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Abstract

Background: Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very

disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either
microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome
comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions
of transposable elements (TEs) have contributed to the generation of four lineage-specific (LS) regions in VdLs.17.

Results: We present here a detailed analysis of Class | retrotransposons and Class Il “cut-and-paste” DNA elements
detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates
from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the
Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the “cut-and-paste” superfamilies
Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies,
Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching
ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of
repeat-induced point mutation (RIP) only in some of the Gypsy retroelements. While Copia-, Gypsy- and
Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements
was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective
“cut-and-paste” TEs were found in VaMs.102.

Conclusions: Copia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens
V. dahlige and V. albo-atrum. In VdLs.17, we identified several retroelements and “cut-and-paste” transposons still
potentially active. Some of these elements have undergone diversification and subsequent selective amplification
after introgression into the fungal genome. Others, such as the ripped Copias, have been potentially acquired by
horizontal transfer. The observed biased TE insertion in gene-rich regions within an individual genome (VdLs.17)
and the “patchy” distribution among different strains point to the mobile elements as major generators of
Verticillium intra- and inter-specific genomic variation.
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Background

Present in the environment as free-living organisms or in
symbiosis with other organisms, fungi have a major im-
pact on human society. Besides being major contributors
to the decomposition and recycling of nutrients, they are
largely employed in food production, biotechnologies
and agricultural systems. However, these microorganisms
also cause devastating diseases, particularly of plants,
representing a major threat to global food security. It is
noteworthy that a significant number of plant pathogenic
fungi are able to cause serious human and animal dis-
eases, for which there are very few effective therapeutic
agents.

Verticillium dahliae (Vd) and V. albo-atrum (Va)
(Eukaryota, Fungi, Ascomycota) cause very disruptive
vascular diseases in over 400 plant species, including
vegetable, ornamental and tree crops [1]. These microor-
ganisms penetrate the root system of their hosts and in-
duce typical leaf wilt symptoms by spreading throughout
the xylem vessels and disrupting water transport. Com-
pared to Va, Vd is generally characterized by a broader
host range and geographical distribution, and the cap-
ability to produce longer lasting soil resting structures
called microsclerotia. No sexual reproduction has been
reported in either Vd or Va, thus implicating somatic
mutation as a driving force in their evolution. Compara-
tive analysis of the recently sequenced genomes of the
isolates VdLs.17 (33.8 Mb) and VaMs.102 (32.8 Mb),
showed that they are 97% identical and that VdLs.17 con-
tains regions in chromosomes three and four that are not
present in the Va isolate [2]. These lineage-specific (LS)
regions, which encompass about 3.5% of the fungal gen-
ome, comprise about 350 protein-coding genes and are
also enriched in repetitive sequences corresponding to
both previously known [3,4] and as-yet uncharacterized
transposon-like sequences [2].

Transposable elements (TEs) are found in virtually
every prokaryotic and eukaryotic genome where they
can exert a multifaceted mutagenic activity that leads to
changes in chromosome architecture, generation of new
regulatory networks and increases in the protein reper-
toire [5-7]. On the basis of structural-functional charac-
teristics, TEs have been separated into two major classes
each comprising subclasses or orders, superfamilies,
families and subfamilies [8,9].

The elements of Class I, retrotransposons, replicate by
a “copy-and-paste” mechanism that generates RNA
intermediates, which are subsequently reverse tran-
scribed into double-stranded (ds) DNA by TE-encoded
enzymes. These retroelements have been recently classi-
fied into five orders comprised of long terminal repeat
(LTR) elements, Dictyostelium intermediate repeat se-
quence (DIRSs), Penelope-like elements (PLEs), and long
and short interspersed nuclear elements (LINEs and
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SINEs) [8,9]. Among the most widespread retrotran-
sposons are the LTR superfamilies Gypsy and Copia,
which include two ORFs coding for the structural
virus-like protein GAG and the reverse transcriptase
(RT)/integrase (INT) enzyme POL.

Class II elements, DNA transposons, are mobilized via
the formation of DNA intermediates. If the intermediate
is dsDNA, the transposition is called “conservative” and
the elements are of the “cut-and-paste” type. Complete,
alias autonomous, TEs of this type are generally delim-
ited by terminal inverted repeats (TIRs) and encode a
single transposase. The transposase binds conserved
regions within the TIRs, mostly direct short tandem
duplications, and catalyzes the excision of the complete
element, which then reintegrates in a new genomic loca-
tion. When TE mobilization proceeds via single-stranded
(ss) DNA and does not involve the element excision it is
defined as “replicative”, a mode of transposition that
characterizes the more complex Helitron- and Maverick-
like transposons [10,11].

Although fungal genomes generally contain fewer re-
petitive sequences than do higher eukaryotes [8,12], TEs
have played critical roles in the evolution of their fungal
hosts and, in particular, of the phytopathogens. In the rice
blast fungus, Magnaporthe oryzae, for example, TEs were
found to cluster in regions having high recombination
rates and gene duplication events [13]. Similarly, in the
black mold Aspergillus niger, specific retrotransposon-
mediated recombinations have led to inversions of gen-
omic regions [14]. In addition, host-specific toxin genes of
Cochliobolus carbonum [15] and Alternaria alternata
[16], as well as host-specificity genes of M. oryzae [17] are
situated in transposon-rich regions of the genome.
Because gene products conferring host-specificity can
be recognized by plant host defense receptors, it has
been hypothesized that this proximity could allow ex-
pansion of host range through TE-mediated gene loss
[17]. In addition, TE distribution can be extremely
variable between isolates of a single fungal species,
and TEs have been used as markers to distinguish
genetically divergent populations, and for the identifi-
cation of subpopulations [18].

Introgression of mobile elements into the genome is
potentially deleterious, and cells have evolved different
processes for their elimination, including silencing by
RNA interference and repeat-induced point (RIP) muta-
tion [19-21]. The introduction of RIP mutations in the
DNA of fungi is linked to sexual reproduction, occurring
at the time of meiosis, and the process likely arose as a
genome defense mechanism against the intrusion of re-
petitive DNA sequences. The RIP machinery recognizes
duplicated sequences longer than 400 bp and sharing
more than 80% identity, and introduces in both copies
C:G to T:A transitions [22]. Noticeably, RIP has been
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detected in the asexual fungi A. niger, Penicillium cryso-
genum and V. dahliae [2,23], suggesting the existence of
an ancestral or cryptic sexual state in these species.
Interestingly, RIP mutations in VdLs.17 affected mem-
bers of the Gypsy but not of the Copia superfamilies of
retrotransposons, indicating either a differential suscep-
tibility to RIP by different types of TEs, or introgression
of already RIPed sequences from a sexual organism [2].
To further investigate the nature and extent of genetic
diversity in V. dahliae, we have undertaken an analysis
of TEs in this species. We report here the identification
and characterization of Class I and II transposons in V.
dahliae, an analysis of their distribution in V. dahliae
and V. albo-atrum, and discuss their potential role(s) as
generators of diversity in the Verticillium genomes.

Results

Transposable elements in Verticillium dahliae genome
(strain VdLs.17)

Using a combination of bioinformatics predictions and
manual inspections, we identified 56 complete Class I
retrotransposons and 34 Class II “cut-and-paste” DNA
transposons in the VdLs.17 genome. Based on compari-
son to consensus sequence structures [8], the retrotran-
sposons were identified as members of the LTR class
Copia and Gypsy superfamilies, and LINE superfamily I,
and the DNA TEs as subclass I members of the TIR
superfamilies Tcl/mariner, Activator (hAT) and Mutator
(MULE) (Figure 1, Table 1).

LTR retrotransposons of superfamily Copia

We identified 26 full-length Copia-like TEs, referred to
as VALTRE 1 and 5, respectively (Figure 1A, Table 1).
The 24 copies of VALTRE1 were 5,873 bp in length,
flanked by 213 bp LTRs, and contained a single ORF with
fused GAG and POL sequences predicted to encode a
1621 amino acid (aa) polyprotein. In contrast, the two
copies of VALTRES5 had shorter (159 bp) LTRs, and GAG
and POL ORFs separated by a UGA stop codon. This
rarely observed ORF organization requires a leaky stop
codon for translation read-through of the POL ORF 3’
into the GAG ORF. A conserved CARYYA sequence has
been shown to be important for the stop codon read-
through [24], however a search of VALTRE5 showed that
it lacked this canonical sequence motif. A MOTIF search
identified in both VALTRE1 and VALTRE5 an integrase
core domain located N-terminally to a reverse transcript-
ase domain, placing both elements as members of the
Tyl/Copia family of retroelements [25]. These retrotran-
sposases shared the highest sequences similarities with
hypothetical proteins of the fungal animal pathogen
Penicillium marneffei. Finally, a genome-wide search
was conducted that identified two VALTRE1 solo-LTRs.
Such sequences are commonly observed remnants of
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LTR retrotransposons, and likely arise from recombin-
ation between the direct repeat sequences that flank ret-
roelements [26].

