factors in Brachypodium. The predicted WRKY transcription factors are compared to
the WRKY domain-containing gene models in the MIPS/JGI v1.0 annotation of the JGI v1.0 8x assembly of Brachypodium distachyon Bd21. Gene
models are designated as mispredicted if a complete WRKY domain is present in the corresponding region of the genome but the gene model

does not accurately reflect this.
.

(BAWRKYS) is in reverse orientation compared to the
other three genes (Figure 4B). In total, eight of the twenty
three Group III genes (35%) are found in tandem repeats
of four genes in Brachypodium suggesting that the forma-
tion of tandem repeats is at least partly responsible for the
lineage-specific radiation of Group III WRKY transcrip-
tion factors.

Brachypodium does not appear to contain any genes
encoding chimeric intracellular type-R proteins and
WRKY transcription factors (NBS-LRR-WRKY proteins).
This is in contrast to several plant species such as Arabi-
dopsis, rice, tobacco and soybean, which each contain at
least one such chimeric protein (data not shown).

The Database of Brachypodium distachyon WRKY
Transcription Factors

We have constructed a publicly accessible database
of Brachypodium WRKY sequences to facilitate research
into the roles of the WRKY transcription factor
family in Brachypodium (http://www.igece.org/WRKY/
BrachyWRKY/BrachyWRKYIndex.html). The database
provides a portal to sequence and phylogeny data for

the 86 identified WRKY transcription factors. One of
the main functions of the database is to aid research in
Brachypodium by leveraging information from other
plant systems to give insights into the possible roles of
Brachypodium WRKY transcription factors. To this end,
the database contains a BLAST server that can be used
to help identify orthologues of Brachypodium WRKY
transcription factors in other plant species. MEME has
also been used to identify conserved protein domains in
each of the WRKY transcription factors in Brachypo-
dium. This promises to reveal both input and output
domains in signaling and facilitate comparisons with
functional genomics studies of WRKY transcription fac-
tors in other plant systems.

The main page

The main page of The Database of Brachypodium distach-
yon WRKY Transcription Factors (http://www.igece.org/
WRKY/BrachyWRKY/BrachyWRKYIndex.html) contains
general information about Brachypodium and its suitabil-
ity as a model system, together with a summary of the
WRKY family and a phylogram of all proteins (Figure 7).


http://www.igece.org/WRKY/BrachyWRKY/BrachyWRKYIndex.html
http://www.igece.org/WRKY/BrachyWRKY/BrachyWRKYIndex.html
http://www.igece.org/WRKY/BrachyWRKY/BrachyWRKYIndex.html
http://www.igece.org/WRKY/BrachyWRKY/BrachyWRKYIndex.html
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Figure 3 Combined phylogenetic tree of the WRKY transcription factor families in Brachypodium, Arabidopsis, rice, and Physcomitrella
patens, together with published WRKY transcription factors from wheat. The WRKY domains were used to infer the evolutionary history of
the WRKY family using the Neighbor-Joining method. The WRKY domain from a WRKY transcription factor found in a fungus belonging to the
Zygomycete class, Mucor circinelloides, was included as a distant root (blue dot). Brachypodium and wheat proteins are indicated by red and
green dots, respectively. The WRKY subfamilies are indicated. I-N and |-C indicate the N-terminal and C-terminal domains from Group | WRKY
proteins. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic
tree. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid
substitutions per site. Phylogenetic analyses were conducted in MEGA4 [37] and MEGAS [40]. The distance scale (0.1) is shown. A version of
Figure 3 with all WRKY transcription factors labeled and all bootstrap values indicated is presented as Additional file 1: Figure S1.