LTR retrotransposons of superfamily Gypsy

Three families of Gypsy-like elements were discovered
and referred to as VALTRE2, VALTRE3, and VALTRE4
(hereafter indicated as VALTRE2/3/4), and corresponded
to VD35 and VDf90, previously identified as V. dahliae
retrotransposon-like sequences [4]. These elements
were ~ 6.8 to 6.9 Kb in size, 82.5% identical at the nucleo-
tide level, encoded nearly identical GAG and POL pro-
teins, and possessed LTRs of 476, 433 and 455 bp,
respectively (Figure 1A, Table 1). There were 22 full-
length elements and 14 solo-LTR sequences in the
VdLs.17 genome. The GAG proteins of these Gypsy-like
elements contained both gag and zinc finger conserved
domains. The POL ORFs were in a -1 frameshift orienta-
tion relative to that of the GAG ORF, and comprised as-
partate protease (PR), reverse transcriptase (RT),
RNaseH, chromodomain, and integrase (IN) domains in
an organization typical of Ty3/Gypsy-like elements
[8,27]. The top hit from a BLASTP search with the 1129
aa VALTRE2/3/4 POL predicted proteins was the Cgret
LTR element from the closely related cranberry fruit rot
tungus Colletotrichum gloeosporioides [28].

Non-LTR retrotransposons of superfamily |

A LINE-like non-LTR retrotransposon, VALINE1, was
identified as present in 8 copies. The 4,905 bp elements
contained separate GAG-like and POL ORFs, and an
NCBI conserved domain search identified endonuclease-
exonuclease-phosphatase (EEP) and RT domains, as well
as a C-terminal RNaseH domain that defines superfamily
I elements [8]. The top hit from a BLASTP search of the
predicted 1245 aa POL protein was that of a putative re-
verse transcriptase of P. marneffei (Figure 1A; Table 1).

“Cut-and paste” transposons of superfamily Tc1/mariner
Among the DNA transposons found in the VdLs.17 gen-
ome, twenty seven full-length Tcl/mariner-like elements
were identified by having their short, perfect inverted
terminal repeats (TIRs) flanked by dinucleotide TA tar-
get site duplications (TSDs), and the presence between
the TIRs of a single intronless ORF encoding a transpo-
sase characterized by the conserved endonuclease do-
main DDE_1 [18] and the N-terminal DNA binding
domains HTH_psq and HTH_Tnp_Tc5 (Figure 1B,
Table 1, aa sequences of the conserved domains in Add-
itional file 1; Figure S1). On the basis of TIR, ORF and
whole TE length and sequence identity, we distinguished
three VdLs.17 Tcl/mariner families referred hereafter as
DAHLIAE 1, 2 and 3.



Amyotte et al. BVIC Genomics 2012, 13:314
http://www.biomedcentral.com/1471-2164/13/314

Page 4 of 20

A

Ty1/Copia
VALTRE1
»- GAGPOL et 1D
LTR INT RVT2
VALTRES
B cac POL -B
INT RVT2 RNaseH
Ty3/Gypsy
VdLTRE2/3/4
POL -
GAG ZK
PR RVT1 RNaseH INT CR
LINE-like VALINE
- PoL -
EEP RVT1 RNaseH
B
Tc1/mariner
- DAHLIAE 1to 3
TA b — transposase —d TA
TsD IR Psq Tc5 DDE_1
Activator
VAHAT
GTTACTGT P — transposase — < GTTACTGT
hAT
Mutator
VAMULE
ATTGAAAA B—  mansposase — <« ATTGAAAA

MULE

Figure 1 Structure and organization of Class | and Il elements identified in the genome of Verticillium dahliae (strain VdLs.17). A) Class |
LTR retrotransposons. Schematic representations of the structure of the Ty1/Copia-like and Ty3/Gypsy-like LTR elements, as well as a LINE-like
non-LTR retrotransposon. The conserved domains identified in the putative protein sequences encoded by the GAG and POL genes are indicated
below the open reading frames (ORFs). VALTRET (upper schematic) contains direct long terminal repeats (LTR), and a fused GAG and POL ORF,
while VALTRES GAG and POL ORFs are separated by a UGA stop codon. The highly similar sequences of VALTRE2, VALTRE3, and VALTRE4
(VALTRE2/3/4) have overlapping GAG and POL ORFs. VALINE sequence contains linked, but separate, GAG and POL ORFs. Domain abbreviations:
INT, integrase (pfam00665); RVT2, reverse transcriptase 2 (pfam07727); RnaseH (pfam0075.16), GAG, group specific antigen; ZK, zinc knuckle
(pfam00098); PR, Retropepsin protease (CD00303); RVT_1, reverse transcriptase 1; CR, chromatin organization modifier (CD00024); EEP,
endonuclease-exonuclease-phosphatase; B) Class Il transposable elements of the superfamilies Tc1/mariner, Activator and Mutator. Each TE type
possesses terminal inverted repeats (TIRs) of different length flanking a transposase gene (shown is the corresponding ORF). The Tc1/mariner
transposases are characterized by the endonuclease superfamily motif DDE_1 (pfam03184) and the presence of the additional N-terminal
DNA-binding domains helix-turn-helix_pipsqueak (here indicated as psq, pfam05225), and helix-turn-helix_Tnp_Tc5 (here indicated as Tc5,
pfam3221). The relative position of the hAT dimerization (pfam05699) and the MULE (pfam10551) domains characterizing the Activator and
Mutator transposases are also shown. Flanking the TIRs are the nucleotide sequences of the direct target site duplications (TSDs) generated in the
fungal genome by the TE insertion.

Among the DAHLIAE1 sequences, we found 25
complete elements about 1.9 kb in length. These
sequences were associated with 41 to 62 bp TIRs that
showed conservation of the first four nucleotides ACGT-,
and contained 15 to 17 bp internal direct repeats (DRs)

(Additional file 2: Figure S2). We also detected about 10
additional defective DAHLIAEI1-like elements, five of
which lack both TIRs (not shown). All DAHLIAE1 pre-
dicted ORFs started at TE nucleotide position 100 and
encoded 551 aa proteins with the DDE_1 endonuclease



Table 1 Verticillium dahliae (VdLs.17) Class | and Il transposable elements identified in this study

Name Family Length (bp) LTR (bp) TIR (bp) Copy number®  Element domain organization®  Best BLAST hit® GenBank assession
Class |
VALTRET Copia 5873 213 - 24 INT (3.53e-14); EEA22357, HM852745
RVT_2 (6.12e-55); Penicilium mameffei,
RH_Ty1 (1.96e-40) identities 429/1277 (34%)
VALTRE2 Gypsy 6935 476 - 14 GAG (2.3e-10); AAG24792 (Cgnet), HM852746
CCHC (3.36e-06); Collectotrichum gloeosporiodes,
PR (9.23e-20): identities 673/1149 (59%)
RVT_1 (2.93e-26);
RH_Ty3 (3.09e-51):
VALTRE3 Gypsy 6828 433 - 4 see VALTRE2 AAG24792 (Cgnet), HM852747
Collectotrichum gloeosporiodes,
identities 661/1101 (61%)
VALTRE4 Gypsy 6870 455 - 4 see VALTRE2 AAG24792 (Cgnet), HM852748
Collectotrichum gloeosporiodes,
identities 661/1106 (61%)
VALTRES Copia 5555 159 - 2 INT (1.01e-06); EEA24286, HM852749
RVT_2 (841e-60); Penicilium mameffei,
RH_Ty1 (6.26e-37) identities 621/1306 (48%)
VALINE1 LINE 4905 - - 8 APE (5.68e-10); EEA18490, HM852750
RVT_1 (3.59e-20); Penicilium mameffei,
RH (7.53e-09) identities 879/1269 (70%)
Class Il
DAHLIAETa  Tcl/mariner 1861 - 45 12 HTH_psq (3.16e-06); EGU83431, JN160806
HTH_Tnp_Tc5 (7.75e-04); Fusarium oxysporum,
DDE_1 (1.35e-58) identities 317/551 (58%)
DAHLIAETb  Tc1/mariner 1862 - 41 4 HTH_Tnp_Tc5 (4.32e-03); EGU83431, JN160807
DDE_1 (6.10e-58) Fusarium oxysporum,
identities 317/539 (59%)
DAHLIAETc ~ Tcl/mariner 1862 - 55 1 HTH_psq (1.37e-06); EGU83431, JN160816
DDE_1 (1.72e-59) Fusarium oxysporum,
identities 322/546 (59%)
DAHLIAETd  Tc1/mariner 1862 - 53 9 HTH_psq (1.37e-07); EGU83431, JN160808
DDE_1 (1.72e-58) Fusarium oxysporum,
identities 317/548 (58%)
DAHLIAETe Tc1/mariner 1861 - 62 1 DDE_1 (242e-46) EGU83431, JN160817
Fusarium oxysporum,
identities 222/363 (61%)
DAHLIAE2 Tc1/mariner 1909 - 62 1 HTH_psq (3.31e-08); ABG26270 (OPHIO2), JN160809

HTH_Tnp_Tc5 (2.12e-12);
DDE_1 (2.95e-68)

Ophiostoma ulmi,
identities 275/529 (52%)

YLE/EL/POLT-L LI L /WO [eUSdPAWOIG MMM //:dNY

PLEEL ‘TLOT S2IWOoUaD JNG ‘[p 19 310AWy

0z Jo g abey



Table 1 Verticillium dahliae (VdLs.17) Class | and Il transposable elements identified in this study (Continued)

DAHLIAE3

VAHAT1

VdHAT3

VdMULE!1

VdMULE2

VdMULE3

Tc1/mariner

Activator

Activator

Mutator

Mutator

Mutator

1949

3164

2809

3613

3538

3406

102

22

20

86

84

73

2

1

HTH_Tnp_Tc5 (1.36e-06);
DDE_1 (5.53e-28)

Dimer_Tnp_hAT
(7.15e-19)

Dimer_Tnp_hAT
(1.54e-14)
MULE (3.86e-17)

MULE (3.49e-21)

MULE (3.61e-20)

EED116641,
Talaromyces stipitatus,
identities 148/400 (37%)

EAQ93808,
Chaetomium globosum,
identities 361/814 (44%)

EED11981, Talaromyces stipitatus,
identities 265/652 (40%)

EFZ03845, Metarhizium anisopliae,
identities 385/569 (68%)

EFZ03845, Metarhizium anisopliae,
identities 306/441 (69%)

EFZ03845, Metarhizium anisopliae,
identities 372/548 (68%)

JN160810

IN160811

IN160812

JN160813

IN160814

IN160815
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(See figure on previous page.)

Figure 2 Phylogenetic analysis of VdLs.17 Class | and Il elements. A) Ty1/Copia LTR retrotransposons, analysis of the reverse transcriptases
(amino acid sequences); B) Ty3/Gypsy LTR retrotransposons, analysis of the reverse transcriptases (amino acid sequences); C) Tc1/mariner-like
DAHLAIE 1, analysis of the full-length elements (TIR-comprising nucleotide sequences). Each element is identified by its chromosome location
(supercontig and nucleotide position); D) Tc1/mariner-like DAHLAIE 1 to 3, analysis of complete transposases (amino acid sequences);

E) Activator-like VAHAT elements, analysis of hAT transposase domains (amino acid sequences); F) Mutator-like VAMULE elements, analysis of
MULE transposase domains (amino acid sequences). The trees indicate the GenBank accession number of the amino acid sequences analyzed,
along with the abbreviation of the scientific names of organisms of origin. Abbreviations are as follow: Aa, Alternaria alternata (A), Aspergillus
awamori (D); Ac, Ajellomyces capsulatus; Af, Aspergillus flavus (A), Aspergillus fumigatus (D), Ad/And, Aspergillus nidulans (A), Ag/Ang, Aspergillus niger
(D); At, Aspergillus terreus; Bf, Botryotinia fuckeliana; Cn, Cryptococcus neoformans; Cgl/Cg, Chaetomium globosum;, Cf, Cladospororium fulvum;

Cgs, Colletotrichum gloeosporioides; Dm, Drosophila melanogaster; Ds, Drosophila simulans; Fo/Fox, Fusarium oxysporum, Fom, Fusarium oxysporum

melonis; Ma, Metharhizium anisopliae; Mo, Magnaporthe oryzae; Mt, Medicago truncatula; Pc, Penicillium crysogenum; Pm, Penicillium marneffei;
Pn, Phaesphaeria nodorum; Pt, Pyrenophora tritici-repentis; Sc, Saccharomyces cerevisiae; Ss, Sclerotinia sclerotiorum,; Sm, Sordaria macrospora;
Ts, Talaromyces stipitatus. Scale bar corresponds to 0.1 substitutions per amino acid or nucleotide.

domain spanning aa positions 154—364 and one or both
the N-terminal DNA-binding domains HTH_psq and
HTH_Tnp_Tc5 at aa positions 7-50 and 57-120, respect-
ively (Figure 1B, Table 1). BLASTP with DAHLIAEI pro-
teins revealed greatest sequence similarities (58-61% aa
identity) with sequences from ascomycete fungi, in par-
ticular, with a predicted protein from the phytopathogen
F. oxysporum (strain Fo5176) (Table 1).

To establish the relationships among the DAHLIAE1
transposons, we performed phylogenetic analysis using
the full-length nucleotide sequences, which resulted in
the classification of the 5 subfamilies DAHLIAEI a to e
(Table 1, Figure 2C). Members of the same subfamily
shared the same TIR length and were 95-100% identical
to each other. Sequence homologies between members
of the different subfamilies ranged from 73 to 74%. DAH-
LIAE 1la and 1d, with 12 and 9 complete copies each, re-
spectively, were the largest subfamilies and the most
abundant DNA transposons in VdLs.17 genome. DAH-
LIAE1 c and e were each present in only a single
complete copy, and encoded what are likely to be non-
functional transposases due to in-frame early stop
codons.

Only one complete copy of DAHLIAE2 was detected
in VdLs.17. The element was 1,909 bp long with
62 bp TIRs, and harbored an ORF coding for a puta-
tive 542 aa polypeptide (Table 1). The TIRs, like in
DAHLIAE], started with the nucleotides ACGT-, com-
prised three mismatches, and the DR sequence
TTTCGGACACCCCCCCC- repeated three times at
the 5-end of the TEs (Additional file 2: Figure S2).
The DAHLIAE2 ORF started at nucleotide position
187, and the encoded transposase shared the greatest
overall sequence homology (52% aa identity) with
OPHIO2 from the causal agent of Dutch elm disease
Ophiostoma ulmi [29].

Like DAHLIAE2, only one full-length copy of DAH-
LIAE3 was present in VdLs.17. The consensus sequence
was 1,949 bp long, with 102-bp TIRs. The 5" TIR started
with the sequence CCCGT- and TIR alignment revealed

one mismatch, and lack of internal direct duplications or
palindromes (not shown). DAHLAIE3 contained a
1,653-bp ORF starting at the TE nucleotide position 144,
and encoded a 550 aa transposase with similarities to a
putative 427 aa transposase from the fungal human
pathogen Talaromyces stipitatus (Table 1).

“Cut-and paste” transposons of superfamily Activator

Seven VdLs.17 sequences, designated VAHAT 1 to 7,
were found to putatively encode 55 to 85 aa hAT
dimerization domains, which characterize the carboxy
termini of the transposases of Activator-like element
transposases [30] (domain aa sequences shown in Add-
itional file 3: Figure S3A). We were able to define the
consensus sequence and flanking short imperfect TIRs
of two single copy elements, VdAHAT 1 and 3, and iden-
tify for VAHAT1 the 8-bp TSD GTTACTGT containing
a typical central TA-dinucleotide. The complete VAHAT
1 and 3 elements were 3,164 and 2,809 bp in length,
with 22 and 20 bp TIRs, respectively (Figure 1B, Table 1).
The TIRs of each element comprised one mismatch and,
while the VAHAT3 TIRs started with the sequence
ATTTG-, VAHAT1 TIRs were characterized by the motif
CAGNG- (Additional file 2: Figure S2), which is also
present in other fungal hAT-like elements such as the
Cryphonectria parasitica Cryptl [31], the F. oxysporum
Drifter and Tfol [32,33], and the Tolypocladium infla-
tum Restless [34]. Analysis of the VAHAT partial and
complete nucleotide sequences using BLASTN and
CLUSTALW revealed no significant regions of similarity
to Activator-like sequences from other organisms, sug-
gesting that each VAHAT was VdLs.17-specific. ORF
Finder searches with VAHAT TEs and the analysis of
corresponding ESTs supported the presence of a single
transposase-coding gene. However, the presence in most
of the VAHATS of in-frame early stop codons suggested
that partial, likely non-functional proteins would be gen-
erated. BLASTX analysis showed that while the best hits
for VAHAT 1 and 2 were two sequences from C. globo-
sum, the best matches for VDHAT 3 to 7 sequences
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Figure 3 Distribution of Class | and Il TEs within the VdLs.17 genome. The ChromoMap genome browser available online at the BROAD
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were to four different predicted proteins of the recently
sequenced entomopathogenic ascomycete Metarhizium
anisopliae [35] (Table 1, Additional file 4: Table S1).