The main page also contains a table of the WRKY tran-
scription factor family from Brachypodium. For each
individual transcription factor, the name, chromosome lo-
cation and gene model are listed. The name is also a hot
link that leads to the deduced protein sequence. The final
column of the table contains comments pertaining to each
transcription factor. These comments include the subfam-
ily of WRKY proteins to which this particular transcrip-
tion factor belongs, whether a gene model is present or
absent and whether it is predicted to be correct. Add-
itional notes, such as the presence of nearby transposon
sequences or whether the gene is a likely pseudogene, are
also presented. The main page also contains a button that
enables downloading of an enhanced tabular version of
the Brachypodium WRKY transcription factor family
(Table 1) with a cartoon of each protein showing potential

conserved protein domains. Another button on the main
page links to the WRKY BLAST server (http://www.igece.
org/WRKY/BrachyWRKY/Brachy Blast.html). The server
contains several useful data sets that can be searched.
These include a large dataset of WRKY transcription fac-
tors that we have manually curated from twenty two
sequenced genomes, wheat cDNA/EST sequences from
the DFCI wheat gene index release 12.0 [41], the Database
of Wheat Transcription Factor (WDBTF) dataset [42], the
EMBL EBI unipro_sprot data set of half a million
sequences, and the NCBI refseq data set of over six mil-
lion protein sequences. There are also links to web tools
for sequence retrieval and GO analysis, DNA sequence
format manipulation, DNA sequence reverse complement
generation, gene coding/structure prediction and model-
ing programs, multiple sequence alignment programs,


http://www.igece.org/WRKY/BrachyWRKY/Brachy_Blast.html
http://www.igece.org/WRKY/BrachyWRKY/Brachy_Blast.html
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DNA translation into protein, and motif discovery
programs.

The individual gene pages

Each Brachypodium WRKY transcription factor has a
page dedicated to it that contains information designed
to aid research into that transcription factor. This indi-
vidual gene page can be reached by clicking on the

corresponding button with the transcription factor name
on the main page. Each gene page contains a phylogram
of the entire family with the transcription factor in ques-
tion marked by a red dot (or dots in the case of the two
domains in Group I proteins) (Figure 8). Underneath is
a cartoon of the predicted domains in the WRKY pro-
tein. The conserved domains were generated by MEME
[43] using the protein sequences of all members of the
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Figure 5 Phylogenetic analysis of the Group Ill WRKY transcription factors in Brachypodium. The complete amino acid sequences of the
Group Il WRKY transcription factors in Brachypodium were used and the evolutionary history was inferred using the Neighbor-Joining method.
The bootstrap consensus tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino
acid substitutions per site. Phylogenetic analyses were conducted in MEGA4 [37]. The chromosomal locations of the genes are shown and the
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subfamily of WRKY proteins to which the protein
belongs. Compared to the use of all members of the
WRKY family, using only the subfamily as the input
dataset increased the number of potentially conserved
domains and decreased the amount of noise. Most con-
served domains appear to be subfamily specific [22,23]

and some already have function associated with them.
This includes basic nuclear localization signals, leucine
zipper dimerization domains, both glutamine-rich and
acidic regions that are potential activation/repression
domains, and the c-motif that is a calmodulin binding
domain and found in Group IId proteins. Other
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conserved protein domains (for example the HARF do-
main) have yet to be functionally characterized. The
identification of these domains will facilitate analysis of
regions outside of the WRKY domain that either receive
input signals or are responsible for modulating transcription.
Additional information concerning the gene and the
protein that it codes for is also presented. This includes
the group to which it belongs, the length, molecular
weight and isoelectric point of the predicted protein, the
chromosomal location, the gene model, and the cDNA
and amino acid sequences. The gene model is a link to
the gene model at brachypodium.org [44]. One of the major
functions of the database is to facilitate functional studies
of the WRKY transcription factors in Brachypodium and to
that end both general (regulation of transcription) and spe-
cific gene ontology classifications are listed where known.
The identification of ortholgues in other species where
extensive research has been performed, such as rice, might
give important clues as to the function of each Brachypo-
dium WRKY transcription factor. We have constructed a
large dataset of manually curated WRKY transcription

factors from the following twenty two sequenced gen-
omes: Brachypodium distachyon, Soybean, Rice (japonica),
Arabidopsis thaliana, Medicago truncatula, Physcomi-
trella patens, Populus trichocarpa, Selaginella moellen-
dorffii, Chlamydomonas reinhardtii, Chlorella vulgaris,
Coccomyxa sp. C-169, Micromonas pusilla, Ostreococcus
tauri, Ostreococcus lucimarinus, Ostreococcus RCC809,
Volvox carteri, Phycomyces blakesleeanus, Rhizopus ory-
zae, Mucor circinelloides, Dictyostelium discoideum, Dic-
tyostelium purpureum, and Giardia lamblia. This data set
is available to search on the WRKY BLAST server and can
be used to identify orthologues of each Brachypodium
WRKY transcription factor. This will facilitate the integra-
tion of data about related WRKY transcription factors
from across the green tree of life.