“Cut-and paste” transposons of superfamily Mutator
BLASTP search using the 94 aa MULE domain from
the active Mutator-like element Hopl of F. oxysporum
f. sp. melonis [36] revealed the presence of eight pre-
dicted MULE proteins in VdLs.17 (domain aa
sequences shown in Additional file 3: Figure S3B).
Manual inspection of the corresponding genomic
sequences, which we refer to as VAMULE 1 to 8,
resulted in the discovery of three potentially complete
elements VAMULE 1 (3.6 Kb), 2 (3.5 Kb) and 3 (3.4
Kb), each encoding a single ORF, and containing 86, 82,
and 53 bp TIRs, respectively. An 8 bp TSD (ATT-
GAAAA) was associated with one element only, and
defective elements ranged in size from 363 to 2,371 bp
(Table 1, Additional file 4: Table S1).

Alignment of the VAMULE nucleotide sequences with
Hopl TIRs showed the presence of the terminal consen-
sus GGNAA, and of sub-terminal DRs of different

lengths. In particular, while VAMULE 1 and 2 had three
15-bp and 17-bp repeats, respectively, VAMULES3, like
Hopl, possessed 5 and 6 bp duplications (Additional file
2: Figure S2). Among the VAMULESs, the highest nucleo-
tide sequence homology was observed between the three
full-length elements (55% to 69% identity). VAMULES8
appeared to be the most divergent, with no significant
similarity to any other VAMULE element.

VAMULE elements were predicted to harbor single
transposase genes with different exon/intron structures.
In particular, we found a single exon in the VAMULE], 2,
3 and 6 genes, four exons in VAMULE4, two exons in
VAMULES and five exons in the VAMULES genes, re-
spectively. Complete MULE domains (94-95 aa) were
present only in transposases of the full-length elements.
The remaining transposases were characterized by N- or
C-terminal domain truncations of 21 to 57 aa. Notably,
the predicted 489 aa VAMULE7? protein (VDAG_04885)
was found to be the in-frame product of the fusion be-
tween a nitrilase and a MULE-transposase coding se-
quence. The hypothetical protein harbors a 177 aa N-
terminal nitrilase domain (pfam00795; involved in nitrile
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hydrolysis to ammonia and carboxyl acid) spanning aa
positions 3-180, and a truncated 74 aa MULE domain
spanning aa positions 363-436. VdAMULES transposase
(VDAG_04851) architecture was also characterized by
the presence of a 20 aa zinc-knuckle (zf-CCHC,
pfam00098) at its carboxy terminus. Proteins with the
highest sequence homology to the VAMULE transpo-
sases, which ranged from 55% to 79% identity, were from
C. globosum and M. anisopliae (Table 1).

Distribution of Class | and Il TEs in the VdLS.17 genome

An in-depth analysis of transposon distribution in
VdLs.17 genome revealed that the most abundant ele-
ments, VALTREs 1—4 and Tcl/mariner DAHLIAE1, were
dispersed throughout the genome’s eight chromosomes,
and in unpositioned scaffold sequences. However, there
was notable TE clustering in chromosomes 3 and 4
(Figure 3 A and B). In particular, supercontings 4 and 8
of chromosome 3 appeared to contain “hot-spots” of TE
insertions, harboring 21% and 20% of the transposons,
respectively. These supercontigs also contain VdLs.17 LS

Table 2 Survey of VdLs.17 ESTs corresponding to the
transposons identified in this study

Transposon Number of ESTs?

™M CM+RE CM-N
Class |
VdITRE1 43 21 23
VdITRE2 31 26 33
VdITRE3 24%* 16 27%%*
VdITRE4 25%* 23* 28
VdITRES 3 2 5
VALINET 13 1 4
DAHLIAETa 4 - 6
DAHLIAETb - 4 4
DAHLIAETd 3 - 11
DAHLIAETe 6 - 3
DAHLIAE2 6 2 5
DAHLIAE3 - 4 -
VdHAT1 12 2 8
VdAHAT?2 - 1 -
VdHAT3 - 1 -
VdMULE2 4 2 -
VdMULE3 - 5 -
VdMULES - 2 -

?VdLs.17 expressed sequence tag (EST) collections were generated from
cultures grown in CM (complete medium), CM + RE (CM amended with root
extract), or CM-N (CM lacking nitrogen source). For VALTRE2, VALTRE3 and
VdLTRE4, the corresponding ESTs aligned with all three elements except that
* one EST aligned with only VALTRE4, ** four ESTs aligned with both VALTRE 3
and 4, and *** one EST aligned with only VALTRE3.
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(lineage-specific) regions 1 and 2, which are absent from
the VaMs.102 genome [2]. The non-random TE distribu-
tion of the DDE_1, hAT and MULE motifs was further
assessed, and odds ratio analyses [37] did indeed show
that the LS regions are significantly enriched in trans-
poson motifs (P < 0.05) relative to that of the total pre-
dicted gene distribution in the genome assembly of
VdLs.17 (Additional file 5: Table S2). One approximately
100 Kb region from each of LS regions 1 and 2 was
selected to illustrate the genetic context of some TEs
(Figure 4). This figure highlights how the transposons
are present in gene-rich locations, and shows a putative
sequence duplication event involving genes encoding a
chitinase and a phospholipase, in addition to those pre-
viously described [2].

The Verticillium albo-atrum VaMs.102 genome contains
few transposons

While TEs were prevalent in the V. dahliae VdLs.17
genome, few repetitive sequences were identified in
VaMs.102. BLASTN and BLASTX queries against the V.
albo-atrum genome using VdLs.17 Class I and II trans-
posons identified one intact, full-length element having
99.9% sequence identity to VALTRE], one full-length but
degenerate Copia-like element, and one partial sequence
of approximately 1 kb, also of the Copia-type. Only short
(45 to 263 bp) sequences were found that had 80 to 91
percent identity to the Gypsy-like elements. Lastly, no
sequences corresponding to VALTRE5 were identified,
and remarkably, neither full-length nor incomplete Class
II TEs were detected in the VaMs.102 genome.

VdLs.17 Class | and Il transposons are transcriptionally
active

To assess potential transcriptional activity, we inspected
the three VdLs.17 EST libraries generated in support of
the Verticillium genome sequencing project [2] in search
of sequences corresponding to the different TE types
described herein. These libraries were obtained from
fungal cultures grown on control complete medium
(CM; ~10,000 ESTs), CM supplemented with root ex-
tract from the host plant lettuce (~5, 000 ESTs), or CM
lacking nitrogen (~5, 000 ESTs) [2]. We identified ESTs
matching all of the Class I and II transposons in at least
one of the growth conditions (Table 2).

The EST analysis showed that Class I elements were
transcriptionally active under all of the growth condi-
tions. Although similar levels of expression were
observed for the CM +root extract and CM -nitrogen
cultures, numbers of VALTRE1 ESTs were substantially
higher than those of all other elements. In contrast,
within each DNA TE family, a differential level of ex-
pression was observed according to the fungal growth
condition. For instance, while DAHLIAEL a, d and e
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Table 3 Survey of Verticillium dahliae and V. albo-atrum isolates for the presence of Class | and Il transposons
identified in VdLs.17 genome

Isolate Geographic Origin  Host VCGP Retrotransposons “Cut and Paste” DNA transposons

VdlLs.17¢ CA Lettuce 2B Copia (VALTRE 1 and 5), Gypsy (VdLTRE2/3/4)  Tc1/mariner (DAHLIAE 1 to 3),
Activator (VAHAT 1 to 7),
Mutator (VAMULE 1 to 8)

VdT9 CA Cotton 1 Copia (VALTRE 1 and 5), Gypsy (VALTRE2/3/4) -

Vdv44 X Cotton 1 Copia (VALTRE 1 and 5), Gypsy (VdLTRE2/3/4) -

VdPCW CA Pepper 3 Copia (VALTRE 1 and 5), Gypsy (VdLTRE2/3/4) ~ Tc1/mariner (DAHLIAE1d)

Vd70.21 unknown unknown 3 Copia (VALTRE 1 and 5), Gypsy (VdLTRE2/3/4) nd

VdDvd-T5 ON Tomato 2A Copia (VdLTRE1), Gypsy (VALTRE2/3/4) Tc1/mariner (DAHLIAE1d),
Activator (VAHATT)