Wheat orthologues of Brachypodium WRKY transcription
factors

One of the main reasons for studying Brachypodium is
its value as a model system. It is much easier to perform
many types of experiments using Brachypodium than it
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Brachypodium distachyon

Brachypodium distac hyon, comm oaly called purple
false brome, is a grass species native to southern
Europe, northern Africa and southwestern Asla east
to Indka. It is related to the major cereal grain
species wheat, barley, oats, maize, rice, rye,
soighum, and millet. It &5 an excellent model
organism for functional genomics research. These
attributes include small gen ome (270 Mbp) diploid
accessions, a series of polyploid accessions, a small
physical stature, self-fertility, a short lifecycle,
simple growth requirements, and an efficient
transformation system.

Tools to Facilitate WRKY Data Analysis
[ EinstSearch On WRKY Sequences ] ( WBKY Sequence Domain Summary |

List of Brachy WRKY Family
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Brief Overview of Brachy WRKY Family and DNA/Peptide Sequence Retrieval

7 [ " Comments
| BaWRKY1 | Bd2 14220256 14222873 | Brad2e16150.1 | Grow Ib

Figure 7 Visualization of the main page of The Database of Brachypodium distachyon WRKY Transcription Factors. The main page
contains general information about Brachypodium distachyon next to a phylogram of the complete WRKY family of 86 transcription factors. There
is a link to the BLAST search page and also a link that enables downloading of an enhanced table containing both information about each gene
and a cartoon of each protein showing conserved domains as determined by MEME [43]. The buttons link to the individual gene pages. Finally,
an overview table lists each WRKY gene together with its chromosomal location, gene model, subfamily designation, and any comments
concerning the gene.

is with other grasses such as wheat. When using Brachy-  between Brachypodium and wheat WRKY transcription
podium as a model system, classification of genes within  factors is important because orthologues typically have
the grasses based on homologous relationships is im-  similar function. Paralogues, however, often exhibit func-
portant, in particular the identification of orthologues tional diversification after duplication [47-49].
and paralogues [45,46]. We therefore sought to identify wheat orthologues of
Orthologues are genes that evolved via vertical descent the Brachypodium WRKY transcription factors using
from a single ancestral gene in the last common ancestor of ~ GenBank wheat accessions. There are currently 71 wheat
the compared species. Paralogues are genes, which have =~ WRKY transcription factors in the GenBank protein se-
evolved by duplication of an ancestral gene. Orthology and  quence database from various sources [50]. The WRKY
paralogy are intimately linked because, if a duplication (ora ~ BLAST server was used to query the Brachypodium
series of duplications) occurs after speciation, orthology =~ WRKY transcription factor family with each of the wheat
becomes a relationship between sets of paralogues, rather  sequences to identify possible orthologues. Initially, a
than individual genes (in which case, such genes are called  combined phylogenetic tree of the 86 Brachypodium and
co-orthologues) [45]. The identification of ortholgues 71 wheat proteins was also constructed that suggested
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Figure 8 Visualization of an individual gene page in The Database of Brachypodium distachyon WRKY Transcription factors. Each gene
page contains the phylogenetic tree in which the specific protein is indicated with a red dot. A cartoon of the predicted protein is shown
together with conserved domains as determined by MEME [43]. The online page also contains other information about the protein including the
chromosomal location, a link to the gene model at brachypodium.org [44], the cDNA and protein sequences, and the relevant GO ontology.

possible orthologous/paralogous groups (data not rice, Arabidopsis, and Physcomitrella patens, together with

shown). To better resolve the homologous relationships
between the WRKY transcription factors, the phylogram
in Figure 3 was produced that contains the complete
WRKY transcription factor families from Brachypodium,

the published WRKY transcription factors from wheat
(Figure 3 and Additional file 1: Figure S1). The WRKY
domain from a WRKY transcription factor found in a fun-
gus belonging to the Zygomycete class, Mucor circinelloides
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(scaffold_3:4086226—4087418  fgeneshMC_pg.3_#_1249),
was included as a distant root. The phylogram facilitates
the identification of orthologues, paralogues, and in some
cases co-orthologues. Some caution is, however, required
when interpreting these data because the coverage of wheat
WRKY transcription factors is incomplete and some avai-
lable sequences are fragmentary. In addition, the hexaploid
nature of the wheat genome compared to the diploid
Brachypodium genome also complicates interpretation.
Figure 3 and Additional file 1: Figure S1 suggest that most
wheat WRKY transcription factors have clear orthologues
or co-orthologues in Brachypodium. One exception is the
wheat protein TaWRKY8 that forms a distinct clade with
rice OsWRKY6. These two WRKY transcription factors
appear to represent early branching Group IId genes
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(Additional file 1: Figure S1). No Brachypodium ortholo-
gue is present in this clade.

Initially, a group of four wheat proteins TaWRKY10
(ACD80371), TaWRKY45A (BAK53494), TaWRKY45B
(BAK53495), and TaWRKY45D (BAK53496) also appeared
to have no counterpart in Brachypodium. To provide stron-
ger evidence, a phylogram was produced using the
complete amino acid sequences not only of these proteins
but also of all similar Group III proteins from the
sequenced genomes of the grasses maize, sorghum, switch-
grass, foxtail millet, and rice (Figure 9). These complete
protein sequences of related Group III WRKY transcription
factors constitute a monophylum. The Group I WRKY pro-
tein AtWRKY1 was used as an outgroup in the phylogram.
Figure 9 shows that a clade of thirteen WRKY transcription
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Figure 9 Orthologues and co-orthologues in a Group Ill WRKY transcription factor clade in the grasses. A combined phylogram of grass
members of a Group Il WRKY transcription factor clade. Members from the grasses maize, sorghum, switchgrass, foxtail millet, and rice, in
addition to TaWRKY45A, TaWRKY45B, TaWRKY45D, BAWRKY 11, TaWRKY11, and BAWRKY79, were used. The complete amino acid sequences of the
proteins were used to construct the phylogram. The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap
consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed. The percentages of replicate trees
in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale,
with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The distance scale (0.1) is
shown. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid
substitutions per site. Evolutionary analyses were conducted in MEGAS [40]. Wheat proteins are indicated by a green dot and Brachypodium
proteins by a red dot. Brachypodium proteins are prefixed by Bd, wheat proteins by Ta, Arabidopsis WRKY1 (used as an outgroup) by At, barley
WRKY32 by Hv, and rice proteins by Osj. All other proteins are indicated by the name of the gene model in Phytozome and prefixed as follows;
GRMZM (maize), Si (foxtail millet), Pavirv (switchgrass), and Sb (sorghum). To the right of each protein name is the domain structure of each
protein as predicted by MEME, and beneath are the consensus sequences of each of the ten protein domains.
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factors was produced that shares the same domain struc-
ture (Motif 3-9-7-1-2-4-5-5). This suggests that these
WRKY transcription factors are orthologues that have origi-
nated from a single ancestral gene. This is supported by the
presence of only a single gene in the genomes of maize,
rice, switchgrass, foxtail millet, and sorghum. The situation
in Brachypodium and wheat is, however, different. There
are two Brachypodium WRKY transcription factors
(BAWRKY79 and BdAWRKY11) and five wheat ones
(TaWRKY10, TaWRKY45A, TaWRKY45B, TaWRKY45D,
and TaWRKY11). The most likely interpretation is that
BAWRKY79 and BdWRKY11 are paralogues and that
TaWRKY10, TaWRKY1l, TaWRKY45A, TaWRKY45B,
TaWRKY45D, and TaWRKY11 are co-orthologues of these
two Brachypodium proteins. An alternative, but possibly
less likely, explanation is that BAWRKY11 and TaWRKY11
are orthologues and that the clade represented by
TaWRKY10, TaWRKY45A, TaWRKY45B, TaWRKY45D,
HvWRKY32, and TaWRKY11 has lost a Brachypodium
orthologue that was present in the last common ancestor
of wheat and Brachypodium. Additional data from grass
genomes may clarify this.