VdBB D Potato 4A Gypsy (VdLTRE2/3/4) Tc1/mariner (DAHLIAE2),
Activator (VAHAT2)

VdWM > Cotton 2A Gypsy (VALTRE2/3/4) nd

VdPH CA Pistachio 2A Copia (VdLTRE1), Gypsy (VALTRE2/3/4) -

Vdi115 Syria Cotton 2B Copia (VALTRET), Gypsy (VALTRE2/3/4) nd

VdS39 OH Soil 4B Copia (VALTRE1), Gypsy (VALTRE2/3/4) Tc1/mariner (DAHLIAE2)

VdCw WA Cherry 4A/B Copia (VdLTRE1), Gypsy (VALTRE2/3/4) Tc1/mariner (DAHLIAE2)

V. albo-atrum

VaMs.102°  PA Alfalfa nd Copia (VdLTRET) -

Va383-2 ON Potato nd Copia (VdALTRET) Tc1/mariner (DAHLIAE2)

Va4ATC ON Potato nd Copia (VdLTRET) Tc1/mariner (DAHLIAE2)

VaV5591 CA Cauliflower nd Copia (VALTRE1), Gypsy (VALTRE2/3/4) -

Va462 MN Potato nd nd Tc1/mariner (DAHLIAE2)

VaChile1 Chile Kiwi nd - Tc1/mariner (DAHLIAE2)

VaPSuU140  PA Ailanthus altissima  nd - Tc1/mariner (DAHLIAE2)

Va48557 UK Tomato nd - Tc1/mariner (DAHLIAE2)

VaV4381 UK Hops nd - Tc1/mariner (DAHLIAE2)

Vavi04b  PEI Potato nd - nd

VaVv4901 PEI Potato nd - nd

The presence of the indicated Class | and Class Il transposable elements was determined by Southern hybridization or PCR amplification using gene-specific
probes (amplicons) or primer pairs, respectively, as described in Materials and Methods and as shown in Additional file 8: Figure S6. 2Sequenced genomes; °VCG,

vegetative compatibility groups; -, not detected; nd, no data.

were transcriptionally active primarily in control and ni-
trogen starvation conditions, ESTs for DAHLIAE3,
VAHAT 2 and 3 and VAMULE 3 and 8 were detected
only in the library from cultures grown in the root
extract-amended medium.

Abiotic stress can stimulate expression of TEs in fungi
[38,39]. We therefore used reverse transcription-PCR to
make a semi-quantitative assessment of the expression
of selected VdLs.17 DNA transposases in response to a
heat shock treatment (42°C for 40 minutes). The result-
ing data provided evidence that while the expression of
DAHLIAE1, DAHLIAE3, VAMULE2, and VdMULE3
was induced at 42°C, VAMULES expression appeared to
be unaffected by the treatment, and DAHLIAE2

responded negatively to the treatment (Additional file 6:
Figure S4).

Phylogenetic analyses

To gain a better understanding of the evolutionary his-
tory of the different transposable elements identified in
VsLs.17, we studied their phylogenetic relationships with
homologous sequences from other fungal species. Ana-
lyses were done as described in the Methods section and
using the aa sequences of the retroelement RT domains,
predicted aa sequences of the complete Tcl/mariner
proteins, and conserved domains of the VAHAT and
VAMULE transposases (Figure 2).
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Consistent with the predictions based on the
organization of the POL domains, VALTRE1l and
VALTRES5 clustered with known fungal Copia-like ele-
ments. However, bootstrap support separated the two
types of elements into distinct clades, with VALTRE1
being most closely related to sequences from Aspergillus
capsulatus and A. terreus (Figure 2A). VALTREs 2, 3 and
4 clustered together and with known Gypsy elements,
showing close relationships with the C. gloeosporioides
element Cgret [28] and Skippy from F. oxysporum [40]
(Figure 2B).

Although bootstrap values supported a monophyletic
origin for all the fungal DDE _1 transposases considered,
none of the VdLs.17 DDE_1 transposases clustered with
sequences from the basidiomycetes Cryptococcus neofor-
mans (animal pathogen) and Ustilago maydis (plant
pathogen), or with sequences from the four different
Aspergillus species included in the analysis (Figure 2D).
While the three DAHLIAE families, whose members
share 28 to 34% identity, separated into 3 different
lineages before speciation, DAHLIAEL1 differentiated into
subfamilies, sharing 67 to 72% aa identity, apparently
after insertion into the VdLs.17 genome. Both
DAHLIAE1- and DAHLIAE2-containing clades also
comprised proteins from the Sordariomycetes C. globo-
sum, F. oxysporum, M. oryzae and the Leotiomycete S.
sclerotiorum, which are closely related to Verticillium
spp. However, DAHLIAE 3 grouped with sequences
from the more distantly related Erotiomycete species
Ajellomyces capsulatus, P. marneffei, Paracoccidioides
brasiliensis and T. stipitatus. Among the fungal proteins
clustering with DAHLIAE2, all of which possess the
HTH_psq/HTH_Tnp_Tc5/DDE_1 domain organization,
we found transposases of well characterized plant patho-
gen TEs such as Flipper of B. fuckeliana [41], Fotl of F.
oxysporum [42], Nhtl of Nectria haematococca [43], and
OPHIO 1 and 2 of O. nova-ulmi [29].

Sequences with similarities to VdLs.17 hAT and MULE
domains were identified in a much more limited number
of fungi. Sequence alignments of the VdhAT and
VAMULE domains revealed core regions of 53 and 69
aa, respectively, and led to the identification of amino
acid positions that are conserved across all fungal spe-
cies examined (alignments shown in Additional file 3:
Figure S3). While the VdHATSs were separated into 6 dif-
ferent clades, all VAMULEs clustered together (Figure 2
E and F). Bootstrap values in the range of 50-60% or
below did not support a monophyletic origin for the
VdHATS. In the clade containing VAHAT 1 and 2, there
were sequences from the Activator-like transposons
Cryptl of the chestnut blight fungus Cryphonectria
parasitica [31] and Tfol of F. oxysporum [33], together
with one sequence from C. globosum. VAHAT7 was
more closely related to Drifter, a hAT element from F.
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oxysporum [32], and Restless from the cyclosporine-
producing fungus T. inflatum [34], as well as to
sequences from C. globosum, M. anisopliae, and N. hae-
matococca. VAHATS 3 to 6 were grouped with M. aniso-
pliae sequences only (Figure 2E). The VAMULE clade
comprised M. anisopliae and C. globosum sequences and
appeared to be unrelated to the clade with the F. oxy-
sporum element Hop and sequences from P. crysogenum,
P. marneffei, and T. stipitatus (Figure 2F).

Evidence of repeat induced point (RIP) mutation in
VdLs.17 TEs

In a previous study we surveyed VdLs.17 retrotranspon-
sons for evidence of RIP-like mutations and found them
only in Gypsy-like sequences [2]. Here we extended the
analysis to all VdLs.17 DNA transposons. Although the
sequence divergence for the Activator- and Mutator-like
elements was significant, RIPCAL searches [44], which
included VALTRE2-like sequences as positive control for
RIPing, revealed no clear bias for RIP-like mutations in
any of the VdLs.17 “cut-and-paste” elements (Additional
file 7: Figure S5).

Distribution of the VdLs.17 Class | and Il TEs in other

V. dahliae and V. albo-atrum isolates

The distribution of the Class I and II transposons identi-
fied in VdLs.17 was investigated in another 21 V. dahliae
and V. albo-atrum isolates from various hosts and geo-
graphic regions, including the V. dahliae vegetative
compatibility group (VCGQ) tester strains described by
Joaquim and Rowe [45] (results summarized in Table 3
and shown in Additional file 8: Figure S6). The Tcl/
mariner DAHLIAE2 showed the most widespread distri-
bution among the two species, being present in 33% and
66% of the Vd and Va isolates, respectively. The Copia
VALTREL and the Gypsy VALTR2/3/4 were detected in
multiple copies in almost all Vd isolates, whereas the
Copia-like element VALTRES5 was found only in VdLs.17
and four other Vd isolates, and always in low copy num-
ber (Additional file 8: Figure S6A). Only four Va isolates
were conclusively positive for the presence of VALS.17-
like retroelements. The Tcl/mariner DAHLIAE1 and
Activator-like sequences were, like the retroelements,
limited in their distribution, and represented primarily
in V. dahliae (Additional file 8: Figure S6B). Lastly, Tcl/
mariner DAHLIAE3 and VAMULE elements appeared to
be specific to VdLs.17.