Discussion

Comparison of Brachypodium WRKY transcription factor
data sets from various databases

Several groups have attempted to characterize the WRKY
transcription factor family in Brachypodium. Compared to
our data set of 86 transcription factors, our analyses show
that the Plant Transcription Factor Database (PlantTFDB)
[51] predicts a total of 72 genes including two pseudogenes
(Additional file 2: Figure S2, Additional file 3: Table S1).
The PlantTFDB database lists 78 genes but there are some
duplicates. The Grass Regulatory Information Server
(Grassius) predicts 82 WRKY genes [52]. This actually
represents 81 individual WRKY transcription factors as one
gene appears to be duplicated Additional file 4: Table S2.
The five transcription factors missing from Grassius are
BAWRKY52, BAWRKY69, BAWRKY73, BAWRKY7S5, and
BAWRKY83. It appears that these missing genes are hard to
identify because none of the five are represented by a gene
model. In the case of BAWRKY75, this lack of detection
could be because the genome in this region does not code
for a complete WRKY domain. BAWRKY7S5 is an apparent
pseudogene with the sequences that code for the C-
terminal part of the WRKY domain absent. Retrotrans-
poson sequences are adjacent to the gene suggesting a
mechanism whereby a functional gene has become non
functional as a result of retrotransposon activity and con-
comitant genome rearrangements. Recently, 81 Brachypo-
dium WRKY transcription factors have been annotated
using the NCBI automated computational analysis pipeline.
The pipeline annotates genes using both (1) reference se-
quence (RefSeq) transcript alignments and (2) Gnomon
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prediction in those regions not covered by RefSeq align-
ments. Using this approach, 75 WRKY transcription factors
were annotated (Additional file 3: Table S1). The eleven
missing genes are BAWRKYS, BAWRKY9, BAWRKYIS,
BAWRKY27, BAWRKY29, BdWRKY43, BAdWRKY44,
BAWRKY62, BAWRKY66, BAWRKY76, and BdWRKYS6.
Interestingly, no WRKY transcription factor is missing in
both the Grassius and NCBI data sets, showing that there
is independent validation of all of the genes in our data set
in at least one other database.

In conclusion, our pipeline has produced the most com-
prehensive set of WRKY transcription factors that is cur-
rently available in Brachypodium. It was able not only to
identify genes that are not represented by gene models,
but also fragmentary pseudogenes and all members of tan-
demly repeated WRKY genes.

The WRKY transcription factor family in Brachypodium
The WRKY transcription factor family in Brachypodium
(Figure 3) is similar to the typical WRKY family in flowering
plants with a division into Groups I, Ila +IIb, Ilc, IId + Ile
and III (Additional file 4: Table S2) [22]. Over the last dozen
years, the original phylogenetic classification of Eulgem
et al. [23] has proven to be robust. The one major modifica-
tion came from the work of Zhang and Wang who modi-
fied the original Groups I, IIa, IIb, Ilc, IId, Ile and III into
Groups I, Ila + IIb, Ilc, IId + ITe and III [53]. This accurately
reflects the evolution of the WRKY family and has been
verified in a number of species including several monocots
such as maize [54], barley [55], and rice [22,56]. These ana-
lyses also are consistent with some of the findings of Babu
et al. that used a larger data set [57]. The Brachypodium
WRKY family also shows characteristics of other monocot
species such as rice with a lineage-specifc radiation in
Group III. For example, Arabidopsis and Brachypodium
both contain three Group Ila WRKY transcription factors
but, in contrast, Brachypodium has almost twice the num-
ber of Group III WRKY transcription factors (23 compared
to 14 in Arabidopsis). The mechanisms responsible for this
lineage-specific expansion are unclear, but our studies of
the BAWRKY10/BAWRKY15/BAWRKY29/BAdWRKYS86 clus-
ter on chromosome 4 and the BdAWRKY8/BAWRKY9/
BAWRKY84/BAWRKY85 cluster on chromosome 2
(Figures 4 and 5) suggest that this expansion is at least
partly due to the formation of tandem repeats of
paralogous Group III genes. Interestingly BdWRKY10,
BAWRKY15, BAWRKY29, and BAWRKYS86 are atypical
Group III WRKY transcription factors as they all contain a
9-10 amino acid extended region in the zinc finger part of
the WRKY domain (Figure 6). A small number of similar
WRKY transcription factors with extended WRKY domains
in this region of the zinc finger are also found in rice and
sorghum, suggesting that this is a feature of some monocot
species (data not shown).
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The WRKY transcription factor family in wheat

The currently available data set of wheat WRKY tran-
scription factors is fragmentary but comparisons with
the WRKY family in Brachypodium are already inform-
ative and have consequences for both the identification
of orthologous genes and the use of Brachypodium as a
model system for wheat. From our data, it is clear that
most wheat WRKY transcription factors have an ortho-
logue in Brachypodium (Figure 3 and Additional file 1:
Figure S1). However, the identification of orthologues or
co-orthologues is complicated by the incomplete coverage
of wheat WRKY transcription factors and the fragmentary
nature of some available sequences (TaWRKY10 and
TaWRKY11 are not full length sequences, for example). In
addition, the hexaploid nature of the wheat genome com-
pared to the diploid Brachypodium genome also compli-
cates interpretation. A good example of this is the clade of
wheat Group III WRKY transcription factors consisting of
TaWRKY10, TaWRKY45A, TaWRKY45B, TaWRKY45D,
and TaWRKY11 (Figure 9). It is clear from domain struc-
ture and the phylogram that these five WRKY transcription
factors together with the other members of this clade prob-
ably descended from an ancestral gene with a motif 3-9-7-1-
2-4-5-5-like domain structure at the protein level. The pres-
ence of only a single transcription factor of this type in the
genomes of maize, rice, switchgrass, foxtail millet, and sor-
ghum suggest that the genes in these species all descended
from the last common ancestor by vertical inheritance. After
lineage-specific radiation in wheat and Brachypodium, a set
of orthologues and co-orthologues was formed in these spe-
cies. Given that orthologues typically have similar function,
it is likely that many of the thirteen WRKY transcription fac-
tors in this clade play similar roles in plants. Interestingly,
OsWRKY45 is up-regulated by several different abiotic stres-
ses, including high salt, water stress, and heat [58], suggest-
ing that one role of these WRKY transcription factors may
be in the regulation of abiotic stress responses. Recently, dir-
ect information about the possible roles of TaWRKY10 and
TaWRKY11 was presented [59]. Ta WRKY10 is up-regulated
by cold and wounding, whereas TaWRKY11 is up-regulated
by cold, wounding and ABA. This gives further support to
the suggestion that this clade of grass WRKY transcription
factors regulate abiotic stress responses. By contrast, Add-
itional file 1: Figure S1 shows an example of lineage-specific
radiation in Arabidopsis. The ABA-hypersensitive mutant,
abo3, is caused by a T-DNA insertion in AtWRKY63
(At1g66600). The abo3 mutant is hypersensitive to ABA in
both seedling establishment and seedling growth. In
addition, stomatal closure is less sensitive to ABA [24].
However, finding orthologues of AtWRKY63 in other plants,
such as soybean, is not possible because the transcription
factor forms part of a lineage-specific radiation that appears
specific to either the Brassicaceae family or indeed to Arabi-
dopsis itself (Additional file 1: Figure S1). AtWRKY63 is
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found in a separate clade within Group III that consists only
of the Arabidopsis WRKY transcription factors
AtWRKY38, AtWRKY62, AtWRKY63, AtWRKY64,
AtWRKY66, and AtWRKY67. The situation with these six
WRKY transcription factors is obviously complex as two are
found on chromosome 5 and the remaining four on
chromosome 1.

The Database of Brachypodium distachyon WRKY
Transcription Factors

The major output of our analyses of the Brachypodium
WRKY transcription factor family is The Database of
Brachypodium distachyon WRKY Transcription Fac-
tors  (http://www.igece.org/WRKY/BrachyWRKY/Bra-
chyWRKYIndex.html). Our aim is to make this
knowledgebase a repository for all information pertain-
ing to WRKY transcription factor research in Brachy-
podium. The database has tools to facilitate the
identification of wheat orthologues of each of the Bra-
chypodium WRKY transcription factors with a BLAST
server allowing the Brachypodium data set to be quer-
ied with new wheat sequences as they become avail-
able. These tools will facilitate cross species analyses of
WRKY transcription factor function in the grasses.