Discussion

We originally set out to gain a better understanding of
the nature and extent of genetic diversity in phytopatho-
genic Verticillium spp. and, to this end identified mobile
elements in the sequenced V. dahliae and V. albo-atrum
genomes, and explored their distribution in other strains
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of different origins. Our genome-wide search yielded
complete retroelements and “cut-and-paste” DNA trans-
posons, whose structure we characterized in detail.
Among the VdLs.17 LTR sequences that we identified,
the Tyl/Copia-like VALTRE5 had the GAG and POL
OREFs in an organization that is very rare [46], and uses
a leaky stop codon for translation of the POL ORF that
is downstream of the GAG ORF. VALTRES5 did not have,
downstream of the GAG stop codon, the conserved
CARYYA sequence, which has been previously shown to
be important for this stop codon read-through [24].
However, the Tyl/Copia-like element Tca2 of Candida
albicans also does not possess this sequence and it has
been proposed that the sequences responsible for stop
codon read-through of Tca2 can be multiple, remote,
and scattered throughout the element [47]. The same
may therefore be true for VdLTRES5.

The VdLs.17 retrotransposons VALTRE 2, 3, and 4
were identifiable as Gypsy elements in their having GAG
and POL genes with the POL ORFs in a -1 frameshift
orientation relative to that of the GAG ORF [46]. A not-
able feature differentiating these three TE families, which
are predicted to encode almost identical polyproteins,
was the difference in their LTR lengths. LTR elements
contain critical cis-acting signals that define the element
borders and act as transcriptional promoters [48], and
we indeed found up to 5-fold differences in the number
of the ESTs corresponding to each type of element.

Among the “cut-and-paste” TEs in VdLs.17, the Tcl/
mariner superfamily, which derives its name from the
founder transposons Tcl of Caenorhabditis elegans and
mariner of Drosophila mauritiana [8)], was predominant.
All 29 full-length DAHLIAE elements were approx. 2 Kb
in size and comprised single intronless DDE_1-encoding
transposases flanked by short (41-102 bp) TIRs. The
DDE_1 transposases act generally as dimers or oligomers
and harbor functional domains mediating protein-protein
interaction, DNA-binding, -cleavage and -joining ac-
tivities [49]. We predicted the presence of two types
of N-terminal DNA-binding domains, HTH_psq and
HTH_Tnp_Tc5, which are involved in the recognition
and interaction with the TIRs [50]. The DDE_1 do-
main, first identified in bacterial transposases and retro-
viral integrases, is characterized by conservation of
three aspartate (D) residues or two, non-contiguous
(D) and one glutamate (E) residue, a catalytic triad
that forms a pocket able to bind two divalent metal
ions, mostly likely Mg2+, that are necessary for trans-
position [51]. The DDE signature has been detected
in all eukaryotic “cut-and-paste” transposase super-
families, indicating their common evolutionary origin
[52]. In the DAHLIAE transposases, the three aspar-
tate residues are separated by 110-112 and 35 amino
acids, respectively (D110-112D35D).
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In vitro and in vivo trans-kingdom assays have previ-
ously demonstrated that, while host factors are not
needed for transposition, intact transposase and TIRs
are required for the initiation and completion of the
process [53-56]. Tcl/mariner family transposon termini
comprise at least three types of functional sequences
involved in transposition: the 4—7 nucleotide TE cleav-
age sites at the outer extremities of the TIRs, the DRs
within the TIRs, which are the transposase binding sites,
and the UTRs, between the TIRs and ORFs, which act
as enhancers of transposition efficiency [49,57-59].
Transposons of different families generally differ in their
terminus structure and length, as well as in the transpo-
sase domain architecture. Each terminus/transposase
combination appears to mediate a slightly different ver-
sion of the “cut-and-paste” mobilization mechanism, en-
suring transposition specificity [49]. In VdLs.17, while
DAHLIAES3 starts with the unique cleavage motif CCCG
and does not possess recognizable repeated sequences in
the TIRs like those of Tcl/mariner TEs of other asco-
mycete fungi [60], DAHLIAE 1 and 2 start with the se-
quence ACGT-, and their TIRs contain two or three
DRs. In particular, DAHLIAE2 carries three internal
repetitions of a 17 bp-sequence at the 5 terminus, and
two at the 3’ terminus. The DAHLIAE ORFs do not
overlap with the TIR sequences and are flanked by
asymmetric UTRs that vary in length from 33 to 125 bp,
according to the TE family type. The VdLs.17 Activator
and Mutator elements are highly degenerate (VAdHATS)
or with limited sequence similarities (VAMULESs). Most
of the elements appeared to be of the non-autonomous
type due to mutations that disrupted TIR sequences
and/or resulted in incomplete transposases. Although
these elements are probably unable to transpose and are
fossils, we were able to identify corresponding ESTs for
some of them. These sequences may therefore still play
the important role of repressing transposition of the
complete elements of the same family through transpo-
sase dilution or through a negative dominant repression
by the truncated transposases.

Domestication is the process by which TE functional
domains are incorporated into functional host proteins
[5]. In VdLs.17 we found an insertion of a fragment of a
Mutator element within a nitrilase gene. The fused se-
quence is predicted to generate a protein carrying in-
frame nitrilase and MULE domains. Although we did
not find corresponding ESTs, we cannot rule out the
possibility that this new protein is functional.

The EST data and expression analysis under heat
stress further showed that several of the full length
Class I and II TEs, which are predicted to code for
complete transposition-mediating enzymes, are still
transcriptionally active and differentially responsive to
different stimuli.
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In general, our phylogenetic analysis of both Class I
and II TEs mirrored the relationships among the fungal
species that were defined by the fungal genome initiative
on the basis of whole genome comparative studies. The
evolutionary ancestors of the Copia, DAHLIAE, VdHAT
and VAMULE TEs apparently evolved into different
groups before insertion into the VdLs.17 genome. While
high bootstrap values supported the monophyletic evo-
lution of the V. dahliae Tcl/mariner and Mule elements,
the Copia VALTREs 1 and 5 and the VAHATSs fell into
distinct lineages. The three Gypsy families diversified
after introgression into VdLs17 genome. Also, the Tcl/
mariner family DAHLIAE]1 underwent a recent expan-
sion in VdLs.17, generating five VdLs.17-specific sub-
families. These subfamilies differed in sequence and
length of their termini, and of their ORF sequences.
DAHLIAE] a, b and d all putatively coded for intact
transposases and were present in multiple, almost iden-
tical copies, comprising 74% of the total DNA TEs in
VdLs.17. In fungi, the selective amplification of trans-
poson subfamilies, such as we have detected for the
DAHLIAE1 elements, has been associated to events of
horizontal gene transfer [18], however no definitive
mechanism has yet been proven.

It has been proposed that TEs may enhance recombin-
ation to cause genetic variation, giving populations the
flexibility to adapt, a phenomenon which could be espe-
cially important for species that do not have a sexual
phase [18]. TE clustering such as we observed in the
VdLs.17 LS regions has been found in the genomes of
other phytophathogenic fungi. In M. oryzae, for ex-
ample, both Class I and II transposable elements are
clustered within three regions of chromosome seven,
characterized by a high rate of duplication and evolution
[13]. Similarly, TEs were also found to cluster in regions
undergoing rapid reorganization in the genome of the
plant vascular pathogen F. oxysporum [61]. It has been
hypothesized that these types of clusters are important
for the generation and evolution of new genes [13], and
it has been proposed that the transposon-rich LS regions
in V. dahliae may impart a degree of genetic flexibility
in the species, and allow rapid adaptation to new host
niches [2]. The mechanism(s) by which TE clusters are
generated in fungal genomes has not been elucidated
yet. While the clustering could simply be the passive re-
sult of selection against TE incorporation into gene-rich
zones of the genome, it alternatively could result from
an active process related to TE function. Many TEs do
selectively integrate into specific sequences [62,63],
which could lead to biased TE distribution. Such select-
ivity has, for example, been observed for S. cerevisiae, in
which Ty3 LTIR elements are most often found to be
integrated into upstream regions of genes transcribed by
RNA polymerase III [64]. The parallel, non-random
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clustering of the Class I and II V. dahliae elements sug-
gests that there may be synergistic interactions among
different types of elements, and selective pressure in V.
dahliae for TE clustering, which in turn may be import-
ant for generating the genomic diversity necessary for
niche adaptation and host range expansion. Interestingly,
among the 354 predicted genes encoded within the LS
regions, there were no “housekeeping” genes [2]. Rather,
the predicted genes encoded proteins of potential im-
portance in pathogenicity, including bZIP transcription
factors, ferric reductases, phospholipases, and other
genes predicted to play a role in response to stress [2].
Moreover, clusters or pairs of genes were clearly dupli-
cated in these LS regions ([2] and this study). It is un-
clear if such duplications are the direct result of TE
activity, and more studies are required to investigate the
role(s) of these putative pathogenicity factors. However,
the presence of solo-LTR sequences does suggest that
recombination between the repeated sequences of the
LTR elements could be a contributing factor in the
reorganization of Verticillium dahliae genome.