The BLAST server also allows searching of a large
dataset of manually curated WRKY transcription factors
that we have constructed from twenty two sequenced
genomes from the green tree of life and beyond. This
will allow the integration of wet lab data from well-
established systems such as Arabidopsis and rice into ex-
perimental design and data analysis in Brachypodium.
These comparisons, as well as being useful tools for
designing experimental strategies, will also start to pro-
vide answers concerning the similarities and differences
in WRKY transcription factor function across the plant
kingdom.

Conclusions

The description of the WRKY family in Brachypodium
that we report here provides a framework not only for
functional genomics studies of WRKY transcription fac-
tors in an important model system, but also identifies
orthologues, and co- orthologues in wheat. This will fa-
cilitate translational genomics where orthologous Brachy-
podium WRKY transcription factors will give insights into
transcription factor function in wheat. Our database will
be a resource for both Brachypodium and wheat studies
and ultimately projects aimed at improving wheat
through manipulation of WRKY transcription factor func-
tion. The total of 86 WRKY transcription factors pre-
sented here is higher than other databases and is likely to
be close to the true number of WRKY transcription
factors in the genome. We therefore propose that the
numbering system that we have established (BAWRKY1-


http://www.igece.org/WRKY/BrachyWRKY/BrachyWRKYIndex.html
http://www.igece.org/WRKY/BrachyWRKY/BrachyWRKYIndex.html

Tripathi et al. BMC Genomics 2012, 13:270
http://www.biomedcentral.com/1471-2164/13/270

BAWRKY86) becomes the standard nomenclature for fu-
ture work on the Brachypodium WRKY transcription fac-
tor family.

Methods

Identification and manual curation of the Brachypodium
WRKY transcription factor family

To identify the WRKY family in Brachypodium a modifi-
cation of the TOBFAC pipeline was used. tblastn
searches were performed against the JGI 8x assembly re-
lease v1.0 of strain Bd21 with JGI/MIPS PASA annota-
tion using a representative WRKY domain from each of
the subfamilies of WRKY transcription factors (I, Ila, IIb,
Ilc, IId, Ile, and III) [34,35]. The e-value was set to 10 to
ensure that all potential WRKY domain-encoding
sequences, however diverse or fragmentary, were discov-
ered. All hits were obtained in October 2011 and were
pooled into a single data set before duplicate sequences
were removed. Each potential gene was then manually
curated using both FGENESH [38] and GENSCAN [39]
gene predictions and also BLAST searches [50] against
published WRKY transcription factors. The two gene
prediction programs and the BLAST searches enabled
not only a better prediction of the intron-exon boundar-
ies in the WRKY domain-encoding sequences, but also
increased reliability in the prediction of the ATG start
codon than many of the short gene models (although an
accurate prediction of the start of translation remains
difficult in some cases in the absence of reliable EST
data). No one gene prediction program was better and
sometimes the two programs disagreed. We used the re-
sult or results that included a complete WRKY domain
because any program that didn’t predict it will normally
be wrong except in the case of a frame shift. Adjacent
transposons and also pseudogenes were also identified
by this pipeline and false positives were removed. The
final list of WRKY transcription factors was then tabu-
larized and predicted full length ¢cDNA and amino acid
sequences were produced. The genome location of each
gene was carefully recorded to facilitate future modifica-
tions to the gene predictions.

Phylogenetic analysis of the Brachypodium WRKY family

Phylogenetic and molecular evolutionary analyses of the
WRKY family were conducted using MEGA versions 4
and 5 [37,40]. The amino acid sequences of the WRKY
domains were used to construct multiple sequence align-
ments using CLUSTAL. Where necessary, multiple se-
quence alignments were manually adjusted to optimize
the alignments. Short partial domains from possible
pseudogenes were discarded. Phylogenetic trees were
produced by the neighbor-joining method (settings:
gaps/missing, pairwise deletion; model, amino number
of differences; substitutions to include, all; pattern
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among lineages, same; rates among sites, uniform). Stat-
istical support for the nodes in the phylogenetic trees
(bootstrap values from 1,000 trials) were obtained for
each tree. For each figure, the bootstrap consensus tree
is presented. For the phylogenetic analysis of the Group
III WRKY transcription factors (Figure 9), the complete
amino acid sequences of the proteins were used.