Since TEs can have a large effect on the genomes of
their hosts, causing gene deletion and duplication as
well as chromosomal rearrangements, host fitness could
be adversely affected if TE-induced transposition and
recombination events disrupted or altered function of
essential genes. However, some filamentous fungi have
a unique tool, known as repeat-induced point mutation
(RIP), to deal with repetitive sequences such as TEs.
RIP, a process first described in Neurospora crassa [22],
was found to occur during the sexual cycle, and to sub-
ject duplicated sequences of >400 base pairs to irre-
versible CG to TA transition point mutations. Although
RIP is known to only occur during the fungal sexual
cycle, there are several examples in asexual fungi where
TEs with RIP-like mutations have been identified
[23,65,66]. The identification of RIP-like mutations in
some VALTRE2/3/4 sequences [2] indicated that, at
some point in Verticillium spp. evolution, a RIP-like
process operated to protect the genome from infiltra-
tion by TEs. The presence in V. dahliae and V. albo-
atrum of identifiable RID-like protein orthologs, which
are known to be a part of the RIP machinery in N
crassa [67], suggests that these fungi may still possess
the capacity for RIP. Interestingly, in VdLs.17, RIP
mutations affected members of the Gypsy but not
Copia superfamilies of retrotransposons, indicating ei-
ther a differential susceptibility to RIP by different types
of TEs or introgression by horizontal transfer of already
RIPed sequences [2].

The TE content of different organisms is variable,
sometimes accounting for as much as 60-80% of the
genome, as in the case of cereals. More recently, mobile
elements have been found to account for about half of
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the genome size also in the phytopathogenic oomycete
Phytophthora infestans and the truffle fungus Tuber
melanosporum [12]. Noticeably, a high degree of vari-
ability in the number and types of transposons has been
documented even in closely related species. For in-
stance, the TE content of the fungal plant pathogens F.
oxysporum and F. graminearum differs by a two-fold
order of magnitude, 4% and 0.03%, respectively [68].
The observed TE spatial-temporal fluctuations appear
to be TE-family dependent and governed by multiple
mechanisms including elimination by ectopic recombin-
ation, extinction by genetic drift, reintroduction by
horizontal transfer, and environmental stress-driven ex-
pansion (reviewed by Hua-Van et al. [12]). Despite the
high level of identity (97%) and synteny identified be-
tween the genomes of the recently sequenced Vd and
Va isolates, the V. albo-atrum genome assembly was
distinct in containing far less repetitive DNA than did
that of V. dahliae [2]. In particular, VaMs.102 lacked
the highly repetitive LS regions present in VdLs.17, and
contained neither full-length nor defective VALTRE5
Copia or “cut-and-paste” DNA elements. This absence
seems simply to reflect the isolate of V. albo-atrum
sequenced rather than a general feature of the species.
In fact, 66% of the other Va isolates we surveyed for
the presence of Vd.Ls17 TE-like sequences were posi-
tive for the Tcl/mariner DAHLIAE2.

Extensive studies conducted on natural populations of
other organisms such as Drosophila and different plant
species including Arabidopsis, barley, maize, rice and
wheat have clearly demonstrated that transposon dynam-
ics plays a central role also in generating intraspecific
variability [69-73]. Our findings have shown that the
Copia-like VALTRE1 and the Gypsy-like retrotransposons
are almost ubiquitous in V. dahliae, whereas the Copia-
like VALTRES5 and most of the “cut-and-paste” DNA TEs
appear to have a much more limited distribution. Al-
though lack of detection of VdLs.17-like TEs could in-
deed reflect total absence of mobile elements, those
Verticillium genomes without such elements may either
contain related sequences that have diverged to a degree
that prevented detection under the conditions used in
this study (see Materials and Methods), or may simply
harbor their own distinct arrays of transposable
elements.

Conclusions

The identification and characterization of Class I and II
TEs of Verticillium dahliae (VdLs.17) has allowed fur-
ther exploration of the genetic diversity existing among
the phytopathogenic Verticillium spp., and raised intri-
guing questions about the role(s) that TEs may have in
shaping intra- and inter-specific evolution in this fungal
genus. The discovery of chromosome location “hot
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spots” for TE insertion, as well as a “patchy” distribution
among isolates of some of the TEs offers tantalizing evi-
dence that TEs may play an important role in modulat-
ing genome architecture to allow Verticillium fungi to
evolve quickly and adapt to their hosts, as has been sug-
gested for other plant pathogens [17,74]. V. dahliae and
V. albo-atrum were previously perceived, on the basis of
vegetative compatibility and pathogenicity analyses, to
have rather low genetic diversity. However, the results of
molecular analyses carried out over the past two decades
suggest that the species do in fact exhibit a high level of
genetic variation and genome plasticity [3,75,76]. The
analyses presented herein showed a broad range of dif-
ferent combinations of TE types in the different fungal
strains, further supporting a major contribution of the
transposable elements to the diversification of Verticil-
lium spp. genomes.

Methods

Bioinformatics and characterization of Verticillium Class |
and Il transposons

The genome sequences of the fungal strains V. dahliae
VdLs.17 and V. albo-atrum VaMs.102, and the asso-
ciated expressed sequence tag (EST) information for
strain VdLs.17 are available at www.broadinstitute.org/
annotation/genome/verticillium_dahliae/MultiHome.
html (Broad Institute), and served as the primary source
for the TEs identified in this study. Virulence data and
other information on these strains were previously pub-
lished [77,78]. To identify repetitive sequences in the V.
dahliae VALS.17 and V. albo-atrum VaMs.102 genomes,
sequences were searched using Cross_match [79], and
filtering for alignments longer than 200 bp with greater
than 60% sequence similarity, as described in Kloster-
man et al. [2]. Class I and II transposon sequences were
initially identified by searching among the repetitive
sequences for putative transposon elements using com-
putational predictions based on BLASTX analysis. For
identification of the Class I elements, sequences from
the above collection of putative transposon loci were
manually inspected using the DNASTAR v. 6 software
suite (DNASTAR Inc., Madison WI). Direct repeats
flanking putative GAG and POL OREFs, a hallmark of
Class I LTR elements, were first identified using the
DNAstar program GeneQuest 6.1. Putative LTR and
LINE-like element sequences were then aligned with
ClustalW to identify type elements of the LTR-
containing Ty3/Gypsy, Tyl/Copia, and LINE-like class
TEs. Conserved domain analysis of predicted open read-
ing frames (ORFs) encoded by the putative LTR
elements was conducted using the NCBI conserved-
domain database search tool [80,81], and the Genome-
Net MOTIF search at http://motif.genome.jp. For the
identification of the Class II “cut-and-paste” elements,
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sequences from the initial collection of putative trans-
poson loci were manually inspected with homology-
based methods including BLASTN searches of VdLs.17
and VaMs.102 genomes and NCBI databases. VdLs.17
genomic regions flanking the regions of homologies (3
to 6 Kb total) were then self-aligned using BLASTN
align program to identify TIRs. Identification of DNA
transposons was also based on use of the feature search
tools available at the Verticillium group Database, in
particular the feature type HMMR and the text search
for DDE and hAT. We also searched the sequenced
Verticillium genomes with complete or individual con-
served domain aa sequences of well-characterized trans-
posases of other closely related fungi. Nucleotide
sequences of the identified full-length and defective
VdLs.17 TEs were conceptually translated using
TRANSLATE in ExPASy, and used in BLASTX searches
to identify transposase conserved domains and the clos-
est homologous sequences from other organisms.

Phylogenetic analyses

Nucleotide and amino acid sequences were aligned using
the programs CLUSTALW and MUSCLE. Sequences
were collapsed into haplotypes by manually removing
INDELS using the multiple alignment editor program
Jalview. Maximum-likelihood distance trees were in-
ferred by using PhyML 3.0, and selecting the substitu-
tion models and at least 1000 bootstrap replications.
Trees were graphically represented using the program
TreeView. For the separation of the DAHLAIE1 ele-
ments into the subfamilies a to e, we used the TE full-
length nucleotide sequences (inclusive of TIRs). While
the analysis of the Tcl/mariner transposases was based
on complete protein sequences, the low level of conser-
vation among VdHATs and VAMULEs allowed for an
evaluation of relatedness based on the conserved hAT
and MULE domains only. Conserved amino acid posi-
tions within each transposase functional domain were
identified by visualizing their sequence alignments using
the program MAFFT in Jalview.

Fungal strains and growth conditions

With the exception of V. albo-atrum isolates V104b and
V4901 (provided by Dr. F. Daayf, University of Mani-
toba, Winnipeg MB), all Verticillium isolates used in this
study (Table 3) are from culture collections of K.F.D, M.
d.M.J. and P.V. Isolates were stored long-term at —20°C
as filter paper stock. Cultures were routinely grown at
24°C on complete medium (CM) agar and in CM broth
[82].

Nucleic acid isolation manipulations
Fungal genomic DNA was isolated from Verticillium
spores using a glass-bead breakage method as described
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previously [82]. For DNA blot hybridization, restriction
enzyme-digested genomic DNA was electrophoretically
size-fractionated through agarose gels, transferred by ca-
pillary blotting to positively charged nylon membranes
(Roche Diagnostics, Indianapolis, IN), and fixed to the
membrane by UV cross-linking. High stringency hybridi-
zations (65°C), and chemiluminescent detection of DIG-
labeled hybrids were done as described previously [83].
Hybridization probes were synthesized from V. dahliae
VdLs.17 gDNA by the incorporation of DIG-labeled
dUTP into PCR amplification products. Amplification
reactions contained Platinum Taq polymerase (Invitro-
gen, Canda Inc., Burlington, ON), DIG Labeling Mix
(Roche Diagnostics, Indianapolis, IN), DNA, and for-
ward and reverse primer pairs indicated in Additional
file 9: Table S3. Reaction conditions involved an initial
2 min denaturation at 94°C, followed by 30 amplification
cycles: 94°C for 45 sec, 65°C for 45 sec, 72°C for 60 sec,
and a final 5 min extension at 72°C. PCR-based genomic
survey for the presence of specific TEs in Vd and Va
strains was performed using 20 ng of genomic DNA in a
25 pL reaction mixture containing 1.5 mM MgCl,,
100 mM dNTPs, 100 pmol of each TE-specific primer
and 1 unit of Tag DNA polymersase (Promega). As con-
trols of DNA equal loading and amplification specificity,
we included in the experiments amplification of a
VdLs.17 actin gene (VDAG_08445) and no-DNA sam-
ples. The sequences of the primers are listed in Add-
itional file 9: Table S3.

Transcriptional analysis

The analysis of the expression of selected transposase genes
was performed by semi-quantitative reverse transcription
PCR (RT-PCR) experiments. Total RNA was extracted
from VdLs.17 grown under control conditions (25°C) or
exposed to heat (42°C) for 40 minutes using RNeasy Plant
Mini Kit (QIAGEN). An in-column DNase step was added
according to the manufacturer’s instructions. First strand
c¢DNA was synthetized using 500 ng total RNA, oligo (dT)
and TaqgMan Reverse Transcription kit (Applied Biosys-
tems). PCR amplification were done using one 1 ul cDNA
in 20 pl reactions containing 1.5 mM MgCl,, 100 mM
dNTPs, 100 pmol of each transposase-specific primer, 1
unit Taqg DNA polymersase (Promega), and 30 amplifica-
tion cycles. As controls of cDNA equal loading and amplifi-
cation specificity, we included in the experiments
amplification of ¢cDNA corresponding to a VdLs.17 actin
gene (VDAG_08445) and no-cDNA samples. The primers
were designed on the basis of EST sequence information
publicly available at the Verticilliurm Group Database/Fun-
gal Genome Initiative/Broad Institute of MIT and Harvard
(www.broadinstitute.org). Primer sequences are listed in the
Additional file 9: Table S3.
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Statistical analyses of transposon clustering in the
genome of V. dahliae

Odds ratio analyses [37] of transposons in the LS regions
of the genome of isolate VdLs.17 of V. dahliae versus
those encoded in the core genomic sequences of
VdLs.17 were carried as described [2]. The only excep-
tion was that each Class I or II transposon type was
parsed into numbers within LS regions or numbers in
non-LS regions, and then grouped with the total num-
bers of genes within the LS regions or non LS regions
for analyses. A total of 354 LS genes were used in the
analyses and the total number of genes, determined by
the Broad Institute annotation pipeline, was 10,535.

Analyses of repeat-induced point mutation

Sequences corresponding to each of the transposon fam-
ilies were identified by a BLASTN search of the V. dah-
liae genome (E value cutoff <1E™®) with the type
elements. Sequences with a length of at least 500 bp
were then retrieved and aligned using MUSCLE ([84],
and analyzed using the RIPCAL software [44].

Additonal files

Additonal file 1: Figure S1. Alignments of the conserved domains
of VdLs.17 Tc1/mariner-like DAHLIAE transposases. The amino acid
alignments of the conserved domains DDE_T1 (A), HTH_psq (B) and
HTH_Tnp_Tc5 (O), which characterize the transposases of the Tc1/mariner
element DAHLIAE are shown. The alignments were generated using
CLUSTALW and the amino acid conservation visualized using Jalview
tools. The red boxes indicate the positions of the aspartic acid triad that
characterize the endonuclease DDE_1 motif. The alignments include
sequences from other fungi that are the best matches of the DAHLIAE
transposases (listed in Table 1).

Additonal file 2: Figure S2. Terminal inverted repeats (TIRs) of the
Class Il elements identified in the VdLs.17 genome. The TIR
nucleotide sequences of the Tc1/mariner-like elements DAHLAIE 1 and 2
(A), the Activator elements VAHAT 1 and 2 (B) and of the Mutator
elements VAMULE 1 to 3 are shown. The internal direct duplications are
underlined. The asterisks indicate mismatches.

Additonal file 3: Figure S3. Alignment of VdLs.17 hAT and MULE
transposase domains. The amino acid alignments used for the
phylogenetic analysis of the VAHAT (A) and VAMULE (B) elements are
shown. The alignments were generated using CLUSTALW, all gaps were
removed manually and the amino acid conservation visualized using
Jalview tools.

Additional file 4: Table S1. Activator-and Mutator- like transposons
identified in the VdLs.17 genome.

Additional file 5: Table S2. Odd ratio analysis of Class | and Class Il
transposon domain encoded in the genome of VdLs.17.

Additonal file 6: Figure S4. Analysis of the expression of VdLs. 17
Class Il transposases in response to heat stress. The transcription of
the indicated Class Il transposases was analyzed by RT-PCR experiments
using cDNA synthetized from total RNA extracted from VdLs.17 grown at
25°C or exposed to heat stress (42°C for 45 minutes). The primers used to
amplify the transposase ORFs were designed on the basis of the
sequence of the corresponding ESTs publicly available at the Verticillium
Group Database (www.broadinstitute.org/annotation/genome/
verticillium_dahliae/MultiHome.html) (Primer sequences are listed in
Supplemental Table 3).

Additonal file 7: Figure S5. RIPCAL analysis of VdLs.17 Class Il TEs.
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Search of the indicated DNA transposon sequences for evidence of RIP
mutations by RIPCAL analyses did not show any clear bias in the type of
mutations observed. Analysis of VALTRE2-like sequences, in which a bias
for CA to TA transition mutation was previously identified [2] was
included in our study as a positive control of RIPing.

Additonal file 8: Figure S6. Distribution of Class | and Il elements
identified in the Vd.Ls17 genome in other phytopathogenic
Verticillium spp. isolates. A) Southern hybridization analysis of the
indicated Vd and Va fungal isolates for the presence of retrotransposons.
Genomic DNA was digested with EcoRI (top panel), Bglll (middle panel),
or Sacl (bottom panel), and blots hybridized with DIG-labelled probes
corresponding to VALTRE1, VALTRE2/3/4, or VALTRES, respectively. Sizes of
DIG-labelled molecular weight markers (Kb) are indicated to the right of
the images; B) PCR amplifications of retrotransposons in the indicated Vd
and Va isolates, using VALTRET, VALTRE2 and VALTRES primer pairs.
Amplification of actin was used as control (not shown); FSDW, no-
template reaction; C) PCR amplification of DAHLIAE, VAHAT and VAMULE
elements was obtained by using as a template genomic DNA (20 ng) of
the indicated Vd and Va isolates; D) To verify specificity of the bands of
different size obtained from amplification of DAHLIAE 1d, PCR products
were blotted onto nylon membranes and hybridized with DIG-labelled
specific probes. Details of the isolates used in the survey are provided in
Table 3. Sequences of the primers used in the survey are listed in
Supplemental Table 3.

Additional file 9: Table S3. List of PCR amplification primers used
in this study.
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