Motif analysis

Analysis for conserved motifs in the WRKY proteins
was carried out using MEME (http://meme.sdsc.edu/
meme/cgi-bin/meme.cgi) [43]. It was observed that most
conserved domains are limited to a single subfamily of
WRKY transcription factors and therefore MEME ana-
lyses were run for the members of each subfamily using
the full length proteins. The settings were; any number
of repetitions of a single motif, minimum width of a
motif six amino acids, maximum width of a motif eighty
amino acids, maximum number of motifs to find twelve.

Database construction

The web interface was implemented in JavaScript and
Perl CGI [60] running on an Apache web server [61].
JavaScript and Perl CGI were used for data display and
the development of web-based tools for the BLAST ser-
ver and for sequence retrieval for data mining. The pro-
duction instance of the database is located at: http://
www.igece.org/ WRKY/BrachyWRKY/.

The test instance of the database is located at: http://nim.
vbi.vt.edu/BrachyWRKY/, and the developmental instance
of the database is located at: http://systemsbiology.usm.
edu/BrachyWRKY/. These instances will be consistently
improved over time, with the production instance being the
most mature version of the knowledgebase systems.

Comparison with grassius, plantTFDB and NCBI databases
A comparison of the predicted WRKY transcription fac-
tors from Brachypodium was made with the following
publicly available databases; Grassius [52,62], PlantTFDB
[51,63], and NCBI [50].

Annotation and comparison of wheat WRKY transcription
factors

The seventy one published wheat WRKY accessions were
downloaded from NCBI [50] (November 2011). After
eliminating redundant sequences, seventy one transcrip-
tion factors were left and the amino acid sequences of the
transcription factors that contained complete WRKY
domains were used to construct a combined phylogenetic
tree containing the WRKY transcription factor family
from Brachypodium, Arabidopsis, rice, and Physcomitrella
patens, together with the published WRKY transcription
factors from wheat. Potential wheat orthologues of Bra-
chypodium WRKY transcription factors were also
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validated by BLAST searches against our dataset of Bra-
chypodium genes using the BLAST server at The database
of Brachypodium WRKY Transcription Factors. The
Group III WRKY transcription factors from maize, sor-
ghum, switchgrass, and foxtail millet were identified by
searching the genome sequences in Phytozome.

Additional files

Additional file 1: Figure S1. Combined phylogenetic tree of the WRKY
transcription factor families in Brachypodium, Arabidopsis, rice, and
Physcomitrella patens, together with published WRKY transcription factors
from wheat. All WRKY transcription factors are labeled and all bootstrap
values indicated. The WRKY domains were used to infer the evolutionary
history of the WRKY family using the Neighbor-Joining method. The
WRKY domain from a WRKY transcription factor found in a fungus
belonging to the Zygomycete class, Mucor circinelloides, was included as
a distant root (blue dot). Brachypodium and wheat proteins are indicated
by red and green dots, respectively. The WRKY subfamilies are indicated.
I-N and I-C indicate the N-terminal and C-terminal domains from Group |
WRKY proteins. The tree is drawn to scale, with branch lengths in the
same units as those of the evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances were computed using the
Poisson correction method and are in the units of the number of amino
acid substitutions per site. Phylogenetic analyses were conducted in
MEGA4 [37] and MEGAS [40]. The distance scale (0.1) is shown.

Additional file 2: Figure S2. The number of predicted WRKY
transcription factors in Brachypodium found in four different databases.
The first number in brackets indicates the predicted number of functional
genes and the second number the predicted total of pseudogenes.

Additional file 3: Table S1. The presence or absence of the 86 WRKY
transcription factors from Brachypodium in four different databases. The
name of the corresponding gene model is indicated and if no gene
model is present, that is also shown. An N indicates that the WRKY
transcription factor is not presence in the database.

Additional file 4: Table S1. The WRKY transcription factor family in
Brachypodium. For each WRKY transcription factor, the chromosomal
location and gene model (if present) are shown, together with any
comments concerning the gene. For each protein, a cartoon of the
domain structure is also shown to facilitate comparisons of similar
proteins. The domain structure was producing using MEME and the
complete amino acid sequences of all the family members were used.
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